Monitoring of fresh-cut spinach leaves through multispectral vision and sensory evaluation

Lunadei, Loredana; Diezma Iglesias, Belen; Lleó García, Lourdes; Ruiz García, Luis; Cantalapiedra, Susana y Ruiz-Altisent, Margarita (2012). Monitoring of fresh-cut spinach leaves through multispectral vision and sensory evaluation. "Postharvest Biology and Technology", v. 63 (n. 1); pp. 74-84. ISSN 0925-5214. https://doi.org/10.1016/j.postharvbio.2011.08.004.

Descripción

Título: Monitoring of fresh-cut spinach leaves through multispectral vision and sensory evaluation
Autor/es:
  • Lunadei, Loredana
  • Diezma Iglesias, Belen
  • Lleó García, Lourdes
  • Ruiz García, Luis
  • Cantalapiedra, Susana
  • Ruiz-Altisent, Margarita
Tipo de Documento: Artículo
Título de Revista/Publicación: Postharvest Biology and Technology
Fecha: Enero 2012
Volumen: 63
Materias:
Escuela: E.T.S.I. Agrónomos (UPM) [antigua denominación]
Departamento: Ingeniería Rural [hasta 2014]
Grupo Investigación UPM: LPF-TAGRALIA
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

This paper reports the development of image processing methods for the detection of superficial changes related to quality deterioration in ready-to-use (RTU) leafy spinach during storage. The experiment was performed on spinach leaves stored at 4.5 °C for 21 days (Set 1) and at 10 °C for 9 days (Set 2). Regarding Set 1, 75 units were evaluated beginning at time zero and after 7, 14, and 21 days of storage (treatments t1.0, t1.1, t1.2, and t1.3, respectively). In the case of Set 2, 24 samples were measured at time zero and after 3, 6, and 9 days (treatments t2.0, t2.1, t2.2, and t2.3, respectively). Multispectral images were acquired using a 3-CCD camera centered at the infrared (IR), red (R), and blue (B) wavelengths. Opportune combinations of these bands were calculated using virtual images, and a non-supervised classification was performed. A large number of spinach leaves belonging to Set 2 showed injuries due to the effects of in-pack condensation; thus, an image algorithm was developed to separate these defective leaves before applying the classification. For Set 1, Set 2 and all the calculated virtual images, the classification procedure yielded two image-based deterioration reference classes (DRCs): Class A, including the majority of the samples belonging to t1.0 and t1.1 (Set 1) and to t2.0 and t2.1 (Set 2) treatments and Class B, which comprised mainly the samples belonging to t1.2 and t1.3 (Set 1) and to t2.2 and t2.3 (Set 2) treatments. An internal validation was performed, and the best classification was obtained with the virtual images based on R and B bands. For each sample, camera classification was evaluated according to reference measurements (visible (VIS) reflectance spectra and CIE L*a*b* coordinates); in all cases, VIS reflectance values corresponded well with storage days, and Classes A and B could be considered homogenous with regards to L* and a* values. Taken together, these results confirmed that a vision system based on R and B spectral ranges could constitute an easy and fast method to detect deteriorating RTU packed spinach leaves under different refrigeration conditions.

Más información

ID de Registro: 10121
Identificador DC: http://oa.upm.es/10121/
Identificador OAI: oai:oa.upm.es:10121
Identificador DOI: 10.1016/j.postharvbio.2011.08.004
URL Oficial: http://www.sciencedirect.com/science/article/pii/S0925521411001967
Depositado por: Memoria Investigacion
Depositado el: 23 Ene 2012 12:31
Ultima Modificación: 03 Nov 2016 17:20
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM