Cyclic matrices of weighted digraphs

Riaza, Ricardo (2012). Cyclic matrices of weighted digraphs. "Discrete Applied Mathematics", v. 160 ; pp. 280-290.

Descripción

Título: Cyclic matrices of weighted digraphs
Autor/es:
  • Riaza, Ricardo
Tipo de Documento: Artículo
Título de Revista/Publicación: Discrete Applied Mathematics
Fecha: 2012
Volumen: 160
Materias:
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Matemática Aplicada a las Tecnologías de la Información [hasta 2014]
Licencias Creative Commons: Ninguna

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (200kB) | Vista Previa

Resumen

We address in this paper several properties of so-called augmented cyclic matrices of weighted digraphs. These matrices arise in different applications of digraph theory to electrical circuit analysis, and can be seen as an enlargement of basic cyclic matrices of the form $B W \rsp B^T$, where $B$ is a cycle matrix and $W$ is a diagonal matrix of weights. By using certain matrix factorizations and some properties of cycle bases, we characterize the determinant of augmented cyclic matrices in terms of Cauchy-Binet expansions and, eventually, in terms of so-called proper cotrees. In the simpler context defined by basic cyclic matrices, we obtain a dual result of Maxwell's determinantal expansion for weighted Laplacian (nodal) matrices. Additional relations with nodal matrices are also discussed. Finally, we apply this framework to the characterization of the differential-algebraic circuit models arising from loop analysis, and also to the analysis of branch-oriented models of circuits including charge-controlled memristors.

Más información

ID de Registro: 10285
Identificador DC: http://oa.upm.es/10285/
Identificador OAI: oai:oa.upm.es:10285
Depositado por: Dr Ricardo Riaza
Depositado el: 13 Feb 2012 07:25
Ultima Modificación: 20 Abr 2016 18:30
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM