The Discrete Temporal Eigenvalue Spectrum of the Generalised Hiemenz Boundary Layer Flow As Solution of the Orr-Sommerfeld Equation

Theofilis, Vassilios (1994). The Discrete Temporal Eigenvalue Spectrum of the Generalised Hiemenz Boundary Layer Flow As Solution of the Orr-Sommerfeld Equation. "Journal of Engineering Mathematic", v. 28 (n. 3); pp. 241-259. ISSN 0022-0833. https://doi.org/10.1007/BF00058439.

Descripción

Título: The Discrete Temporal Eigenvalue Spectrum of the Generalised Hiemenz Boundary Layer Flow As Solution of the Orr-Sommerfeld Equation
Autor/es:
  • Theofilis, Vassilios
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Engineering Mathematic
Fecha: 1994
Volumen: 28
Materias:
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Motopropulsión y Termofluidodinámica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

A spectral collocation method is used to obtain the solution to the Orr-Sommerfeld stability equation. The accuracy of the method is established by comparing against well documented flows, such as the plane Poiseuille and the Blasius Boundary layers. The focus is then placed on the generalised Hiemenz flow, an exact solution to the Navier-Stokes equations constituting the base flow at the leading edge of swept cylinders and aerofoils. The spanwise profile of this flow is very similar to that of Blasius but, unlike the latter case, there is no rational approximation leading to the Orr-Sommerfeld equation. We will show that if, based on experimentally obtained intuition, a nonrational reduction of the full system of linear stability equations is attempted and the resulting Orr-Sommerfeld equation is solved, the linear stability critical Reynolds number is overestimated, as has indeed been done in the past. However, as shown by recent Direct Numerical Simulation results, the frequency eigenspectrum of instability waves may still be obtained through solution of the Orr-Sommerfeld equation. This fact lends some credibility to the assumption under which the Orr-Sommerfeld equation is obtained insofar as the identification of the frequency regime responsible for linear growth is concerned. Finally, an argument is presented pointing towards potential directions in the ongoing research for explanation of subcriticality in the leading edge boundary layer.

Más información

ID de Registro: 10438
Identificador DC: http://oa.upm.es/10438/
Identificador OAI: oai:oa.upm.es:10438
Identificador DOI: 10.1007/BF00058439
URL Oficial: http://www.springerlink.com/content/h4532k114617n434/
Depositado por: Memoria Investigacion
Depositado el: 05 Mar 2012 10:58
Ultima Modificación: 20 Abr 2016 18:39
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM