Video analysis based vehicle detection and tracking using an MCMC sampling framework

Arróspide Laborda, Jon; Salgado Álvarez de Sotomayor, Luis y Nieto Doncel, Marcos (2012). Video analysis based vehicle detection and tracking using an MCMC sampling framework. "EURASIP Journal on Advances in Signal Processing", v. 2012 (n. 2); pp. 1-17. ISSN 1687-6172. https://doi.org/10.1186/1687-6180-2012-2.

Descripción

Título: Video analysis based vehicle detection and tracking using an MCMC sampling framework
Autor/es:
  • Arróspide Laborda, Jon
  • Salgado Álvarez de Sotomayor, Luis
  • Nieto Doncel, Marcos
Tipo de Documento: Artículo
Título de Revista/Publicación: EURASIP Journal on Advances in Signal Processing
Fecha: Enero 2012
Volumen: 2012
Materias:
Palabras Clave Informales: Object tracking; Monte Carlo methods; intelligent vehicles; HOG.
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Señales, Sistemas y Radiocomunicaciones
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (982kB) | Vista Previa

Resumen

This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences.

Más información

ID de Registro: 10757
Identificador DC: http://oa.upm.es/10757/
Identificador OAI: oai:oa.upm.es:10757
Identificador DOI: 10.1186/1687-6180-2012-2
URL Oficial: http://asp.eurasipjournals.com/content/2012/1/2/abstract
Depositado por: Memoria Investigacion
Depositado el: 30 Abr 2012 09:55
Ultima Modificación: 20 Abr 2016 18:59
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM