Forward Stagewise Naive Bayes

Vidaurre Henche, Diego; Bielza, Concha y Larrañaga Múgica, Pedro (2012). Forward Stagewise Naive Bayes. "Progress in Artificial Intelligence", v. 1 (n. 1); pp. 57-69. ISSN 978-3-642-04685-8. https://doi.org/10.1007/s13748-011-0001-7.

Descripción

Título: Forward Stagewise Naive Bayes
Autor/es:
  • Vidaurre Henche, Diego
  • Bielza, Concha
  • Larrañaga Múgica, Pedro
Tipo de Documento: Artículo
Título de Revista/Publicación: Progress in Artificial Intelligence
Fecha: Abril 2012
Volumen: 1
Materias:
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Inteligencia Artificial
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

The naïve Bayes approach is a simple but often satisfactory method for supervised classification. In this paper, we focus on the naïve Bayes model and propose the application of regularization techniques to learn a naïve Bayes classifier. The main contribution of the paper is a stagewise version of the selective naïve Bayes, which can be considered a regularized version of the naïve Bayes model. We call it forward stagewise naïve Bayes. For comparison’s sake, we also introduce an explicitly regularized formulation of the naïve Bayes model, where conditional independence (absence of arcs) is promoted via an L 1/L 2-group penalty on the parameters that define the conditional probability distributions. Although already published in the literature, this idea has only been applied for continuous predictors. We extend this formulation to discrete predictors and propose a modification that yields an adaptive penalization. We show that, whereas the L 1/L 2 group penalty formulation only discards irrelevant predictors, the forward stagewise naïve Bayes can discard both irrelevant and redundant predictors, which are known to be harmful for the naïve Bayes classifier. Both approaches, however, usually improve the classical naïve Bayes model’s accuracy.

Más información

ID de Registro: 10996
Identificador DC: http://oa.upm.es/10996/
Identificador OAI: oai:oa.upm.es:10996
Identificador DOI: 10.1007/s13748-011-0001-7
URL Oficial: http://www.springerlink.com/content/k752036g759827gh/
Depositado por: Memoria Investigacion
Depositado el: 05 Jun 2012 09:23
Ultima Modificación: 20 Abr 2016 19:10
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM