A combined measure for quantifying and qualifying the topology preservation of growing self-organizing maps

Delgado Sanz, Maria Soledad; Gonzalo Martín, Consuelo; Martínez Izquierdo, María Estíbaliz y Arquero Hidalgo, Águeda (2011). A combined measure for quantifying and qualifying the topology preservation of growing self-organizing maps. "Neurocomputing", v. 74 (n. 16); pp. 2624-2632. ISSN 0925-2312. https://doi.org/10.1016/j.neucom.2011.03.021.

Descripción

Título: A combined measure for quantifying and qualifying the topology preservation of growing self-organizing maps
Autor/es:
  • Delgado Sanz, Maria Soledad
  • Gonzalo Martín, Consuelo
  • Martínez Izquierdo, María Estíbaliz
  • Arquero Hidalgo, Águeda
Tipo de Documento: Artículo
Título de Revista/Publicación: Neurocomputing
Fecha: Septiembre 2011
Volumen: 74
Materias:
Escuela: E.U. de Informática (UPM) [antigua denominación]
Departamento: Organización y Estructura de la Información [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

The Self-OrganizingMap (SOM) is a neural network model that performs an ordered projection of a high dimensional input space in a low-dimensional topological structure. The process in which such mapping is formed is defined by the SOM algorithm, which is a competitive, unsupervised and nonparametric method, since it does not make any assumption about the input data distribution. The feature maps provided by this algorithm have been successfully applied for vector quantization, clustering and high dimensional data visualization processes. However, the initialization of the network topology and the selection of the SOM training parameters are two difficult tasks caused by the unknown distribution of the input signals. A misconfiguration of these parameters can generate a feature map of low-quality, so it is necessary to have some measure of the degree of adaptation of the SOM network to the input data model. The topologypreservation is the most common concept used to implement this measure. Several qualitative and quantitative methods have been proposed for measuring the degree of SOM topologypreservation, particularly using Kohonen's model. In this work, two methods for measuring the topologypreservation of the Growing Cell Structures (GCSs) model are proposed: the topographic function and the topology preserving map

Más información

ID de Registro: 11222
Identificador DC: http://oa.upm.es/11222/
Identificador OAI: oai:oa.upm.es:11222
Identificador DOI: 10.1016/j.neucom.2011.03.021
Depositado por: Memoria Investigacion
Depositado el: 09 Jul 2012 07:53
Ultima Modificación: 20 Abr 2016 19:22
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM