ORGANIZADORES:

Universidad de Valladolid
European Society for Fuzzy Logic and Technology

EDITORES:

Gregorio I. Sainz Palmero
Jesús Alcalá Fernández
Rubén García Pajares
Bonifacio Llamazares
María Jesús de la Fuente Aparicio

ENTIDADES COLABORADORAS:

Ministerio de Ciencia e Innovación. Gobierno de España.
Universidad de Valladolid.
VIAS y CONSTRUCCIONES, S. A.
Fundación CARTIF.

A RECURSIVE ALGORITHM TO COMPUTE A BASIS OF A SIMILARITY
Luis Garmendia¹, Jordi Recasens², Adela Salvador³

Complutense University of Madrid, lgarmend@fdi.ucm.es
Technical University of Catalonia, j.recasens@upc.edu
Technical University of Madrid, ma09@caminos.upm.es

Abstract
This paper studies some theory and methods to build a representation theorem basis of a similarity from the basis of its subsimilarities, providing an alternative recursive method to compute the basis of a similarity.

Keywords: T-indistinguishabilities representation theorem, similarity, basis of a similarity, dimension of a similarity, similarity representation theorem.

1 INTRODUCTION
Similarity fuzzy relations were introduced by Zadeh [1971] [10] to represent a degree of equality or closeness between the elements of a universe. They generalise the equivalence relations; in fact, the similarities are the only T-indistinguishabilities that satisfy that all their alpha cuts are crisp equivalence relations. Similarities are not only a powerful tool to represent equality information, but they are also useful to classify the universe into clusters with uncertainty.

The Valverde’s representation theorem of T-indistinguishabilities is one of the strongest theorems in fuzzy logic theory. It opened an interesting area of investigation on T-indistinguishabilities, the computation of its basis, specially for both the minimum T-norm and Archimedean T-norms, and the study of special T-indistinguishabilities such as the one dimensional ones.

On the other hand, the computational investigation on the computation of T-transitive closures, or the search of the structure of a similarity, specially its decomposition into subsimilarities, were not related in previous studies with the computation of the basis of a similarity.

Joan Jacas [4] studied two algorithms to compute basis of a similarity in 1990, but did not consider the decomposition of similarities to do it. The aim of this paper is to introduce a new approach to compute them, providing useful theory and methods for both better understanding the concept of structure of a similarity and the Valverde’s representation theorem for similarities and the computation of their basis using a new decomposition approach.

2 PRELIMINARIES
Let X = {x₁, ..., xₙ} be a finite universe.
Let T be a t-norm. A T-indistinguishability operator E on X is a fuzzy relation E: X×X → [0, 1], satisfying for all x, y, z in X:
1. E(x, x) = 1 (Reflexivity)
2. E(x, y) = E(y, x) (Symmetry)
3. T(E(x, y), E(y, z)) ≤ E(x, z) (T-transitivity)

Definition 2.2. A similarity [Zadeh, 1971] [10] is a reflexive, symmetric and min-transitive fuzzy relation, it is, a similarity is a Min-indistinguishability operator.

Notation 2.1.
We can denote xᵢⱼ = E(xᵢ, xⱼ).

Lemma 2.1. Let π be a permutation on X. If E is a similarity on X, then the fuzzy relation P_π(E) is also a fuzzy similarity.

Proof. It is obvious. P_π(E) is reflexive and symmetric. If xᵢⱼ \geq \min(xᵢₖ, xⱼₖ) for all i, j, k then xᵢₖ = xᵢ(ₖ) xⱼₖ \geq \min(xᵢₖ, xⱼₖ(ₖ)) = T(xᵢₖ, xⱼₖ) for all 1 \leq r, s, k \leq n.

2.1. CONSTRUCTION OF A FUZZY SIMILARITY FROM SUBSIMILARITIES
Let C and D be two similarities on two disjoint sets X₁ and X₂; A similarity relation E(F; C, D) on X₁ ∪ X₂ can be built with the following shape:

E(F; C, D) = \begin{bmatrix} C & F' \\ F & D \end{bmatrix}

A method for giving the bridging values fᵢ₀ in F, (when j ≤ \text{card}(X₁) < i) is the assignation of a unique value fᵢ in all the \text{card}(X₁) \times \text{card}(X₂) values in F. This value must be chosen in an interval [0, a] where a = \min(\min(C), \min(D)) \{fᵢₖ\}. The values in F' are the symmetric values fᵢ of the computed F.
So the computed values in F are equal and satisfy that f ≤ \min(\min(C), \min(D)).

If C and D are fuzzy similarities, then E(f; C, D) is also a fuzzy similarity, ∀f ∈ {0, \min(\min(C), \min(D))}.
2.2. THE REPRESENTATION THEOREM OF T-INDISTINGUISHABILITY OPERATORS

The representation theorem allows us to generate a T-indistinguishability operator on a set X from a family of subsets on X, and reciprocally states that every T-indistinguishability can be obtained in this form.

Definition 2.2.1 The residuation \overline{T} or quasi inverse of a t-norm T is the map $\overline{T} : [0, 1] \times [0, 1] \rightarrow [0, 1]$ defined for all $x, y \in [0, 1]$ by

$$\overline{T}(x, y) = \sup \{ \alpha \in [0, 1] | T(x, \alpha) \leq y \}.$$

The residuation \overline{T} of a t-norm T is a T-preorder (reflexive and T-transitive) on $[0, 1]$, and then it is a useful operator to generate implication relations from fuzzy sets on X.

Note that $\overline{\text{Min}}(x, y) = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{if } x > y \end{cases}$

Definition 2.2.2 The bisimulation \overline{E} (or also E_T) of a t-norm T is the map $\overline{E} : [0, 1] \times [0, 1] \rightarrow [0, 1]$ defined for all $x, y \in [0, 1]$ by

$$\overline{E}(x, y) = \overline{T}(x, y) = \overline{\text{Min}}(\overline{T}(x, y), \overline{T}(y, x)).$$

Note that $\overline{\text{Min}}(x, y) = \overline{\text{Min}}(\text{Max}(x, y), \text{Min}(x, y)) = \begin{cases} 1 & \text{if } x = y \\ \text{Min}(x, y) & \text{if } x \neq y \end{cases}$

The bisimulation \overline{E} of a t-norm T is a T-indistinguishability operator on $[0, 1]$, and then it is a useful operator to generate T-indistinguishability relations on X from two fuzzy sets on X.

Lemma 2.2.1.

Let μ be a fuzzy set on X, and T a continuous t-norm. The fuzzy relation E_μ on X defined for all $x, y \in X$ by $E_\mu(x, y) = E_T(\mu(x), \mu(y))$ is a T-indistinguishability operator.

Note that E_μ is a one-dimensional T-indistinguishability generated by a basis of one fuzzy set μ.

Lemma 2.2.2.

Let $\{E_i\}_{i \in I}$ be a family of T-indistinguishability operators on a set X. The relation E on X defined for all $x, y \in X$ by $E(x, y) = \inf_{i \in I} E_i(x, y)$ is a T-indistinguishability operator.

The next theorem is crucial to understand the structure of a T-indistinguishability operator. It allows us to generate T-indistinguishabilities from a family of fuzzy sets, and reciprocally that any T-indistinguishability can be generated from a family of fuzzy sets.

Representation Theorem 2.2.1. [9]

Let R be a fuzzy relation on X and T a continuous t-norm. R is a T-indistinguishability operator if and only if there exists a family $\{\mu_i\}_{i \in I}$ of fuzzy sets on X such that for all $x, y \in X$

$$R(x, y) = \inf_{i \in I} E_i(x, y).$$

Definition 2.2.1. Dimension and basis of a T-indistinguishability operator

The dimension of a T-indistinguishability operator E is the minimal of the cardinals d of the generating families of E, in the sense of the representation theorem. That minimal basis of generating fuzzy sets is called a basis of the T-indistinguishability operator.

3 DECOMPOSITION OF SIMILARITIES AND REPRESENTATION THEOREM

This chapter gives some theoretical results toward a method to compute a basis of a similarity from the bases of its subsimilarities.

Lemma 3.1. Let S be the following similarity on $X_1 \cup X_2$, $S(F; C, D) = \begin{pmatrix} C & F \\ \bar{C} & \bar{D} \end{pmatrix}$.

Then $\dim(S) \geq \dim(C)$.

Lemma 3.2.

Let $\{\mu_i\}_{i \in I}$ be a representation theorem basis of a similarity C of dimension r on a finite set X_1. Let $\{\gamma_i\}_{i \in J}$ be a representation theorem basis of a similarity D of dimension s on a finite set X_2.

Let S be the following similarity on $X_1 \cup X_2$, $S(F; C, D) = \begin{pmatrix} C & F \\ \bar{C} & \bar{D} \end{pmatrix}$ where $F = \begin{pmatrix} f_{11} & \ldots & f_{1s} \\ \vdots & \ddots & \vdots \\ f_{r1} & \ldots & f_{rs} \end{pmatrix}$ is a $\text{card}(X_1) \times \text{card}(X_2)$ matrix.

Suppose that $r > s$ and $f < \min(C)$ and $f \leq \min(D)$ then $\dim(S) \leq \dim(C)$ and a generator set of S is $\{ (\mu_{i_1}), \ldots, (\mu_{i_s}), (\mu_{i_{s+1}}), \ldots, (\mu_{i_r}) \}$ where $F^* = \begin{pmatrix} f_{11} & \ldots & f_{1s} \\ \vdots & \ddots & \vdots \\ f_{r1} & \ldots & f_{rs} \end{pmatrix}$ is a $\text{card}(X_2) \times 1$ matrix.

Proposition 3.1.
Let \((\mu_i)_{i \in I}\) be a representation theorem basis of a similarity \(C\) of dimension \(r\) on a finite set \(X_1\). Let \((\gamma_i)_{i \in I}\) be a representation theorem basis of a similarity \(D\) of dimension \(s\) on a finite set \(X_2\).

Let \(S\) be the following similarity on \(X_1 \cup X_2\), \(S(F; C, D) = \begin{pmatrix} C & F^T \\ F & D \end{pmatrix}\) where \(F = \begin{pmatrix} f & \cdots & f \\ \vdots & \ddots & \vdots \\ f & \cdots & f \end{pmatrix}\) is a \(\text{card}(X_1) \times \text{card}(X_2)\) matrix.

Suppose that \(r > s\) and \(f < \min(C)\) and \(f \leq \min(D)\) then

1) \(\text{dim}(S) = \text{dim}(C) = r\)

2) a basis of \(S\) is

\[
\left\{ \left(\begin{array}{c} \mu_1 \\ \vdots \\ \mu_s \\ \mu_{s+1} \\ \vdots \\ \mu_{r+s} \\ \vdots \\ \mu_{r+s} \\ F' \\ \end{array} \right) \right\}
\]

where \(F' = \begin{pmatrix} f & \cdots & f \\ \vdots & \ddots & \vdots \\ f & \cdots & f \end{pmatrix}\) is a \(\text{card}(X_2) \times 1\) matrix.

Proof:

By Lemma 3.1 \(\text{dim}(S) \geq \text{dim}(C)\).

By Lemma 3.2 \(\text{dim}(S) \leq \text{dim}(C)\). Also \(\text{dim}(S) = \text{dim}(C) = r\) and

\[
\left\{ \left(\begin{array}{c} \mu_1 \\ \vdots \\ \mu_s \\ \mu_{s+1} \\ \vdots \\ \mu_{r+s} \\ \vdots \\ \mu_{r+s} \\ F' \\ \end{array} \right) \right\}
\]

is a basis of \(S(F; C, D)\). □

Corollary 3.1.

Let \((\mu_i)_{i \in I}\) be a representation theorem basis of a similarity \(C\) on a finite set \(X = \{x_1, \ldots, x_n\}\).

Let \(S\) be the similarity on \(X \cup \{x_{n+1}\}\) such that \(S(F; C, 1) = \begin{pmatrix} C & F^T \\ F^T & 1 \end{pmatrix}\) where \(F' = (f \quad \cdots \quad f)\) is a \(1 \times \text{card}(X)\) matrix.

If \(f < \min(C)\), then a basis of \(S\) is

\[
\left\{ \left(\begin{array}{c} \mu_1(x_1) \\ \vdots \\ \mu_s(x_s) \\ \mu_{s+1}(x_{s+1}) \\ \vdots \\ \mu_{r+s}(x_{r+s}) \\ \vdots \\ \mu_{r+s}(x_{r+s}) \\ f \\ \end{array} \right) \right\}
\]

Example 3.1.

Let \(S\) be the similarity \(\begin{pmatrix} 1 & a & b & c \\ a & 1 & b & c \\ b & b & 1 & c \\ c & c & c & 1 \end{pmatrix}\), already ordered with \(c < b < a\).

\[
S = \begin{pmatrix} 1 & a & b & c \\ a & 1 & b & c \\ b & b & 1 & c \\ c & c & c & 1 \end{pmatrix}
\]

and a base of \(\begin{pmatrix} 1 & a & b \\ a & 1 & b \\ b & b & 1 \end{pmatrix}\) is \(\begin{pmatrix} 1 \\ a \\ b \end{pmatrix}\), then by the theorem 3.1 a basis of \(S\) is

\[
\begin{pmatrix} 1 \\ a \\ b \end{pmatrix} \times \{c\} = \begin{pmatrix} 1 \\ a \\ c \end{pmatrix}
\]

Note that \(S\) is one dimensional.

Example 3.2.

Let \(S\) be the similarity \(\begin{pmatrix} 1 & a & a & b \\ a & 1 & a & b \\ a & a & 1 & b \\ b & b & b & 1 \end{pmatrix}\), already ordered with \(b < a\).

\[
S = \begin{pmatrix} 1 & a & a & b \\ a & 1 & b & b \\ a & a & 1 & 1 \\ b & b & b & 1 \end{pmatrix}
\]

A basis of \(\begin{pmatrix} 1 & a & a & a \\ a & 1 & a & a \\ a & a & 1 & 1 \end{pmatrix}\) is \(\begin{pmatrix} 1 \\ a \\ a \\ a \end{pmatrix}\).

Then, as \(b < \min(a, 1, a, a)\), by theorem 3.1, a basis of \(S\) is

\[
\left\{ \begin{pmatrix} 1 \\ a \\ a \\ a \end{pmatrix} \times \{b\} = \begin{pmatrix} 1 \\ a \\ b \\ b \end{pmatrix}
\]

Lemma 3.2.

Let \((\mu_i)_{i \in I}\) be a representation theorem basis of a similarity \(C\) of dimension \(r\) on a finite set \(X_1\). Let \((\gamma_i)_{i \in I}\) be a representation theorem basis of a similarity \(D\) of dimension \(s\) on a finite set \(X_2\).

Let \(S\) be the following similarity on \(X_1 \cup X_2\), \(S(F; C, D) = \begin{pmatrix} C & F^T \\ F & D \end{pmatrix}\), where \(F = \begin{pmatrix} f & \cdots & f \\ \vdots & \ddots & \vdots \\ f & \cdots & f \end{pmatrix}\) is a \(\text{card}(X_1) \times \text{card}(X_2)\) matrix.

Suppose that \(r > s, f = \min(C)\) and \(f \leq \min(D)\), then:

1) \(\text{dim}(S) > \text{dim}(C) = r\).

Lemma 3.3.

Let \((\mu_i)_{i \in I}\) be a representation theorem basis of a similarity \(C\) of dimension \(r\) on a finite set \(X_1\). Let \((\gamma_i)_{i \in I}\) be a representation theorem basis of a similarity \(D\) of dimension \(s\) on a finite set \(X_2\).
Let S be the following similarity on $X_1 \cup X_2$, $S(F; C, D) = \begin{bmatrix} C & F^T \\ F & D \end{bmatrix}$, where $F = \begin{bmatrix} f & \cdots & f \\ \vdots & \ddots & \vdots \\ f & \cdots & f \end{bmatrix}$ is a $\text{card}(X_1) \times \text{card}(X_2)$ matrix.

Suppose that $r > s, f = \min(C)$ and $f \leq \min(D)$, then:

1) $\dim(S) = \dim(C) + 1 = r + 1$

2) A generator set of S is a basis of S is

\[
\begin{align*}
\{(\mu_1, (y_1)), \ldots, (\mu_s, (y_s)), (\mu_{s+1}, F'), \ldots, (\mu_r, F')\},
\end{align*}
\]

where $(1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is a $\text{card}(X_1) \times 1$ matrix and $F' = \begin{bmatrix} \vdots \\ 1 \end{bmatrix}$ is a $\text{card}(X_2) \times 1$ matrix.

Proof:

Now

\[
\inf \left\{ \inf_{s \leq s' \leq \text{sir}} E((\mu_1, (y_1)), \ldots, (\mu_s, F'), (\mu_{s+1}, F'), \ldots, (\mu_r, F') \right\} = \begin{bmatrix} C & F^T \\ F & D \end{bmatrix} = S(F; C, D).
\]

Also

\[
\begin{bmatrix} 1 \\ 1 \end{bmatrix} \sigma_{\text{sir}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

the infimum of all the similarities is $\begin{bmatrix} C & F^T \\ F & D \end{bmatrix} = S(F; C, D)$.

Proposition 3.2.

Let $(\mu_i)_{i \in I}$ be a representation theorem basis of a similarity C of dimension r on a finite set X_1. Let $(y_i)_{i \in I}$ be a representation theorem basis of a similarity D of dimension s on a finite set X_2.

Let S be the following similarity on $X_1 \cup X_2$, $S(F; C, D) = \begin{bmatrix} C & F^T \\ F & D \end{bmatrix}$, where $F = \begin{bmatrix} f & \cdots & f \\ \vdots & \ddots & \vdots \\ f & \cdots & f \end{bmatrix}$ is a $\text{card}(X_1) \times \text{card}(X_2)$ matrix.

Suppose that $r > s, f = \min(C)$ and $f \leq \min(D)$, then:

1) $\dim(S) = \dim(C) + 1 = r + 1$

2) A basis of S is:

\[
\{((\mu_1, (y_1)), \ldots, (\mu_s, (y_s)), (\mu_{s+1}, F'), \ldots, (\mu_r, F')) \}
\]

where $(1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is a $\text{card}(X_1) \times 1$ matrix and $F' = \begin{bmatrix} \vdots \\ 1 \end{bmatrix}$ is a $\text{card}(X_2) \times 1$ matrix.

Proof:

By Lemma 3.2 $\dim(S) > \dim(C) = r$, and by Lemma 3.3 $\dim(S) \leq \dim(C) + 1 = r + 1$, then $\dim(S) = \dim(C) + 1 = r + 1$, and a basis of S is

\[
\{((\mu_1, (y_1)), \ldots, (\mu_s, (y_s)), (\mu_{s+1}, F'), \ldots, (\mu_r, F')) \}
\]

Example 3.5

Let S be the similarity $\begin{bmatrix} 1 & a & b & b \\ a & 1 & b & b \\ b & b & 1 & b \\ b & b & b & 1 \end{bmatrix}$, already ordered with $b < a$.

Let $S = \begin{bmatrix} 1 & a & b \\ a & 1 & b \\ b & b & 1 \end{bmatrix}$ and a basis of $\begin{bmatrix} 1 & a & b \\ a & 1 & b \\ b & b & 1 \end{bmatrix}$, is

\[
\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
\]

then by the propositions 3.1 and 3.2 a generator set of S is

\[
\begin{bmatrix} a \\ b \\ b \\ b \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}
\]

Proposition 3.3.

Let $(\mu_i)_{i \in I}$ be a representation theorem basis of a similarity C of dimension r on a finite set X_1. Let $(y_i)_{i \in I}$ be a representation theorem basis of a similarity D of dimension s on a finite set X_2.

Let S be the following similarity on $X_1 \cup X_2$, $S(F; C, D) = \begin{bmatrix} C & F^T \\ F & D \end{bmatrix}$, where $F = \begin{bmatrix} f & \cdots & f \\ \vdots & \ddots & \vdots \\ f & \cdots & f \end{bmatrix}$ is a $\text{card}(X_1) \times \text{card}(X_2)$ matrix.

Suppose that $r = s$ (dim(C) = dim(D) and f < min(C, D), then a generator set of S is:

\[
\{((\mu_1, (y_1)), \ldots, (\mu_r, (y_2)), (1)) \}
\]

and $\dim(S) \leq r + 1$.

Proof:

Let (μ_1, \ldots, μ_r) be a representation theorem basis of a similarity C, so

\[
C = \inf_{i \in I} E_{\mu_i} \text{ where } I = \{1, \ldots, r\}.
\]
In the same way, let \(\{ \gamma_1, ..., \gamma_r \} \) be a representation theorem basis of a similarity \(D \), so
\[D = \inf_{\gamma \in J} E_{\gamma} \]
where \(J = \{ 1, ..., r \} \)

Now, for all \(1 \leq i \leq r \),
\[(\mu_i) \sigma_{\gamma_i} (\gamma_i) = (E_{\mu_i}) (x_{nm}) (E_{\gamma_i}) \]

Also,
\[(1) F' \sigma_{\gamma_i} (1) F' = (1) \]
\[F' \]

So the infimum of all the similarities is
\[\begin{pmatrix} C & F' \\ F & D \end{pmatrix} = S(F; C, D) \]

and then
\[\{ (\mu_1), ..., (\mu_r), (1) \} \]

is a generator set of \(S \). \(\square \)

Example 3.4.

Let \(S \) be the similarity \[\begin{pmatrix} 1 & a & b & b \\ a & 1 & b & b \\ b & b & 1 & a \\ b & a & 1 & 1 \end{pmatrix} \]

with \(b < a \).

\[S = \begin{pmatrix} 1 & a & b & b \\ a & 1 & b & b \\ b & b & 1 & a \\ b & b & 1 & 1 \end{pmatrix} \]

A basis of \(\begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} \), is \[\{ (1) \} \], then by the proposition 3.3 a generator set (and a basis in this example) of \(S \) is
\[\{ (\mu_1), ..., (\mu_r), (1) \} \]

\[= \begin{pmatrix} 1 & a & b & b \\ a & 1 & b & b \\ b & b & 1 & a \\ b & b & 1 & 1 \end{pmatrix} \]

Note that there exists other bases of \(S \), for example
\[\{ (1) \}, \{ (b) \}, \{ (b) \}, \{ (b) \} \]

Let \(S \) be the similarity \[\begin{pmatrix} 1 & a & b & b \\ a & 1 & b & b \\ b & b & 1 & a \\ b & b & 1 & 1 \end{pmatrix} \]

with \(b < a \).

\[S = \begin{pmatrix} 1 & a & b & b \\ a & 1 & b & b \\ b & b & 1 & a \\ b & b & 1 & 1 \end{pmatrix} \]

A basis of \(\begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} \) is \[\{ (1) \} \].

Then by proposition 3.3 a basis of \(S \) is
\[\{ (1) \}, \{ (b) \}, \{ (b) \}, \{ (b) \} \]

4 GENERATING A DECOMPOSITION OF A GIVEN SIMILARITY

Input: A similarity \(S \) on \(X \).

Output:
- Two similarities \(S_1 \) and \(S_2 \) on \(X_1 \) and \(X_2 \) such that \(X = X_1 \cup X_2 \)
- A bridging value \(f \) such that \(f < \min(S_1) \) and \(f \leq \min(S_2) \)

Algorithm 5.1:

1. Sort the universe \(X \) having descending columns under the diagonal using algorithm 4.1
2. Compute the frequency \(k \) of the lowest value \(v \) in the first column
3. If \(k \geq \text{card}(X) - 1 \) then STOP, \(S_1 = S \).
4. Let \(X_1 \) be \(\{ x_1, ..., x_{k+1} \} \) and let \(X_2 \) be \(\{ x_{k+2}, ..., x_{\text{card}(X)} \} \)
5. Let \(S_1 = S \setminus X_1, S_2 = S \setminus X_2, f = v \)

5 A RECURSIVE ALGORITHM TO COMPUTE A GENERATING SET OF A SIMILARITY

Input: a similarity \(S \) on a universe \(X \).

Output: A generating set of \(S \), and so, an upper bound of the dimension of \(S \).

A recursive algorithm:

1) If \(\text{card}(X) \leq 2 \) then STOP. \(\dim(S) = 1 \) and a basis of \(S \) is the first column.
2) Decompose \(S \) into \(S_1 \) and \(S_2 \) using algorithm 5.1. Note that \(f < \min(S_1) \)
3) If \(2 \leq \text{card}(X) \leq 7 \) then use corollary 3.1:
 a. Recursively compute a generating set of \(S_1 (\mu_i)_{i \in I} \)
 b. A generating set of \(S \) is \(\{ (\mu_i)_{i \in I} \} \times \{ f \} \)
 c. STOP
4) Recursively compute a generating set of \(S_1, (\mu_i)_{i \in I} \) and \(S_2, (\gamma_i)_{i \in I} \)
5) If \(\dim(S_1) > \dim(S_2) \) - vice versa - then use proposition 3.1
 a. A generating set of \(S \) is
 \[\begin{pmatrix} (\mu_1) \cdots (\mu_s) \\ (\gamma_1) \cdots (\gamma_s) \end{pmatrix} \]
 b. STOP
6) If \(\dim(S_1) = \dim(S_2) \) then use proposition 3.3
 a. A generating set of \(S \) is
 \[\begin{pmatrix} (\mu_1) \cdots (\mu_s) \\ (\gamma_1) \cdots (\gamma_s) \\ (1) \end{pmatrix} \]
 b. STOP
Example 6.1.

Let S be the sorted similarity with descending columns under the diagonal given by the following matrix:

$$
S = \begin{pmatrix}
1 & 0.9 & 0.4 & 0.4 & 0.3 \\
0.9 & 1 & 0.4 & 0.4 & 0.3 \\
0.4 & 0.4 & 1 & 0.7 & 0.3 \\
0.4 & 0.4 & 0.7 & 1 & 0.3 \\
0.3 & 0.3 & 0.3 & 0.3 & 1
\end{pmatrix}
$$

It will be computed the algorithm 6.1 step by step.

A decomposition of S is given by algorithm 5.1 is

$$
S = \begin{pmatrix}
1 & 0.9 & 0.4 & 0.4 & 0.3 \\
0.9 & 1 & 0.4 & 0.4 & 0.3 \\
0.4 & 0.4 & 1 & 0.7 & 0.3 \\
0.4 & 0.4 & 0.7 & 1 & 0.3 \\
0.3 & 0.3 & 0.3 & 0.3 & 1
\end{pmatrix},
S_1 = \begin{pmatrix}
1 & 0.9 & 0.4 & 0.4 \\
0.9 & 1 & 0.4 & 0.4 \\
0.4 & 0.4 & 1 & 0.7 \\
0.4 & 0.4 & 0.7 & 1
\end{pmatrix}
$$

Now that S is ordered and decomposed, we can build its basis as follows:

A basis of $\begin{pmatrix} 1 \\ 0.9 \\ 1 \end{pmatrix}$ is $\begin{pmatrix} 1 \\ 0.9 \end{pmatrix}$. A basis of $\begin{pmatrix} 1 \\ 0.7 \\ 1 \end{pmatrix}$

is $\begin{pmatrix} 1 \\ 0.7 \end{pmatrix}$, and $\dim C = 2 = \dim D, f = 0.4 < \min(C, D)$.

Then by proposition 3.3, a generator set of $S_1 = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \\ 0.4 & 0.4 \\ 0.4 & 0.4 \\ 0.4 & 0.4 \end{pmatrix}$

is $\begin{pmatrix} \left(\mu_1 \right)_{\left(Y_1 \right)} \\ \ldots \end{pmatrix}, \begin{pmatrix} \left(\mu_r \right)_{\left(Y_r \right)} \end{pmatrix}, \begin{pmatrix} \left(F' \right) \end{pmatrix}$

And then, by proposition 3.1, a generator set of $S = \begin{pmatrix} 1 & 0.3 \\ 0.3 & 1 \end{pmatrix}$

is $\begin{pmatrix} \left(\mu_1 \right)_{\left(Y_1 \right)} \\ \ldots \end{pmatrix}, \begin{pmatrix} \left(\mu_s \right)_{\left(Y_s \right)} \end{pmatrix}, \begin{pmatrix} \left(\mu_{s+1} \right)_{\left(Y_{s+1} \right)} \end{pmatrix}, \ldots, \begin{pmatrix} \left(\mu_r \right)_{\left(Y_r \right)} \end{pmatrix}$

6 CONCLUDING REMARKS

This paper’s main contribution is a method to compute a representation theorem basis of a similarity from the bases of its subsimilarities.

These results can be used to propose an alternative algorithm to build a basis of similarities.

The bases of all structures of similarities with dimension four are computed in the examples using the new construction method.

7 ACKNOWLEDGMENT

We thank the support of the research projects TIN2009-07901, CAM GR35/10-A and TIN2009-07235.

8 REFERENCES