THE ZERO-REMOVING PROPERTY AND LAGRANGE-TYPE INTERPOLATION SERIES

P. E. Fernández-Moncada,1 A. G. García,1 and M. A. Hernández-Medina2

1Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés-Madrid, Spain
2Departamento de Matemática Aplicada, E.T.S.I.T., U.P.M., Madrid, Spain

The classical Kramer sampling theorem, which provides a method for obtaining orthogonal sampling formulas, can be formulated in a more general nonorthogonal setting. In this setting, a challenging problem is to characterize the situations when the obtained nonorthogonal sampling formulas can be expressed as Lagrange-type interpolation series. In this article a necessary and sufficient condition is given in terms of the zero removing property. Roughly speaking, this property concerns the stability of the sampled functions on removing a finite number of their zeros.

Keywords Analytic Kramer kernels; Lagrange-type interpolation series; Zero-removing property.

AMS Subject Classification 46E22; 42C15; 94A20.

1. STATEMENT OF THE PROBLEM

The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling theorems [5, 13, 15, 21]. The statement of this general result is as follows. Let \(K \) be a complex function defined on \(D \times I \), where \(I \subset \mathbb{R} \) is an interval and \(D \) is an open subset of \(\mathbb{R} \), and such that for every \(t \in D \) the sections \(K(\cdot, t) \) are in \(\mathcal{L}^2(I) \). Assume that there exists a sequence of distinct real numbers \(\{ t_n \} \subset D \), indexed by a subset of \(\mathbb{Z} \), such that \(\{ K(x, t_n) \} \) is a complete orthogonal sequence of functions for \(\mathcal{L}^2(I) \). Then for any \(f \) of the form

\[
f(t) = \int_I F(x)K(x, t) \, dx \quad t \in D,
\]

Received 15 February 2011; Revised 28 April 2011; Accepted 4 May 2011.
Address correspondence to A. G. García, Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, Leganés-Madrid 28911, Spain; E-mail: pagarcia@math.uc3m.es
where $F \in L^2(I)$, we have
\[
f(t) = \sum_{n} f(t_n) S_n(t), \quad t \in D,
\]
with
\[
S_n(t) := \frac{\int_I K(x, t) \overline{K(x, t_n)} \, dx}{\int_I |K(x, t_n)|^2 \, dx}.
\]
The series in (2) converges absolutely and uniformly on subsets of D where
$\|K(\cdot, t)\|_{L^2(I)}$ is bounded.

For instance, taking $I = [-\pi, \pi]$, $K(x, t) = e^{itx}$ and $\{t_n = n\}_{n \in \mathbb{Z}}$, we get
the well-known Whittaker–Shannon–Kotel’nikov sampling formula
\[
f(t) = \sum_{n = -\infty}^{\infty} f(n) \frac{\sin \pi(t - n)}{\pi(t - n)}, \quad t \in \mathbb{R},
\]
for functions in $L^2(\mathbb{R})$ whose Fourier transform has support in $[-\pi, \pi]$.

Now, if we take $I = [0, 1]$, $K(x, t) = \sqrt{xt} J_v(xt)$ and $\{t_n\}$, the sequence of
the positive zeros of the Bessel function J_v of vth order with $v > -1$, then
\[
f(t) = \sum_{n} f(t_n) \frac{2 \sqrt{t_n} J_v(t)}{J_v(t_n)(t^2 - t_n^2)}, \quad t \in \mathbb{R},
\]
for every f of the form $f(t) = \int_0^1 F(x) \sqrt{xt} J_v(xt) \, dx$, where $F \in L^2(0, 1)$
(see [13, p. 83]).

The Kramer sampling theorem has played a very significant role in
sampling theory, interpolation theory, signal analysis and, generally, in
mathematics (see, e.g., the survey articles [3, 4]).

In [6], an extension of the Kramer sampling theorem has been
obtained to the case when the kernel is analytic in the sampling parameter
$t \in D \subseteq \mathbb{C}$. Namely, assume that the Kramer kernel K is an entire function
for any fixed $x \in I$, and that the function $h(t) = \int_I |K(x, t)|^2 \, dx$ is locally
bounded on $D \subseteq \mathbb{C}$. Then any function f defined by (1) is an entire
function, as are all the sampling functions (3).

A straightforward discrete version of Kramer’s theorem can be
obtained. Namely, let $K(n, z)$ be a kernel such that, as function of n,
the sequence $\{K(n, z)\} \in \ell^2(\mathbb{I})$ for any $z \in D \subseteq \mathbb{C}$, where \mathbb{I} is a countable
index set. Assume that, for a suitable sequence $\{z_n\} \subset D$, the sequence
$\{K(\cdot, z_n)\}$ is an orthogonal basis for $\ell^2(\mathbb{I})$. Then, any function of the
form $f(z) = \sum_{n \in \mathbb{I}} c_n K(n, z)$, where $\{c_n\} \in \ell^2(\mathbb{I})$, can be expanded by means
of a sampling series like (2) (see [8]). As examples of discrete kernels
for which a sampling formula works we can consider discrete kernels
\(K(n,z) := P_n(z), \ n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\} \) and \(z \in \mathbb{C} \), where \(\{P_n(z)\}_{n \in \mathbb{N}_0} \) denotes a sequence of orthonormal polynomials associated with an indeterminate Hamburger or Stieltjes moment problem (see [8, 9] for the details).

The Kramer sampling theorem has been the cornerstone for a significant mathematical literature of sampling theory associated with differential or difference problems. See, among others, [1, 5, 8, 9, 13, 21] and the references therein.

Thus an abstract analytic formulation of the Kramer sampling theorem raises in a natural way: Let \(\mathcal{H} \) be a complex, separable Hilbert space with inner product \(\langle \cdot, \cdot \rangle_{\mathcal{H}} \), and let \(\{x_n\}_{n=1}^{\infty} \) be a Riesz basis for \(\mathcal{H} \). Suppose \(K \) is a \(\mathcal{H} \)-valued function defined on \(\mathbb{C} \). For each \(x \in \mathcal{H} \), define the function \(f_x(z) = \langle K(z), x \rangle_{\mathcal{H}} \) on \(\mathbb{C} \), and let \(\mathcal{H}_K \) denote the collection of all such functions \(f_x \). Furthermore, each element in \(\mathcal{H}_K \) is an entire function if and only if \(K \) is analytic on \(\mathbb{C} \). In this setting, an abstract version of the analytic Kramer theorem is obtained assuming the existence of two sequences, \(\{z_n\}_{n=1}^{\infty} \) in \(\mathbb{C} \) and \(\{a_n\}_{n=1}^{\infty} \) in \(\mathbb{C} \setminus \{0\} \), such that \(K(z_n) = a_n x_n \) for each \(n \in \mathbb{N} \). Namely, for any \(f_x \in \mathcal{H}_K \) we have

\[
 f_x(z) = \sum_{n=1}^{\infty} f_x(z_n) \frac{S_n(z)}{a_n}, \quad z \in \mathbb{C},
\]

where \(S_n(z) = \langle K(z), y_n \rangle, \ n \in \mathbb{N} \), being \(\{y_n\}_{n=1}^{\infty} \) the dual Riesz basis of \(\{x_n\}_{n=1}^{\infty} \) (see sections 2 and 4 infra for all the details).

A challenging problem is to give a necessary and sufficient condition to ensure that the above sampling formula can be written as a Lagrange-type interpolation series, that is

\[
 f_x(z) = \sum_{n=1}^{\infty} f_x(z_n) \frac{P(z)}{(z - z_n)P(z_n)}, \quad z \in \mathbb{C},
\]

where \(P \) denotes an entire function having only simple zeros at all the points of the sequence \(\{z_n\}_{n=1}^{\infty} \). Roughly speaking, the aforesaid necessary and sufficient condition concerns the stability of the functions belonging to the space \(\mathcal{H}_K \) on removing a finite number of their zeros; this is an ubiquitous algebraic property in the mathematical literature (see section 3 infra) and it will be called the zero-removing property along the article.

Let us consider the following toy example: Given a basis \(\{e_1, e_2\} \) in \(\mathbb{C}^2 \), for the kernel \(K(z) := z^2(e_2 - e_1) + e_1 \) consider the corresponding space \(\mathcal{H}_K \), which coincides with \(\{az^2 + b \mid a, b \in \mathbb{C}\} \). Obviously, this space has not the zero-removing property: if we remove a zero from an element in \(\mathcal{H}_K \), the resulting polynomial does not belong to \(\mathcal{H}_K \). Besides, the sampling formula \(f(z) = f(0)(1 - z^2) + f(1)z^2 \), which holds in \(\mathcal{H}_K \) cannot be written as a Lagrange interpolation formula. The study of all these topics will be carried out throughout the remaining sections.
2. SOME PRELIMINARIES ON THE SPACE \mathcal{H}_K

Suppose we are given a separable complex Hilbert space X and an abstract kernel K which is nothing but a \mathcal{H}-valued function on \mathbb{C}. Set $f_x(z) := \langle K(z), x \rangle_\mathcal{H}$ and denote by \mathcal{H}_K the collection of all such functions $f_x, x \in \mathcal{H}$. It is a reproducing kernel Hilbert space (RKHS) coming from the transforms $K(z), z \in \mathbb{C}$, and corresponding to the reproducing kernel $(z, w) \mapsto \langle K(z), K(w) \rangle_\mathcal{H}$. Notice that the mapping \mathcal{T} given by

$$\mathcal{H} \ni x \mapsto f_x \in \mathcal{H}_K$$

is an antilinear mapping from \mathcal{H} onto \mathcal{H}_K (henceforth we omit the subscript x for denoting the elements in \mathcal{H}_K). The mapping \mathcal{T} is injective if and only if the set $\{K(z)\}_{z \in \mathbb{C}}$ is a complete set in \mathcal{H}. In particular, if there exists a sequence $\{z_n\}_{n=1}^\infty$ in \mathbb{C} such that $\{K(z_n)\}_{n=1}^\infty$ is a Riesz basis for \mathcal{H}, then \mathcal{T} is an antilinear isometry from \mathcal{H} onto \mathcal{H}_K. Recall that a Riesz basis in a separable Hilbert space \mathcal{H} is the image of an orthonormal basis by means of a boundedly invertible operator. Any Riesz basis $\{x_n\}_{n=1}^\infty$ has a unique biorthonormal (dual) Riesz basis $\{y_n\}_{n=1}^\infty$, i.e., $\langle x_n, y_m \rangle_\mathcal{H} = \delta_{n,m}$, such that the expansions

$$x = \sum_{n=1}^\infty \langle x, y_n \rangle_\mathcal{H} x_n = \sum_{n=1}^\infty \langle x, x_n \rangle_\mathcal{H} y_n$$

hold for every $x \in \mathcal{H}$ (see [20] for more details and proofs).

The convergence in the norm $\| \cdot \|_\mathcal{H}$ implies pointwise convergence which is uniform on those subsets of \mathbb{C} where the function $z \mapsto \|K(z)\|_\mathcal{H}$ is bounded.

Like in the classical case the following result holds: The space \mathcal{H}_K is a RKHS of entire functions if and only if the kernel K is analytic in \mathbb{C} [19, p. 266]. Another characterization of the analyticity of the functions in \mathcal{H}_K is given in terms of Riesz bases. Suppose that a Riesz basis $\{x_n\}_{n=1}^\infty$ for \mathcal{H} is given and let $\{y_n\}_{n=1}^\infty$ be its dual Riesz basis; expanding $K(z)$, for each fixed $z \in \mathbb{C}$, with respect to the basis $\{x_n\}_{n=1}^\infty$ we obtain

$$K(z) = \sum_{n=1}^\infty \langle K(z), y_n \rangle_\mathcal{H} x_n,$$

where the coefficients $\langle K(z), y_n \rangle_\mathcal{H}$ as functions in z are in \mathcal{H}_K. The following result holds: The space \mathcal{H}_K is a RKHS of entire functions if and only if all the functions

$$S_n(z) := \langle K(z), y_n \rangle_\mathcal{H}, \quad z \in \mathbb{C}$$

are entire and $\|K(\cdot)\|_\mathcal{H}$ is bounded on compact sets of \mathbb{C} (see [11]).
3. THE ZERO-REMOVING PROPERTY

In this section, we introduce the zero-removing property for classes of entire functions.

Definition 1 (Zero-Removing Property). A set \mathcal{S} of entire functions has the zero-removing property (ZR property hereafter) if for any $g \in \mathcal{S}$ and any zero w of g the function $g(z)/(z-w)$ belongs to \mathcal{S}.

The ZR property is ubiquitous in mathematics; for instance, the set $\mathcal{P}_N(\mathbb{C})$ of polynomials with complex coefficients of degree less or equal N has the ZR property. Another more involved examples sharing this property are:

- The entire functions in the Pólya class have the ZR property [2, p. 15]. Recall that an entire function $E(z)$ is said to be of Pólya class if it has no zeros in the upper half-plane, if $|E(x-iy)| \leq |E(x+iy)|$ for $y > 0$, and if $|E(x+iy)|$ is a nondecreasing function of $y > 0$ for each fixed x.
- The entire functions in the Paley-Wiener class \mathcal{P}_π of bandlimited functions to $[-\pi, \pi]$, that is, $\mathcal{P}_\pi := \{f \in L^2(\mathbb{R}) \cap C(\mathbb{R}) : \text{supp} \hat{f} \subseteq [-\pi, \pi]\}$, where \hat{f} stands for the Fourier transform of f, satisfy the ZR property; it follows from the classical Paley-Wiener theorem [20, p. 101], which says that this space can be written as $\mathcal{P}_\pi = \{f \text{ entire function : } |f(z)| \leq A e^{\pi|z|}, f|_\mathbb{R} \in L^2(\mathbb{R})\}$. From this characterization the ZR property immediately comes out.
- In general, de Branges spaces $\mathcal{H}(E)$ with strict de Branges function E have the ZR property [2, p. 52]. Let E be an entire function verifying $|E(x-iy)| < |E(x+iy)|$ for all $y > 0$. The de Branges space $\mathcal{H}(E)$ is the set of all entire functions F such that
 \[
 \|F\|_E^2 := \int_{-\infty}^{\infty} \left| \frac{F(t)}{E(t)} \right|^2 \, dt < \infty,
 \]
and such that both ratios F/E and F^*/E, where $F^*(z) := \overline{F(\overline{z})}$, are of bounded type and of non-positive mean type in the upper half-plane. The structure function or de Branges function E has no zeros in the upper half plane. A de Branges function E is said to be strict if it has no zeros on the real axis. We require that F/E and F^*/E be of bounded type and nonpositive mean type in \mathbb{C}^+. A function is of bounded type if it can be written as a quotient of two bounded analytic functions in \mathbb{C}^+ and it is of nonpositive mean type if it grows no faster than $e^{\epsilon y}$ for each $\epsilon > 0$ as $y \to \infty$ on the positive imaginary axis $\{iy : y > 0\}$. Note that the Paley-Wiener space \mathcal{P}_π is a de Branges space for the structure function $E_\pi(z) = \exp(-\pi \ell^2)$.

Assume that the space \mathcal{H}_K in section 2 comes from a polynomial kernel K with coefficients in C; concerning the ZR property in \mathcal{H}_K, the following result holds:

Theorem 1. The space \mathcal{H}_K associated with a polynomial kernel $K(z) := \sum_{n=0}^{N} p_n z^n$, where $p_n \in C$ and $p_N \neq 0$, has the ZR property if and only if the set $\{p_0, p_1, \ldots, p_N\}$ is linearly independent in \mathcal{H}.

Proof. Consider $f(z) = a_N z^N + \cdots + a_1 z + a_0 \in \mathcal{H}_K$ with $a_N \neq 0$; there exists $x \in \mathcal{H}$ such that $f(z) = \langle K(z), x \rangle$ and, consequently, $a_j = \langle p_j, x \rangle$ for $j = 0, 1, \ldots, N$. If the space \mathcal{H}_K has the ZR property and a_0, a_1, \ldots, a_N are the roots of the polynomial f then the constant a_N and the polynomials $a_N(z - a_N), a_N(z - a_N)(z - a_{N-1}), \ldots, a_N(z - a_N)(z - a_{N-1})\cdots(z - a_1)$ belong to \mathcal{H}_K. Let $b_0, b_1, \ldots, b_N \in C$ such that

$$b_N p_N + b_{N-1} p_{N-1} + \cdots + b_0 p_0 = 0. \quad (6)$$

The vector (b_N, \ldots, b_0) is orthogonal in C^{N+1} to any vector $(c_N, \ldots, c_0) \in C^{N+1}$ with $c_N z^N + \cdots + c_0 \in \mathcal{H}_K$. As a consequence, since $a_N \in \mathcal{H}_K$, $b_0 a_N = 0$, which implies that $b_0 = 0$. Analogously, since $a_N(z - a_N)$ belongs to \mathcal{H}_K we have that $a_N b_1 - (a_N a_N) b_0 = 0$ and consequently $b_1 = 0$. Proceeding iteratively it is straightforward to obtain that $b_2 = \cdots = b_{N-1} = 0$; finally, from (6) we conclude that $b_N = 0$.

Now suppose that the set $\{p_0, p_1, \ldots, p_N\}$ is linearly independent in \mathcal{H}. In this case, the mapping $\Phi : \mathcal{H} \to C^{N+1}$ given by $\Phi(x) = (\langle p_0, x \rangle, \langle p_1, x \rangle, \ldots, \langle p_N, x \rangle)$ is surjective. As a consequence, any complex polynomial of degree less than or equal to N belongs to \mathcal{H}_K. Let $f(z) = a_N z^N + \cdots + a_1 z + a_0 \in \mathcal{H}_K$ and let $w \in C$ be a root of f. Hence, $f(z)/(z - w) = c_0 + c_1 z + \cdots + c_{N-1} z^{N-1}$ is a polynomial of degree less than or equal to $N - 1$. Since Φ is onto there exists $x \in \mathcal{H}$ such that $\Phi(x) = (c_0, c_1, \ldots, c_{N-1}, 0)$. From the definition of Φ, we conclude that $f(z)/(z - w) = \langle K(z), x \rangle$, that is, the function $f(z)/(z - w) \in \mathcal{H}_K$.

Giving a necessary and sufficient for a general analytic kernel K remains as an open problem. It is worth to mention that a straightforward application of Cauchy–Schwarz inequality shows that entire functions in \mathcal{H}_K inherit the finite order and the type of the vector-valued entire function K provided it has finite order.

As examples of spaces \mathcal{H}_K where the ZR property does not hold let us mention the following:

- Consider the spaces $\mathcal{H}_K, i = 1, 2$, associated with the analytic kernels $K_i : C \to L^2[0, \pi]$ defined by $K_1(z)[x] := \sin zx$ and $K_2(z)[x] := \cos zx$. The space \mathcal{H}_{K_i} corresponds to the space of odd bandlimited functions in PW_π.
while \mathcal{H}_{K_2} corresponds to the space of even bandlimited functions in PW_g. It is clear that the ZR property does not hold in these spaces.

- Let $K : \mathbb{C} \to \mathcal{H}$ be an analytic kernel such that $K(z_0) = 0$ for some $z_0 \in \mathbb{C}$. Then all the functions in the associated space \mathcal{H}_K have a zero at z_0 and the ZR property does not hold in \mathcal{H}_K. Indeed, let f be a nonzero entire function in \mathcal{H}_K and let r denote the order of its zero z_0. The function $f(z)/(z-z_0)^r$ is not in \mathcal{H}_K since it does not vanish at z_0.

- A little more sophisticated example is the following: For $m \geq 2$ let $K_m : \mathbb{C} \to L^2[-\pi, \pi]$ be defined as $K_m(z) = \frac{1}{\sqrt{2\pi}} e^{izm} \in L^2[-\pi, \pi]$. It is straightforward to show that K_m is an analytic kernel; the corresponding space \mathcal{H}_{K_m} does not have the ZR property. Indeed, expanding $K_m(z)$ as power series around the origin we obtain

$$[K_m(z)](x) = \sum_{k=0}^{\infty} \frac{(ix)^k z^{mk}}{k!} = 1 + ixz - \frac{x^2 z^{2m}}{2!} - \frac{x^3 z^{3m}}{3!} + \cdots.$$

Thus, for any function $f(z) = \langle K_m(z), F \rangle$ with $F \in L^2[-\pi, \pi]$ we have

$$f(z) = \sum_{k=0}^{\infty} c_k z^{mk},$$

where $c_k = \langle (ix)^k/k!, F \rangle$, $k = 0, 1, \ldots$. Let $G \in L^2[-\pi, \pi]\setminus\{0\}$ be such that G is orthogonal to $K(0)$ and let $g(z) = \langle K_m(z), G \rangle$. Since $\langle K(0), G \rangle = 0$ we have $g(0) = 0$. Hence, the Taylor expansion of $g(z)/z$ around the origin has the form

$$\frac{g(z)}{z} = d_1 z^{m-1} + d_2 z^{2m-1} + \cdots$$

where $d_k = \langle (ix)^k/k!, G \rangle$, $k = 1, 2, \ldots$. Since G is not the zero function the function $g(z)/z$ does not belong to \mathcal{H}_{K_m}.

4. Lagrange-Type Interpolation Series

In this section, we introduce the analytic Kramer kernels K for which a nonorthogonal sampling theorem in \mathcal{H}_K holds. We prove a converse result: From a sampling formula in \mathcal{H}_K we deduce when K is an analytic Kramer kernel. Finally, we prove the main result: a necessary and sufficient condition ensuring that the Kramer sampling result can be expressed as a Lagrange-type interpolation series.

4.1. The Abstract Kramer Sampling Result

Consider the data

$$\{z_n\}_{n=1}^{\infty} \in \mathbb{C} \quad \text{and} \quad \{a_n\}_{n=1}^{\infty} \in \mathbb{C}\setminus\{0\}. \quad (7)$$
Definition 2 (Analytic Kramer Kernel). An analytic kernel $K : \mathbb{C} \rightarrow \mathcal{H}$ is said to be an analytic Kramer kernel (with respect to the data (7)) if it satisfies $K(z_n) = a_n x_n$, $n \in \mathbb{N}$, for some Riesz basis $\{x_n\}_{n=1}^{\infty}$ of \mathcal{H}.

A sequence $\{S_n\}_{n=1}^{\infty}$ of functions in the space \mathcal{H}_K is said to have the interpolation property (with respect to the data (7)) if

$$S_n(z_n) = a_n \delta_{{n,m}}.$$

Thus, an analytic kernel K is an analytic Kramer one if and only if the sequence of functions $\{S_n\}_{n=1}^{\infty}$ in \mathcal{H}_K given by (5), where $\{y_n\}_{n=1}^{\infty}$ is the dual Riesz basis of $\{x_n\}_{n=1}^{\infty}$, has the interpolation property with respect to the same data (7).

Concerning the existence of analytic Kramer kernels, it has been proved in [11] that, associated with any arbitrary sequence of complex numbers $\{z_n\}_{n=1}^{\infty}$ such that $\lim_{n \to \infty} |z_n| = +\infty$, there exists an analytic Kramer kernel K.

Under the notation introduced so far an abstract version of the classical Kramer sampling theorem sampling [15] holds in \mathcal{H}_K; this is a slight modification of a sampling result in [14]. For notational purposes we include its proof.

Theorem 2 (Kramer Sampling Theorem). Let $K : \mathbb{C} \rightarrow \mathcal{H}$ be an analytic Kramer kernel, and assume that the interpolation property (8) holds for some sequences $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} and $\{a_n\}_{n=1}^{\infty}$ in $\mathbb{C} \setminus \{0\}$. Let \mathcal{H}_K be the corresponding RKHS of entire functions. Then any $f \in \mathcal{H}_K$ can be recovered from its samples $\{f(z_n)\}_{n=1}^{\infty}$ by means of the sampling series

$$f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{S_n(z)}{a_n}, \quad z \in \mathbb{C},$$

where the reconstruction functions S_n are given in (5). The series converges absolutely and uniformly on compact subsets of \mathbb{C}.

Proof. First, notice that $\lim_{n \to \infty} |z_n| = +\infty$; otherwise the sequence $\{z_n\}_{n=1}^{\infty}$ contains a bounded subsequence and, hence, the entire function $S_n \equiv 0$ for all $n \in \mathbb{N}$, which contradicts (8). The anti-linear mapping \mathcal{F} given by (4) is a bijective isometry between \mathcal{H} and \mathcal{H}_K. As a consequence, the functions $\{S_n = \mathcal{F}(y_n)\}_{n=1}^{\infty}$ form a Riesz basis for \mathcal{H}_K; let $\{T_n\}_{n=1}^{\infty}$ be its dual Riesz basis. Expanding any $f \in \mathcal{H}_K$ in this basis we obtain

$$f(z) = \sum_{n=1}^{\infty} \langle f, T_n \rangle_{\mathcal{H}_K} S_n(z).$$
Moreover,
\[
\langle f, T_n \rangle_{L^2} = \langle x, x_n \rangle_{L^2} = \left(\frac{K(z_n)}{a_n}, x \right)_{L^2} = \frac{f(z_n)}{a_n}.
\] (10)

Since a Riesz basis is an unconditional basis, the sampling series will be pointwise unconditionally convergent and hence, absolutely convergent. The uniform convergence is a standard result in the setting of the RKHS theory since \(z \mapsto \|K(z)\|_{L^2} \) is bounded on compact subsets of \(\mathbb{C} \).

Riesz bases theory (see, e.g., [20]) assures the existence of two positive constants \(0 < A \leq B \) such that
\[
A\|f\|_{L^2}^2 \leq \sum_{n=1}^{\infty} |f(z_n)/a_n|^2 \leq B\|f\|_{L^2}^2 \quad \text{for all } f \in \mathcal{H}_K, \tag{11}
\]
that is, \(\|f\| := \left(\sum_{n=1}^{\infty} |f(z_n)/a_n|^2 \right)^{1/2} \) defines an equivalent norm in \(\mathcal{H}_K \). Following [12], we can say that the data (7) is a sampling set for \(\mathcal{H}_K \); here the sequence of samples belongs to a weighted \(\ell^2 \) space. In [12], the authors characterize the reproducing kernel Hilbert spaces having a fixed sampling set.

The Whittaker–Shannon–Kotel’nikov sampling formula in \(PW_\pi \) becomes a particular case of formula (9) in Theorem 2. Indeed, any \(f \in PW_\pi \) can be written as
\[
f(z) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{f}(w) e^{iw} dw = \left(\frac{e^{iw}}{\sqrt{2\pi}}, f \right)_{L^2([-\pi, \pi])}, \quad z \in \mathbb{C}.
\]
The Fourier kernel \(K(z) := \frac{e^{iz}}{\sqrt{2\pi}} \in L^2[-\pi, \pi] \) is an analytic Kramer kernel for the data \(\{z_n = n\}_{n \in \mathbb{Z}} \) and \(\{a_n = 1\}_{n \in \mathbb{Z}} \). In this case, as \(\{e^{imn}/\sqrt{2\pi}\}_{n \in \mathbb{Z}} \) is an orthonormal basis for \(L^2[-\pi, \pi] \) we get
\[
S_n(z) = \frac{1}{2\pi} \langle e^{iz}, e^{im} \rangle_{L^2[-\pi, \pi]} = \frac{\sin \pi(z-n)}{\pi(z-n)}, \quad z \in \mathbb{C}.
\]
As a consequence, we obtain the WSK sampling formula in \(PW_\pi \):
\[
f(z) = \sum_{n=-\infty}^{\infty} f(n) \frac{\sin \pi(z-n)}{\pi(z-n)}, \quad z \in \mathbb{C}. \tag{12}
\]
The series converges absolutely and uniformly on horizontal strips of the complex plane.

It is worth to remark that a kernel \(K \) can be an analytic Kramer kernel with respect to different data (7). For instance, the Fourier kernel is also
an analytic Kramer kernel with respect to the data \(\{z_n = n + x\}_{n \in \mathbb{Z}} \) where \(x \in \mathbb{R} \) and \(\{a_n = 1\}_{n \in \mathbb{Z}} \). More generally, it is an analytic Kramer kernel with respect to any data \(\{t_n\}_{n \in \mathbb{Z}} \subset \mathbb{R} \) and \(\{a_n = 1\}_{n \in \mathbb{Z}} \), where the points \(t_n \) satisfy Kadec’s condition \(\sup_n |t_n - n| < 1/4 \) since the sequence \(\{e^{i_n w}/\sqrt{2\pi}\}_{n \in \mathbb{Z}} \) is a Riesz basis for \(L^2(-\pi, \pi) \) [20, p. 42].

4.2. A Converse Result

An interesting converse problem is to decide whether a sampling formula as (9), pointwise convergent in \(\mathcal{H}_K \), implies the Kramer kernel condition in definition 2 for \(K \). From formula (9) in Theorem 2 we derive that:

- From (5), for each \(z \in \mathbb{C} \), the sequence \(\{S_n(z)\}_{n=1}^{\infty} \in \ell^2(\mathbb{N}) \).
- The sequence \(\{f(z_n)/a_n\}_{n=1}^{\infty} \) belongs to \(\ell^2(\mathbb{N}) \) for any \(f \in \mathcal{H}_K \), and
- \(\sum_{n=1}^{\infty} a_n S_n(z) = 0 \) for all \(z \in \mathbb{C} \) and \(\{x_n\}_{n=1}^{\infty} \in \ell^2(\mathbb{N}) \) implies \(x_n = 0 \) for all \(n \in \mathbb{N} \), due to the uniqueness of a Riesz basis expansion in the RKHS \(\mathcal{H}_K \).

It is worth to point out that these conditions are also sufficient to prove that \(K \) is an analytic Kramer kernel.

Theorem 3. Let \(\mathcal{H}_K \) be the range of a mapping \(\mathcal{T} \) as in (4) considered as a RKHS with reproducing kernel \(k(z, w) = \langle K(z), K(w) \rangle_\mathcal{F} \). Let \(\{S_n\}_{n=1}^{\infty} \) be a sequence in \(\mathcal{H}_K \) such that \(\{S_n(z)\}_{n=1}^{\infty} \) belongs to \(\ell^2(\mathbb{N}) \) for each \(z \in \mathbb{C} \). Suppose that the following conditions are fulfilled:

- (i) \(\sum_{n=1}^{\infty} a_n S_n(z) = 0 \) for all \(z \in \mathbb{C} \) and \(\{x_n\}_{n=1}^{\infty} \in \ell^2(\mathbb{N}) \) implies \(x_n = 0 \) for all \(n \).
- (ii) There exist sequences \(\{z_n\}_{n=1}^{\infty} \) in \(\mathbb{C} \) and \(\{a_n\}_{n=1}^{\infty} \) in \(\mathbb{C}\setminus\{0\} \) such that

\[
\left\{ \frac{f(z_n)}{a_n} \right\}_{n=1}^{\infty} \in \ell^2(\mathbb{N}) \quad \text{and} \quad f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{S_n(z)}{a_n}, \quad \text{for any} \ f \in \mathcal{H}_K,
\]

where the sampling series is pointwise convergent in \(\mathbb{C} \).

Then, the sequence \(\{S_n\}_{n=1}^{\infty} \) is a Riesz basis for \(\mathcal{H}_K \) and the kernel \(K \) of the mapping \(\mathcal{T} \) evaluated at \(z \in \mathbb{C} \) can be expressed as \(K(z) = \sum_{n=1}^{\infty} S_n(z) y_n \), where \(\{y_n\}_{n=1}^{\infty} \) is the dual Riesz basis of the Riesz basis \(\{x_n = \mathcal{T}^{-1}(S_n)\}_{n=1}^{\infty} \) in \(\mathcal{H} \). In particular, \(K(z_n) = a_n y_n \) for any \(n \in \mathbb{N} \).

Proof. By defining \(\tilde{k}(z, w) := \sum_{n=1}^{\infty} S_n(z) \overline{S_n(w)} \), we obtain a positive definite function which defines a RKHS \(\tilde{\mathcal{H}} \), such that \(\tilde{\mathcal{H}} \subseteq \mathcal{H}_K \). Condition (i) implies that the sequence \(\{S_n\}_{n=1}^{\infty} \) is an orthonormal basis for \(\tilde{\mathcal{H}} \) (see [17]).
Now we prove that \(X = X_K \) and that the identity mapping \(X \rightarrow X_K \) is continuous. Take \(f \in X_K \), by condition ii), the sequence \(\{f(z_n)a_n^{-1}\}_{n=1}^{\infty} \) is in \(\ell^2(\mathbb{N}) \). As a consequence, the series \(\sum_{n=1}^{\infty} f(z_n)a_n^{-1}S_n \) converges in the norm of \(X_K \). By the reproducing kernel property, we have that the series \(\sum_{n=1}^{\infty} f(z_n)a_n^{-1}S_n(z) \) is pointwise convergent. Comparing this with what we get from the sampling formula for \(f \) we deduce that \(f = \sum_{n=1}^{\infty} f(z_n)a_n^{-1}S_n \), where the convergence is in \(X_K \) and, consequently, \(f \in X_K \).

Next we show the continuity of the identity mapping by applying the closed graph theorem. Indeed, let \(\{f_n\}_{n=1}^{\infty} \) be a sequence such that \(f_n \rightarrow f \) in \(X_K \) and \(f_n \rightarrow g \) in \(X_K \) as \(n \rightarrow \infty \). Using the reproducing property in both \(X_K \) and \(X \), for \(z \in \mathbb{C} \) we have

\[
|f_n(z) - f(z)| \leq \|f_n - f\| \sqrt{k(z,z)};
\]

\[
|f_n(z) - g(z)| \leq \|f_n - g\| \sqrt{k(z,z)}.
\]

Therefore, \(\lim_{n \rightarrow \infty} f_n(z) = f(z) = g(z) \) for each \(z \in \mathbb{C} \), and hence \(f = g \).

Since it is also surjective, we infer that the norms \(\| \cdot \|_{X_K} \) and \(\| \cdot \|_{X_K} \) are equivalent from the open mapping theorem. As a consequence, the orthonormal basis \(\{S_n\}_{n=1}^{\infty} \) in \(X_K \) is a Riesz basis for \(X_K \).

Assuming that the mapping \(F \) is one-to-one, the sequence \(\{x_n = F^{-1}(S_n)\}_{n=1}^{\infty} \) is a Riesz basis for \(X \); denote by \(\{y_n\}_{n=1}^{\infty} \) its dual Riesz basis. Expanding \(K(z) \) with respect to \(\{y_n\}_{n=1}^{\infty} \), for each fixed \(z \in \mathbb{C} \) we obtain

\[
K(z) = \sum_{n=1}^{\infty} \langle K(z), x_n \rangle y_n = \sum_{n=1}^{\infty} S_n(z) y_n,
\]

that is, the required expansion for \(K(z) \).

Notice that the interpolatory condition \(S_n(z_n) = a_n \delta_{n,m} \) comes out of a direct application of condition (ii) to \(S_n \), followed by condition (i).

As to the case when, a priori, \(F \) is not known to be one-to-one, let \(\{x_n\}_{n=1}^{\infty} \) be a sequence in \(X \) with \(P(x_n) \neq 0 \) for all \(n \), where \(P \) denotes the orthogonal projection onto the closed subspace \((\text{Ker} F)^\perp \). Consider \(S_n = F(x_n) \in X_K \), and suppose that these functions satisfy the hypotheses in Theorem 3. In this case, \(\{S_n\}_{n=1}^{\infty} \) is a Riesz basis for \(X_K \). Consequently, since \(S_n = F[P(x_n)] \) and \(F|_{P(\text{Ker} F)} = 0 \), we obtain that \(\{P(x_n)\}_{n=1}^{\infty} \) is a Riesz basis for \(P(\hat{X}) = (\text{Ker} F)^\perp \). The result comes out taking into account the orthogonal sum \(\hat{X} = (\text{Ker} F)^\perp \oplus (\text{Ker} F) \).

4.3. Lagrange-Type Interpolation Series

A more difficult question concerns whether the sampling expansion (9) can be written, in general, as a Lagrange-type interpolation series.
For instance, for \(f \in PW_n \) the WSK formula (12) can be written as the Lagrange-type interpolation series

\[
f(z) = \sum_{n=-\infty}^{\infty} f(n) \frac{P(z)}{(z-n)P'(n)}, \quad z \in \mathbb{C},
\]

by taking \(P(z) = (\sin \pi z)/\pi \), an entire function having only simple zeros at \(\mathbb{Z} \).

The case where the sequence \(\{x_n\}_{n=1}^{\infty} \) in Definition 2 is an orthonormal basis for \(\mathcal{H} \) was studied in [7]: A necessary and sufficient condition involves the ZR property. Next, we prove that the same necessary and sufficient condition holds in the general case of analytic Kramer kernels \(K \) involving Riesz bases.

Theorem 4. Let \(\mathcal{H}_K \) be a RKHS of entire functions obtained from an analytic Kramer kernel \(K \) with respect to the data \(\{z_n\}_{n=1}^{\infty} \subset \mathbb{C} \) and \(\{a_n\}_{n=1}^{\infty} \in \mathbb{C}\setminus\{0\} \), that is, \(K(z_n) = a_n x_n, \quad n \in \mathbb{N} \), for some Riesz basis \(\{x_n\}_{n=1}^{\infty} \) for \(\mathcal{H} \). Then, the sampling formula (9) for \(\mathcal{H}_K \) can be written as a Lagrange-type interpolation series

\[
f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{P(z)}{(z-z_n)P'(z_n)}, \quad z \in \mathbb{C}, \quad \tag{13}
\]

where \(P \) denotes an entire function having only simple zeros at \(\{z_n\}_{n=1}^{\infty} \) if and only if the space \(\mathcal{H}_K \) satisfies the ZR property.

Proof. For the sufficient condition we have to prove that sampling formula (9) can be written as a Lagrange-type interpolation series (13) for some entire function \(P \). First, we prove that the only zeros of the sampling function \(S_n \) are given by \(\{z_r\}_{r \neq n} \). Suppose that \(S_n(w) = 0 \), then by hypothesis the function \(S_n(z)/(z-w) \) is in \(\mathcal{H}_K \). Hence, the function

\[
\frac{z-z_n}{z-w} S_n(z) = S_n(z) + \frac{w-z_n}{z-w} S_n(z)
\]

also belongs to \(\mathcal{H}_K \). If \(w \notin \{z_r\}_{r \neq n} \), the function \(\frac{z-z_n}{z-w} S_n(z) \) in \(\mathcal{H}_K \) vanishes at the sequence \(\{z_r\}_{r=1}^{\infty} \) which implies that \(S_n \equiv 0 \), to give a contradiction. In addition, the zeros of \(S_n \) are simple; indeed, suppose that \(z_m \) is a multiple zero of \(S_n \). Proceeding as above, the function \(\frac{z-z_m}{z-w} S_n(z) \) belongs to \(\mathcal{H}_K \) and vanishes at \(\{z_r\}_{r=1}^{\infty} \) which again implies that \(S_n \equiv 0 \).

Consequently, choosing an entire function \(Q \) having only simple zeros at \(\{z_n\}_{n=1}^{\infty} \), for each \(n \in \mathbb{N} \) there exists an entire function \(A_n \) without zeros such that \((z-z_n)S_n(z) = Q(z)A_n(z), \quad z \in \mathbb{C} \). Next, we prove that there exists an entire function \(A \) without zeros and a sequence \(\{a_n\}_{n=1}^{\infty} \) in \(\mathbb{C}\setminus\{0\} \) such
that \(A_n(z) = \sigma_n A(z) \) for all \(z \in \mathbb{C} \). For \(m \neq n \) the function \(\frac{z-z_n}{z-z_m} S_n(z) \) in \(\mathcal{H}_K \) has its zeros at \(\{z_r : r \neq m\} \). Thus, the sampling formula (9) gives

\[
\frac{z-z_n}{z-z_m} S_n(z) = \left[(z_m-z_n) S_n'(z_m) \right] \frac{S_m(z)}{a_m}, \quad z \in \mathbb{C}.
\]

Fixing \(m = 1 \), we conclude that \(A_n(z) = \sigma_n A(z) \) where \(A = A_1 \) and \(\sigma_n = (z_1-z_n) S_n'(z_1) \neq 0 \) for \(n \in \mathbb{N} \setminus \{1\} \) and \(\sigma_1 = 1 \). Hence, \(S_n(z) = \frac{\sigma_n Q(z) A(z)}{z-z_n} \) for \(z \neq z_n \) and \(S_n(z_n) = a_n = \sigma_n Q'(z_n) A(z_n) \). Substituting in (9) we obtain the Lagrange-type interpolation series (13) where \(P(z) = A(z) Q(z) \).

For the necessary condition, assume that the sampling formula in \(\mathcal{H}_K \) takes the form of a Lagrange-type interpolation series (13). Given \(g \in \mathcal{H}_K \), there exists \(x \in \mathcal{H} \) such that \(g(z) = \langle K(z), x \rangle, \ z \in \mathbb{C} \). Assuming that \(g(w) = 0 \), we have to prove that the function \(g(z)/(z-w) \) belongs to \(\mathcal{H}_K \). The sampling expansion for \(g \) at \(w \) gives

\[
\sum_{n=1}^{\infty} g(z_n) \frac{P(w)}{(w-z_n)P'(z_n)} = 0. \tag{14}
\]

We distinguish two cases:

(i) \(w \in \mathbb{C} \setminus \{z_n \}_{n=1}^{\infty} \). As \(P(w) \neq 0 \), from (14) we obtain

\[
\sum_{n=1}^{\infty} g(z_n) \frac{1}{(w-z_n)P'(z_n)} = 0.
\]

Thus,

\[
g(z) = \sum_{n=1}^{\infty} g(z_n) \frac{P(z)}{(z-z_n)P'(z_n)} - \sum_{n=1}^{\infty} g(z_n) \frac{P(z)}{(w-z_n)P'(z_n)}
\]

\[
= (z-w) \sum_{n=1}^{\infty} g(z_n) \frac{P(z)}{P'(z_n)} \frac{1}{(z-z_n)(z-w)}.
\]

Therefore, the entire function \(G(z) := g(z)/(z-w) \) can be recovered from its samples at \(\{z_n \}_{n=1}^{\infty} \) through the formula

\[
G(z) = \sum_{n=1}^{\infty} G(z_n) \frac{P(z)}{(z-z_n)P'(z_n)}, \quad z \in \mathbb{C}. \tag{15}
\]

Moreover, the function \(G \) is in \(\mathcal{H}_K \) because \(G(z) = \langle K(z), y \rangle \), where \(y \in \mathcal{H} \) has the expansion \(y = \sum_{n=1}^{\infty} \langle y, x_n \rangle y_n \) with respect to the dual Riesz basis.
\(\{ y_n \}_{n=1}^{\infty} \) of \(\{ x_n \}_{n=1}^{\infty} \), where the coefficients are given by

\[
\left\{ \langle y, x_n \rangle := \frac{1}{z_n - w} \langle x, x_n \rangle \right\}_{n=1}^{\infty} \in \ell^2(\mathbb{N}).
\]

Indeed, sampling formula (13) for \(S_n(z) = a_n \frac{P(z)}{(z-z_n)P'(z_n)} \). Hence, by using the biorthogonality \(\langle x_n, y_n \rangle = \delta_{n,m} \), we obtain

\[
\langle K(z), y \rangle = \sum_{n=1}^{\infty} \frac{S_n(z) \langle x, x_n \rangle}{w - z_n} = G(z), \quad z \in \mathbb{C},
\]

where we have used (15), and the result that \(\langle x, x_n \rangle = g(z_n)/a_n, \ n \in \mathbb{N} \).

(ii) \(w = z_m \) for some \(m \in \mathbb{N} \). As \(g(z_m) = 0 \), the sampling expansion for \(g \) reads

\[
g(z) = \sum_{n=1}^{\infty} g(z_n) \frac{P(z)}{(z-z_n)P'(z_n)}, \quad z \in \mathbb{C}.
\]

Setting \(P(z) = (z-z_m)Q_m(z) \) we have \(P'(z) = Q_m(z) + (z-z_m)Q'_m(z) \) and, hence,

\[
P'(z_k) = \begin{cases} (z_k - z_m)Q'_m(z_k) & \text{if } k \neq m \\ Q_m(z_m) & \text{if } k = m \end{cases}
\]

Hence,

\[
g(z) = \sum_{n=1}^{\infty} g(z_n) \frac{Q_m(z)}{z_n - z_m (z-z_n)Q'_m(z_n)}, \quad z \in \mathbb{C}. \quad (16)
\]

Using the uniform convergence of the series in (16) we deduce that this series defines a continuous function. Hence, taking the limit as \(z \to z_m \) we obtain

\[
g'(z_m) = \sum_{n=1}^{\infty} g(z_n) \frac{Q_m(z_m)}{z_n - z_m (z-z_n)Q'_m(z_n)} \quad (17)
\]

Now we prove that

\[
\frac{g(z)}{z-z_m} = \sum_{n=1}^{\infty} g(z_n) \frac{P(z)}{z_n - z_m (z-z_n)P'(z_n)} + g'(z_m) \frac{P(z)}{(z-z_m)P'(z_m)}. \quad (18)
\]
Indeed, substituting (17) into (18) we obtain

\[
\sum_{n=1 \atop n \neq m}^{\infty} \left[\frac{g(z_n)}{z_n - z_m} \frac{P(z)}{(z - z_n)P'(z_n)} + \frac{g(z_n)}{z_n - z_m} \frac{Q_m(z)}{(z_m - z_n)Q_m'(z_n)} \right]
\]

\[
= \sum_{n=1 \atop n \neq m}^{\infty} \frac{g(z_n)}{z_n - z_m} \frac{Q_m(z)}{Q_m'(z_n)} \left[\frac{z - z_m}{(z_m - z_n)(z - z_n)} - \frac{1}{z_n - z_m} \right]
\]

\[
= \sum_{n=1 \atop n \neq m}^{\infty} \frac{g(z_n)}{z - z_m} \frac{Q_m(z)}{(z_n - z_m)(z - z_n)Q_m'(z_n)}
\]

\[
= \frac{g(z)}{z - z_m}.
\]

Thus, defining \(y \in \mathcal{H} \) by the expansion \(y = \sum_{n=1}^{\infty} \langle y, x_n \rangle y_n \) where the coefficients \(\{\langle y, x_n \rangle\}_{n=1}^{\infty} \) in \(\ell^2(\mathbb{N}) \) are given by

\[
\langle y, x_n \rangle := \begin{cases} \frac{\langle x, x_n \rangle}{z_n - z_m} & \text{if } n \neq m \\ \frac{g'(z_m)}{a_m} & \text{if } n = m \end{cases}
\]

and proceeding as in case (i), it may be shown that

\[
\frac{g(z)}{z - z_m} = \langle K(z), y \rangle, \quad z \in \mathbb{C},
\]

which proves that the function \(g(z)/(z - z_m) \) belongs to \(\mathcal{H}_K \). This concludes the proof of the theorem. \(\square \)

Some comments concerning Theorem 4 are in order:

1. In the proof of Theorem 4 we have found that the entire function \(P \) satisfies:

\[
(z - z_n)S_n(z) = \sigma_n P(z), \quad z \in \mathbb{C},
\]

for some sequence \(\{\sigma_n\}_{n=1}^{\infty} \in \mathbb{C} \setminus \{0\} \). In the case where \(P \) can be factorized as \(P(z) = A(z)Q(z) \), where \(Q \) denotes a canonical product having its simple zeros at \(\{z_n\}_{n=1}^{\infty} \) and \(A \) is an entire function.
without zeros, then the Lagrange-type interpolation series (13) can be expressed as

\[f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{A(z)}{A(z_n)} \frac{Q(z)}{(z - z_n)Q'(z_n)}, \quad z \in \mathbb{C}. \]

2. In particular, as de Branges space satisfy the ZR property the orthogonal sampling formulas in these spaces, first proved in [16], can be expressed as Lagrange-type interpolation series (see [11] for some nontrivial examples).

3. It is worth to mention that if one particular sampling formula (9) can be written as a Lagrange-type interpolation formula, then the same occurs for all the sampling formulas (9) obtained from other compatible data (7). Besides, if the space \(\mathcal{H}_K \) does not satisfy the ZR property, we conclude that it does not exist any data (7) for which the kernel \(K \) is an analytic Kramer kernel and the associated sampling formula (9) can be written as a Lagrange-type interpolation series.

4.4. Some Illustrative Examples

Closing the article, we show some examples illustrating Theorems 2 and 4.

4.4.1. Classical Polynomial Interpolation

Let \(\mathcal{P}_N(\mathbb{C}) \) be the set of polynomials with complex coefficients of degree less or equal \(N \). As we proved in Theorem 1, \(\mathcal{P}_N(\mathbb{C}) \) coincides with the corresponding \(\mathcal{H}_K \) space where \(K(z) := \sum_{n=0}^{N} p_n z^n \) being \(\{p_0, p_1, \ldots, p_N\} \) any basis for the euclidean space \(\mathcal{H} := \mathbb{C}^{N+1} \). Consider \(N + 1 \) different points \(\{z_n\}_{n=0}^{N} \) in \(\mathbb{C} \); it is easy to prove that \(K \) is an analytic Kramer kernel with respect the data \(\{z_n\}_{n=0}^{N} \) and \(\{a_n = 1\}_{n=0}^{N} \). Indeed, the set \(\{K(z_n) = \{q_n\}_{n=0}^{N}\} \) is linearly independent in \(\mathbb{C}^{N+1} \) by using Vandermonde determinants, that is, it forms a (Riesz) basis for \(\mathbb{C}^{N+1} \). Thus, Theorems 2 and 4 give, for any \(f \in \mathcal{P}_N(\mathbb{C}) \)

\[f(z) = \sum_{n=0}^{N} f(z_n) S_n(z) = \sum_{n=0}^{N} f(z_n) \frac{P(z)}{(z - z_n)P'(z_n)}, \quad z \in \mathbb{C}, \]

where \(S_n(z) = (K(z), q_n^*) \), being \(\{q_n^*\}_{n=0}^{N} \) the dual basis of \(\{q_n\}_{n=0}^{N} \) in \(\mathbb{C}^{N+1} \), and \(P(z) = \prod_{n=0}^{N} (z - z_n) \).
4.4.2. The Paley–Wiener–Levinson Theorem Revisited

Let \(\{z_n\}_{n \in \mathbb{Z}} \) be a sequence in \(\mathbb{C} \) for which \(\sup_n |\text{Re} z_n - n| < 1/4 \) and \(\sup_n |\text{Im} z_n| < \infty \). It is known that the system \(\{e^{i\pi n}/\sqrt{2\pi}\}_{n \in \mathbb{Z}} \) is a Riesz basis for \(L^2[-\pi, \pi] \) (see [20, p. 196]). The Fourier kernel \(K(z) = e^{i\pi z}/\sqrt{2\pi} \in L^2[-\pi, \pi] \) is an analytic Kramer kernel for the data \(\{z_n\}_{n \in \mathbb{Z}} \) and \(\{a_n = 1\}_{n \in \mathbb{Z}} \). Thus, Theorems 2 and 4 give, for any \(f \in \text{PW}_H \)

\[
 f(z) = \sum_{n=-\infty}^{\infty} f(z_n) S_n(z) = \sum_{n=-\infty}^{\infty} f(z_n) \frac{P(z)}{(z - z_n)P'(z_n)}, \quad z \in \mathbb{C},
\]

where, for \(n \in \mathbb{Z} \), the sampling function \(S_n(z) = \langle K(z), h_n \rangle_{L^2[-\pi, \pi]} \), being \(\{h_n(w)\}_{n \in \mathbb{Z}} \) the dual Riesz basis of \(\{e^{i\pi n}/\sqrt{2\pi}\}_{n \in \mathbb{Z}} \) in \(L^2[-\pi, \pi] \), and \(P \) is the entire function having only simple zeros at \(\{z_n\}_{n \in \mathbb{Z}} \). Since a result from Titchmarsh [18] assures that the functions in \(\text{PW}_H \) are completely determined by their zeros, we derive that, up to a constant factor, the entire function \(P \) coincides with the infinite product

\[
 (z - z_0) \prod_{n=1}^{\infty} \left(\frac{1 - \frac{z}{z_n}}{1 - \frac{z}{z-n}} \right).\]

Indeed, the function \(S_0 \in \text{PW}_H \) has only simple zeros at \(\{z_m\}_{m \neq 0} \) \((S_0(z_m) = \delta_{0,m}) \). Suppose on the contrary that \(s \notin \{z_n\}_{m \neq 0} \) is a zero of \(S_0 \). According to the classical Paley–Wiener theorem, the function \(S(z) := (z - z_0)S_0(z)/(z - s) \) belongs to \(\text{PW}_H \) and vanishes at every \(z_n \). If we take into account the completeness of the Riesz basis \(\{e^{i\pi n}/\sqrt{2\pi}\}_{n \in \mathbb{Z}} \), this implies that \(S \equiv 0 \), a contradiction. Therefore, by using the Titchmarsh's result, the function \(S_0 \) coincides, up to a constant factor, with the (convergent) product \(\prod_{n=1}^{\infty} \left(1 - \frac{\frac{s}{z}}{1 - \frac{\frac{s}{z}}{z-n}} \right) \). Since Theorem 4 gives \((z - z_n)S_n(z) = \sigma_n P(z) \) for all \(n \in \mathbb{Z} \), we obtain the desired result.

4.4.3. Finite Cosine Transform

It is known that any function \(f(z) = \langle \cos z x, F(x) \rangle_{L^2[0,\pi]} \), \(z \in \mathbb{C} \), can be expanded as the sampling formula [13, p. 5]

\[
 f(z) = f(0) \sin \frac{\pi z}{\pi} + \frac{2}{\pi} \sum_{n=0}^{\infty} f(n) \frac{(-1)^n \sin \frac{\pi z}{z^2 - n^2}}, \quad z \in \mathbb{C}.
\]

This sampling formula cannot be expressed as a Lagrange-type interpolation series since, as we noticed in section 3, the corresponding \(\mathcal{H}_K \) space does not satisfy the ZR property.
4.4.4. An Example Involving a Sobolev Space

Finally, we give an example taken from [10] of a RKHS \mathcal{H}_K, built from the Sobolev Hilbert space $\mathcal{H} := H^1(-\pi, \pi)$, where the ZR property fails. Namely, consider the Sobolev Hilbert space $H^1(-\pi, \pi)$ with its usual inner product

$$\langle f, g \rangle_1 = \int_{-\pi}^{\pi} f(x) \overline{g(x)} \, dx + \int_{-\pi}^{\pi} f'(x) \overline{g'(x)} \, dx, \quad f, g \in H^1(-\pi, \pi).$$

The sequence $\{e^{inx}\}_{n \in \mathbb{Z}} \cup \{\sinh x\}$ forms an orthogonal basis for $H^1(-\pi, \pi)$: it is straightforward to prove that the orthogonal complement of $\{e^{inx}\}_{n \in \mathbb{Z}}$ in $H^1(-\pi, \pi)$ is a one-dimensional space for which $\sinh x$ is a basis. For a fixed $a \in \mathbb{C}\setminus\mathbb{Z}$ we define a kernel

$$K_a : \mathbb{C} \rightarrow H^1(-\pi, \pi)$$

$$z \mapsto K_a(z),$$

by setting

$$[K_a(z)](x) = (z - a) e^{ix} + \sin \pi z \sinh x, \quad \text{for } x \in (-\pi, \pi).$$

Clearly, K_a defines an analytic Kramer kernel. Expanding $K_a(z) \in H^1(-\pi, \pi)$ in the former orthogonal basis we obtain

$$K_a(z) = [1 - i(z - a)] \sin \pi z \sinh x + (z - a) \sum_{n=-\infty}^{\infty} \frac{1 + zn}{1 + n^2} \sin c(z - n) e^{inx}.$$

As a consequence, Theorem 2 gives the following sampling result in \mathcal{H}_K:

Any function $f \in \mathcal{H}_K$ can be recovered from its samples $\{f(a)\} \cup \{f(n)\}_{n \in \mathbb{Z}}$ by means of the sampling formula

$$f(z) = [1 - i(z - a)] \frac{\sin \pi z}{\sin \pi a} f(a) + \sum_{n=-\infty}^{\infty} f(n) \frac{z - a}{n - a} \frac{1 + zn}{1 + n^2} \sin c(z - n).$$

The function $(z - a) \text{sinc } z$ belongs to \mathcal{H}_K since $(z - a) \text{sinc } z = \langle K_a(z), 1/2\pi \rangle_1$ for all $z \in \mathbb{C}$. However, by using the sampling formula for \mathcal{H}_K it is straightforward to check that the function $\text{sinc } z$ does not belong to \mathcal{H}_K; as a consequence, the above sampling formula cannot be expressed as a Lagrange-type interpolation series.

ACKNOWLEDGMENTS

This work has been supported by the grant MTM2009–08345 from the Spanish Ministerio de Ciencia e Innovación (MICINN).
REFERENCES