Lessons from the Habitat Suitability Models to evaluate the environmental variability of *Pinus nigra* Arnold. and *Pinus sylvestris* L. in the Iberian Peninsula.

Moreno, Elena¹; G. Mateo, Rubén²; Rubiales, Juan Manuel³; Alberdi, Iciar⁴; García-Amorena, Ignacio⁴.

¹Universidad Politécnica de Madrid, Escuela Superior de Ingenieros de Montes, Departamento de Silvopascicultura, Spain.
²Universidad de Castilla-La Mancha, Spain.
³ Instituto Nacional de Investigación Agraria, Centro de Investigación Forestal, Departamento de Sistemas y Recursos Forestales, Spain.

Contact: elena.moreno@upm.es

1. Introduction

- PREDICT POTENTIAL DISTRIBUTION → spatial and temporal evolution of the species under different climate scenarios → generation of habitat suitability models (HSM) → high degree of uncertainty and limitations.
- The importance of their validation has been stressed.
- In this work we discuss the present potential distribution of *P. sylvestris* and *P. nigra* in the Iberian Peninsula by using MaxEnt, and evaluate the influence of the different environmental variables.
- Our intention is to select a set of environmental variables that explains better their current distribution, to achieve the most accurate and reliable models. Then we project them to the past climatic conditions (21 to 0 kys BP), to evaluate the outputs with existing palaeo-ecological data.

2. Data

Input data:

P. nigra & **P. sylvestris** presence data:

Third Spanish Forest Inventory (1 km grid) → using (1) current presence and (2) natural distribution deduced from regions of origin maps

3. Environmental variables and models: dealing with the data

Climate data → Worldclim database and the Spanish Phytoclimatic Atlas (Gonzalo, 2010).

Models → Maxent → Method for modelling habitat suitability of species as a function of various ecologically-meaningful environmental predictors with presence-only data (Philips et al., 2006).

Selection of the variables:

- What environmental variables had the most influence as predictors in the model?
- Firstly, we run different models → evaluate how each environmental variable contributes to the model performance.
- We select the most meaningful vbles. for each model (Fig 1) → avoid correlated variables

4. Tests and results

- Natural occurrences produced best performances on the HSMs.

WORLDCLIM DATABASE: bio 1 to bio 19 are used

Hypothesis → the most limiting environmental variables for these species: bio5 (Warmest Month Max Temp), bio6 (Coldest Month Min Temp) & bio17 (Summer Precip).

- Models show that bio17 does not have a major influence.
- Bio4 (T Seasonality) → highest gain when used in isolation and appears to have the most meaningful information by itself and has information that is not present in other variables.
- Models show Bio15 (Precip Seasonality) as the more influential precipitation variable.

- **Pinus sylvestris**: the most influential variables are: bio3 (Isothermality), bio4 (Temp Seasonality), bio5 (Mean of Driest Quarter), bio6 (Mean T of Coldest Month) and bio15 (Precip Seasonality).
- **Pinus nigra**: the most influential variables are: bio3 (Isothermality), bio4 (Temp Seasonality), bio6 (Min T of Coldest Month), bio5 (Mean T of Driest Quarter) and bio15 (Precipitation Seasonality).

SPANISH PHYTOCLIMATIC ATLAS:

- **Pinus sylvestris**: the most influential variables are: tmin (lowest monthly average temperature), pe (summer minimum monthly precipitation) and pmax (Precipitation of the warmest month).
- **Pinus nigra**: the most influential variables are: tmin (lowest monthly average T), p (Annual precipitation) and pmax (Precipitation of the warmest month).

The resulting models obtained with the Spanish Phytoclimatic Atlas predict a smaller distribution and linked to mountain areas. Instead the distributions predicted by the WorldClim database reflect a more general extension.

Acknowledgements: This work has been performed with the support of the "History and Dynamics of the Vegetal Landscapes" Research Group (Universidad Politécnica de Madrid) and the "Sensibilidad de las Comunidades Vegetales del Cuadrante Noroccidental Ibérico a las variaciones climáticas desde una perspectiva multidisciplinar" and "MAV" research projects.

References: Gonzalo, J. 2010. Diagnosis fitoclimática: elena.moreno@upm.es