Fuzzy min-max neural networks for categorical data: application to missing data imputation

Rey del Castillo, Pilar y Cardeñosa Lera, Jesús (2012). Fuzzy min-max neural networks for categorical data: application to missing data imputation. "Neural computing & applications", v. 21 (n. 6); pp. 1349-1362. ISSN 0941-0643. https://doi.org/10.1007/s00521-011-0574-x.

Descripción

Título: Fuzzy min-max neural networks for categorical data: application to missing data imputation
Autor/es:
  • Rey del Castillo, Pilar
  • Cardeñosa Lera, Jesús
Tipo de Documento: Artículo
Título de Revista/Publicación: Neural computing & applications
Fecha: Septiembre 2012
Volumen: 21
Materias:
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Inteligencia Artificial
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

The fuzzy min–max neural network classifier is a supervised learning method. This classifier takes the hybrid neural networks and fuzzy systems approach. All input variables in the network are required to correspond to continuously valued variables, and this can be a significant constraint in many real-world situations where there are not only quantitative but also categorical data. The usual way of dealing with this type of variables is to replace the categorical by numerical values and treat them as if they were continuously valued. But this method, implicitly defines a possibly unsuitable metric for the categories. A number of different procedures have been proposed to tackle the problem. In this article, we present a new method. The procedure extends the fuzzy min–max neural network input to categorical variables by introducing new fuzzy sets, a new operation, and a new architecture. This provides for greater flexibility and wider application. The proposed method is then applied to missing data imputation in voting intention polls. The micro data—the set of the respondents’ individual answers to the questions—of this type of poll are especially suited for evaluating the method since they include a large number of numerical and categorical attributes.

Más información

ID de Registro: 11867
Identificador DC: http://oa.upm.es/11867/
Identificador OAI: oai:oa.upm.es:11867
Identificador DOI: 10.1007/s00521-011-0574-x
URL Oficial: http://link.springer.com/article/10.1007/s00521-011-0574-x?null
Depositado por: Memoria Investigacion
Depositado el: 27 Sep 2012 09:24
Ultima Modificación: 21 Abr 2016 11:03
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM