La respuesta cardiorrespiratoria durante la segunda transición del triatlón y su relación con el rendimiento en triatletas jóvenes de élite.

Trabajo para la obtención del Diploma de Estudios Avanzados (DEA).

AUTOR: Víctor Díaz Molina
Licenciado en CC. de la Actividad Física y del Deporte

DIRECTORES: Dr. Pedro José Benito Peinado
Dr. Francisco Javier Calderón Montero

Madrid, junio de 2007
AGRADECIMIENTOS

A Pedro, profesor y sin embargo amigo, por su capacidad de trabajo y ayuda en la difícil tarea del día a día.

A Javier, por su humildad y ganas de estudiar para los demás, que no deja de ser un espejo en el que mirarme.

A Augusto y Coral, por buscar siempre un hueco de su tiempo y ofrecerme su inestimable ayuda.

A Ana Belén y Esther, por su amistad, risas y trabajo diario codo con codo en el laboratorio, extraño lugar donde surgen demasiados problemas.

A Juan Rodríguez, por su capacidad de adaptarse a las circunstancias.

A mi familia, por el esfuerzo supremo que hacen en entenderme.

A Proensa y Santi, por tantos ratos de música en silencio.

A Carlos Borondo, por su nocturnidad y alevosía que tantas veces nos ha llevado a la conversación interminable.

Especially a María, por dejarme ligar mi vida a la suya.

Sabiendo que mis palabras no expresan mi verdadero agradecimiento, este trabajo de investigación no hubiera sido posible sin la ayuda de todos ellos.
ÍNDICE

1. MARCO TEÓRICO ................................................................................................................. 1
   1.1 Antecedentes .................................................................................................................. 1
   1.2. Descripción de las pruebas .......................................................................................... 1
   1.3. Respuesta cardiovascular al ejercicio ............................................................................ 2
       1.3.1. Respuesta cardiovascular al ejercicio de intensidad creciente ......................... 2
       1.3.1.1. Respuesta Cardiaca ......................................................................................... 2
       1.3.1.2. Respuesta circulatoria ...................................................................................... 5
           1.3.1.2.1. Circulación arterial .................................................................................. 5
           1.3.1.2.2. Circulación capilar ................................................................................... 5
           1.3.1.2.3. Circulación venosa .................................................................................... 7
       1.3.1.3. Regulación cardiovascular durante el ejercicio de intensidad creciente ............. 7
       1.3.2. Respuesta cardiovascular al ejercicio de larga duración ........................................ 10
           1.3.2.1. Respuesta cardiaca ....................................................................................... 11
           1.3.2.2. Respuesta circulatoria ................................................................................... 14
           1.3.2.3. Regulación cardiovascular durante el ejercicio prolongado ................................ 14
   1.4. Respuesta respiratoria al ejercicio .................................................................................. 15
       1.4.1. Respuesta respiratoria al ejercicio de intensidad creciente .................................... 15
           1.4.1.1. Mecánica respiratoria: ventilación alveolar ..................................................... 16
           1.4.1.2. Intercambio gaseoso y transporte durante el ejercicio .................................... 17
           1.4.1.3. Regulación de la respiración durante el ejercicio de intensidad creciente .......... 20
               1.4.1.3.1. Regulación de la respiración por debajo de la transición aeróbica-anaeróbica .................................................................................................................. 22
               1.4.1.3.2. Regulación de la respiración por encima de la transición aeróbica-anaeróbica .................................................................................................................. 23
       1.4.2. Respuesta respiratoria al ejercicio de larga duración ................................................. 25
           1.4.2.1. Mecánica respiratoria durante los esfuerzos prolongados .................................. 27
           1.4.2.2. Intercambio gaseoso durante los esfuerzos prolongados .................................. 28
           1.4.2.3. Transporte de los gases y equilibrio ácido-base durante el ejercicio prolongado .................................................................................................................. 30
           1.4.2.4. Regulación de la respiración durante el ejercicio prolongado ................................ 32
   1.5. Variables asociadas al rendimiento en triatlón ............................................................... 34
       1.5.1. Consumo de oxígeno ............................................................................................... 35
       1.5.2. Umbrales ventilatorios, de lactato y máximo estado estable de lactato ................. 38
       1.5.3. Otras variables ........................................................................................................ 39
   1.6. La problemática de la segunda transición ................................................................... 40
       1.6.1. Respuesta cardiorrespiratoria durante la segunda transición .................................. 41
       1.6.2. Respuesta biomecánica durante la segunda transición ........................................... 43

2. HIPÓTESIS Y OBJETIVOS ................................................................................................. 46
   2.1. Hipótesis ....................................................................................................................... 46
   2.2. Objetivos ...................................................................................................................... 46

3. MATERIAL Y MÉTODOS ................................................................................................. 47
   3.1. Sujetos ........................................................................................................................ 47
3.2. Material de investigación ................................................................. 48
   3.2.1. Analizador de gases portátil ..................................................... 48
   3.2.2. Cicloergómetro ....................................................................... 50
   3.2.3. Otros materiales ................................................................. 50

3.3. Personal investigador ..................................................................... 50

3.4. Protocolo experimental ................................................................. 51

3.5. Variables ....................................................................................... 53

3.6. Análisis estadístico ......................................................................... 55

4. RESULTADOS ..................................................................................... 56
   4.1. Comparación entre ejercicios ..................................................... 56
   4.2. Evolución de los parámetros cardiorrespiratorios diferencias entre transición y control ............................................. 59
   4.3. Relación de las variables con el rendimiento ......................... 71

5. DISCUSIÓN .......................................................................................... 72
   5.1. Discusión de las variable descriptivas de la muestra ............... 72
   5.2. Diferencia entre ejercicios ......................................................... 72
   5.3. Diferencias y evolución de las variables cardiorrespiratorias durante la transición y el control .......................................... 73
   5.4. Diferencias y evolución del coste metabólico de la carrera ...... 78
   5.5. Variables relacionadas con el rendimiento en competición ..... 81

6. CONCLUSIONES Y FUTURAS LÍNEAS DE INVESTIGACIÓN .. 84

7. REFERENCIAS ..................................................................................... 86

ANEXO I ÍNDICE DE FIGURAS .................................................................. 87
ANEXO II ÍNDICE DE TABLAS ................................................................. 89
ANEXO III ABBREVIATURAS ................................................................. 90
ANEXO IV UNIDADES DE MEDIDA ...................................................... 92
1. MARCO TEÓRICO.

1.1. Antecedentes.

Las pruebas combinadas entre las cuales podríamos incluir el triatlón se remontan a la antigua Grecia. Algunos autores indican que el pentatlón fue incluido en los juegos olímpicos en el año 820 a. C. (Mouthon y Mouthon 2002: 11), mientras que otros hablan del año 708 a. C. (Lehenaff y Bertrand 2001: 16).

En los juegos olímpicos las pruebas combinadas se incluyen en 1904, con la aparición del decatlón y en 1912, en los juegos de Estocolmo se incluye el pentatlón.

El triatlón, como combinación de tres disciplinas deportivas comienza a practicarse en Francia hacia los años 20 del pasado siglo. Inicialmente fue el remo y no la natación la prueba que iniciaba un triatlón hasta que la natación cobró más fuerza (Lehenaff y Bertrand 2001: 17).

El triatlón tal y como lo conocemos hoy no aparece hasta 1975. Éste se celebró en Estados Unidos en las cercanías de San Diego y se recorrieron unas distancias de 800 m nadando, 8 km de ciclismo y 8 km de carrera a pie. La consagración del triatlón llega finalmente en el año 2000 con la inclusión del mismo en el programa de los juegos olímpicos de Sydney sobre una distancia de 1,5 km de natación, 40 km de ciclismo y 10 km de carrera a pie.

1.2. Descripción de las pruebas.

Tanto la Federación Española de Triatlón (FETRI) como la Internacional Triathlon Union (ITU) permiten organizar competiciones con diversas distancias, según
las necesidades de la organización y las peculiaridades geográficas del lugar de celebración (FETRI 2007; ITU 2007). Sin embargo, para competiciones oficiales de importancia se han fijado tres distancias distintas que se detallan a continuación.

- **Triatlón sprint**: 750 m nadando + 20 km ciclismo + 5 km corriendo.
- **Triatlón olímpico**: 1,5 km nadando + 40 km ciclismo + 10 km corriendo.
- **Triatlón de larga distancia (ironman)**: 4 km nadando + 180 km ciclismo + 42 km corriendo.

Actualmente, se celebran diferentes competiciones, de las cuales destacan la Copa del Mundo, el Campeonato del Mundo y las Olimpiadas, éstas últimas cada cuatro años. Todas ellas se disputan sobre la distancia olímpica y las marcas medias (tomando los tiempos de los 10 primeros clasificados) para triatletas de élite son de 106,9 ± 4,4 minutos para los hombres y de 120,2 ± 5,8 minutos para las féminas (Rowlands y Downey 2000).

1.3. Respuesta cardiovascular al ejercicio.

1.3.1. Respuesta cardiovascular al ejercicio de intensidad creciente.

1.3.1.1. Respuesta cardíaca.

El gasto cardiaco (Q) depende de dos parámetros, la frecuencia cardíaca (FC) y el volumen de eyeción (VE), lo que implica que el ajuste del mismo se realice en función de la modificación de ambos (ecuación 1).

\[ Q = VE \times FC \]

Ecuación 1
Por lo tanto, la interacción entre estas dos variables cardíacas determina la respuesta del corazón al ejercicio, en función de la intensidad, duración y posición corporal (Calderón 2001: 28). Durante un ejercicio dinámico se produce un incremento del VE (Knobloch, Hoeltke y col. 2007). Como el VE depende de la diferencia entre el volumen diastólico final (VDF) y el volumen sistólico final (VSF) (ecuación 2), el aumento se produce por aumento del VDF, una disminución del VSF, o ambos.

\[ VE = VDF - VSF \]

Ecuación 2

Sin embargo, este análisis tan simple ha sido objeto de numerosas controversias al intentar explicar los mecanismos de incremento de la eyección ventricular. La razón de la controversia se debe a los problemas metodológicos (procedimientos de medida, posición corporal y características del ejercicio) para determinar cómo y en qué medida cada una de las variables que determinan el rendimiento contráctil (FC, precarga, postcarga y contractilidad) afectan a la eyección cardiaca.

La respuesta del VE en relación a la intensidad consiste en un aumento progresivo hasta un punto donde, difiere el ajuste según los estudios realizados: estabilización o descenso (Wilmore y Costill 2004: 226). Estas diferencias pueden deberse a las cuestiones metodológicas anteriormente señaladas. El incremento del VE durante el ejercicio puede deberse a dos posibles mecanismos responsables:

- Aumento de la precarga (mecanismo de Frank-Starling), es decir, un incremento del VDF (Dawson, Shave y col. 2007) y,
La mayor actividad contráctil (incremento de la contractilidad), esto es, un descenso del VSF (Higginbotham, Morris y col. 1986; Rubal, Moody y col. 1986).

La relación prácticamente lineal entre FC e intensidad ha sido ampliamente utilizada para la valoración de la aptitud cardiovascular, aunque algunos investigadores han presentados comportamientos no lineales en uno de cada tres sujetos (Grazzi, Casoni y col. 2005). Aunque existe una gran variabilidad individual, la relación lineal entre la FC y la intensidad no se ve afectada por la posición. La causa fundamental del incremento de la FC es la estimulación simpático adrenérgica al tiempo que se produce una inhibición del sistema nervioso parasimpático, dependiendo de la intensidad del ejercicio (Kaufman y Forster 1996; Calderón 2001: 67). Durante esfuerzos moderados, el incremento de la FC puede deberse principalmente a la inhibición del sistema parasimpático y en menor medida a la estimulación simpática. Por el contrario, en esfuerzos de mayor intensidad, la estimulación simpática de forma progresiva adquiere una mayor relevancia, lo que de alguna manera puede provocar modificación del patrón de llenado ventricular, de la contractilidad o de ambos.

El incremento de la frecuencia cardiaca condiciona lógicamente la duración del ciclo cardíaco. Se ha comprobado una reducción de la duración del ciclo cardíaco, que oscilan entre el 26 % y el 55 % (Brutsaert y Sys 1989), según la metodología (procedimiento de medida, intensidad y especie animal estudiada). De forma general, se puede decir que la disminución de la duración del ciclo se debe principalmente a una reducción del tiempo de llenado (diástole) y en menor medida de la sístole (Dawson, Shave y col. 2007). La reducción de los tiempos depende de la intensidad y por consiguiente del incremento de la frecuencia cardiaca: aproximadamente para una
intensidad de ejercicio moderada puede alcanzar una proporción del 75 % para el llenado y del 25 % para el vaciado (Calderón 2001: 83).

1.3.1.2. Respuesta circulatoria.

1.3.1.2.1. Circulación arterial.

Si en la ecuación general de la hemodinámica, se despeja el valor de presión arterial media (PAM), se obtienen los factores determinantes:

\[ PAM = Q \times RPT = VExFCxRPT \]

Ecuación 3
donde Q es el gasto cardíaco, PAM es la presión arterial media, RPT es la resistencia periférica total, VE es el volumen de eyección y FC es la frecuencia cardíaca.

El incremento proporcional de Q determina un aumento proporcional de PAM, pues el valor de la RPT permanece constante. A su vez, el incremento de la PAM es resultado del aumento de los factores que determinan Q, es decir, FC y VE.

La presión sistólica (PS) y la PAM aumentan en relación a la intensidad del ejercicio dinámico. Por el contrario, la presión diastólica puede modificarse en el sentido de ascenso o descenso ligeros, significando variaciones en la resistencia periférica, o incluso no cambiar respecto a los valores de reposo (Janicki, Sheriff y col. 1996).

1.3.1.2.2. Circulación capilar.

El flujo de sangre al músculo en reposo es de 5-10 mL 100 gr⁻¹. El máximo flujo sanguíneo oscila, según el animal estudiado, entre 150 y 500 mL min⁻¹
100 gr\(^{-1}\). Si consideramos que durante un ejercicio dinámico la cantidad de músculo activo es de 16 a 20 kg y el flujo medio es de 120 mL min\(^{-1}\) 100 gr\(^{-1}\), el volumen de sangre circulante estaría entre 19 y 30 L min\(^{-1}\) (Calderón 2001: 108).

Aplicando de nuevo la ecuación general de la hemodinámica a la circulación por el músculo, se pueden determinar los parámetros de los que depende el flujo sanguíneo muscular: la presión de perfusión y la resistencia vascular local. El incremento de la presión de perfusión depende de la acción de la bomba cardíaca, mientras que la resistencia depende del tono vasomotor (Kraus, Calvert y col. 2004). El mayor flujo se debe a la acción de los mecanismos de regulación (central y local) sobre el tono vasomotor, mediante:

1. Descenso de la relación entre las resistencias arteriolar y venular, en una proporción de 3 a 4 a máxima velocidad de flujo.
2. Reclutamiento de capilares cerrados en reposo.
3. Aumento de la presión colidosmótica del líquido intersticial debido al incremento de la concentración de los metabolitos musculares a nivel extravascular. La hiperosmolaridad del músculo podría ser un factor importante sobre todo al inicio del ejercicio.

Los mecanismos de regulación del tono vasomotor durante el ejercicio que permiten explicar estas variaciones no se encuentran completamente aclarados. Se pueden distinguir dos tipos: centrales y locales. Los primeros consisten en la modulación de la resistencia a través de las terminaciones nerviosas y hormonas (Flaim, Crede y col. 1979; Laughlin, Korthuis y col. 1996). Mediciones del flujo regional del músculo esquelético determinaron que podía variar entre 30 y 300 mL min\(^{-1}\) 100 gr\(^{-1}\) durante la natación y la carrera. Además, se demostró una falta de uniformidad en un mismo músculo, dirigiéndose el flujo hacia las fibras con mayor
componente oxidativo antes de comenzar el ejercicio. Durante el ejercicio a varias intensidades, el incremento de flujo se relacionaba directamente con la intensidad y la capacidad oxidativa de las fibras musculares (Laughlin y Armstrong 1985).

1.3.1.2.3. **Circulación venosa.**

La relación entre Q y el retorno venoso es inversa; a medida que aumenta Q la presión venosa central disminuye. La acción de la “bomba muscular”, permite la “extracción” de sangre del sistema arterial y su “adición” hacia las venas centrales torácicas. El resultado es un aumento de la presión venosa central y el consiguiente incremento del VE y Q (Calderón 2001: 119). De forma aproximada, se ha calculado que la mayor contracción muscular durante el ejercicio puede alcanzar la cuarta parte de la energía necesaria para incrementar el gasto cardíaco. Además, los valores de presión intratorácica durante los movimientos respiratorios se hacen más negativos al aumentar la ventilación (West 2002: 104).

El sistema nervioso, al actuar sobre la vasomotricidad y la distribución del volumen sanguíneo en función de las distensibilidad de los territorios, contribuye de forma determinante al retorno venoso. La activación del sistema nervioso vegetativo permite la reducción del flujo en los territorios menos activos (vasoconstricción esplácnica) y al tiempo que se redistribuye, se produce un incremento del retorno venoso (Laughlin, Korthuis y col. 1996). El territorio vascular muscular es poco distensible y el aumento de flujo que se produce a consecuencia de la vasodilatación, contribuye a incrementar el flujo hacia las venas centrales.

1.3.1.3. **Regulación cardiovascular durante el ejercicio de intensidad creciente.**

El incremento lineal de la presión media en relación a la intensidad del esfuerzo, es una consecuencia del aumento de la demanda metabólica del organismo en general y del tejido muscular, en particular (Calderón 2001: 141).
De forma resumida, dos mecanismos de regulación cardiovascular durante el ejercicio dinámico se han propuesto:

1. **Sistema de prealimentación** (*feedforward*). El término anglosajón *feedforward* se refiere a la respuesta previa sin mediar mecanismo reflejo que permita su puesta en marcha, en oposición a la respuesta cardiovascular a través de las señales procedentes de diversos receptores, que se conoce como *feedback* o retroalimentación (Waldrop, Eldridge y col. 1996). La figura 1 muestra el funcionamiento de este sistema.

![Esquema del funcionamiento del sistema de prealimentación.](image)

2. **Sistema de retroalimentación** (*feedback*). Nótese como el mecanismo anterior es "abierto", lo que ineludiblemente condiciona una imposibilidad de control. Por ello, y prácticamente sin solución de continuidad, los receptores, principalmente los baroreceptores, comienzan a enviar señales de retroalimentación al sistema nervioso central (SNC) para que éste, a través de los centros vegetativos de control cardiovascular, regule la respuesta de las variables objeto de control (Waldrop, Eldridge y col. 1996). La figura 2 ilustra de forma esquemática lo mencionado.
Como se ha señalado anteriormente, la participación de otros mecanismos reflejos en el ser humano depende fundamentalmente de la intensidad del ejercicio, pues la mayor parte de la actividad física se desarrolla en posición bípeda. En ejercicios ligeros, los quimioreceptores no intervendrían, pues para que se produjeran cambios metabólicos, el flujo muscular debería descender de forma considerable. En ejercicios de intensidad ligera-moderada, se produce un incremento de la actividad del quimioreflejo, que tiene por objeto mandar una señal de retroalimentación a los centros de control cardiovascular. La señal eferente de estos, restaura el flujo muscular. Cuando la intensidad del ejercicio desencadena un estado de hipoxia, la función de los quimioreceptores es esencial en la redistribución del flujo de las unidades motoras (Kaufman y Forster 1996).

La integridad y sincronización de los mecanismos señalados, feedforward y feedback, permite un exquisito control de las variables cardiovasculares durante el ejercicio. Ambos mecanismos son esenciales en el ajuste cardiovascular a las necesidades metabólicas. La inhibición vagal iniciada probablemente por el comando
central (CC) posibilita un incremento suficiente en cuestiones de segundos (Waldrop, Eldridge y col. 1996). Estos mecanismos resultan esenciales en la supervivencia del animal. Por otra parte, cuando se requiere elevar y mantener el flujo sanguíneo, la necesidad de señal de retroalimentación se hace ineludible. En estas circunstancias los centros de control cardiovascular ajustan la señal eferente a la retroalimentación periférica. La participación de los diferentes receptores es compleja de valorar, por lo que de forma global se considera que todos ellos (barorreceptores, quimioreceptores, mecanorreceptores y cutáneos) intervendrían en función de la intensidad del ejercicio y condiciones en las que se desarrolla el mismo (temperatura, humedad y presión parcial de oxígeno).

1.3.2. Respuesta cardiovascular al ejercicio de larga duración.

El ajuste cardiaco durante esfuerzos prolongados de diferente duración, ha sido abordado en diversas investigaciones (Higginbotham, Morris y col. 1986; Raven y Stevens 1988; Goodman, McLaughlin y col. 2001; Dawson, Shave y col. 2005; Welsh, Warburton y col. 2005; Dawson, Shave y col. 2007). Las razones del interés del estudio de la función cardiovascular durante esfuerzos prolongados son fisiológicas y patológicas. En este apartado centraremos la discusión en el primero de los objetivos. El mayor interés se ha centrado en las repercusiones sobre el organismo, tales como la fatiga cardíaca. Sin embargo, otro interés ha sido el análisis de los mecanismos fisiológicos que explican la función cardiovascular durante las pruebas de larga duración y como éstos puede afectar al rendimiento.

En la mayor parte de las situaciones de ejercicio dinámico en el ser humano, no se produce un "conflicto" grave entre la regulación cardiovascular y la temperatura central (Nadel 1988; Gonzalez-Alonso, Calbet y col. 1998). Sin embargo, en muchas circunstancias deportivas, sobre todo en ambientes calurosos y húmedos, se produce una contraposición de intereses, de manera que a las variables objeto de control,
presión y flujo, se añade una tercera que compromete a las otras dos: la temperatura. En efecto, cuando se requiere eliminar el calor, para evitar un incremento de la temperatura central, la vasodilatación cutánea producida durante el ejercicio entra en conflicto con la mayor demanda de flujo en la piel (Kreider, Boone y col. 1988; Nadel 1988; Gonzalez-Alonso, Calbet y col. 1998; Gonzalez-Alonso, Calbet y col. 1999) absolutamente necesaria para favorecer la sudoración, fuente primaria de perdida de calor.

1.3.2.1. Respuesta cardiaca.

A intensidades de alrededor del 50 % del VO$_{2\text{max}}$, la FC aumenta de forma progresiva durante el tiempo (fig. 3) con el correspondiente descenso del volumen de eyeción (Dawson, Shave y col. 2005; Dawson, Shave y col. 2007), en el caso de mantener el gasto cardiaco estable. La proporción de aumento de la FC depende de diversos factores: intensidad, condiciones ambientales temperatura y humedad y estado de hidratación.

1. **Intensidad:** Cuando la intensidad del ejercicio supera el 50 %, fisiológicamente los centros de control reciben señales contrapuestas. Por un lado, los centros de control cardiovascular deben seguir manteniendo el gasto cardiaco y el flujo sanguíneo muscular. Por otra parte, se debe producir una redistribución del gasto cardiaco desde el centro hacia la periferia para intentar disipar el calor generado y mantener la temperatura central constante (Nadel 1988; Raven y Stevens 1988; Laughlin, Korthuis y col. 1996). Además, a medida que aumenta la intensidad se produce un incremento de la actividad de las motoneuronas activas y una entrada en funcionamiento de la motoneuronas menos activas. Esto condicionaría un aumento de la actividad de los centros nerviosos de control cardiovascular (Waldrop, Eldridge y col. 1996).
2. Condiciones ambientales: Algunos autores relacionan el incremento de la frecuencia cardiaca con la temperatura corporal (Saltin y Stenberg 1966; Ekelund 1967; Nadel, Cafarelli y col. 1979; Sawka, Knowlton y col. 1979). Los efectos de la temperatura sobre la función ventricular han sido estudiados tanto en animales como en seres humanos. Jose y colaboradores (Jose, Stitt y col. 1970) observaron un aumento de 7 ppm por cada grado centigrado de aumento de la temperatura central. Sin embargo, otros autores indican que la proporción a la aumenta la FC no se relaciona de forma proporcional con el incremento de la temperatura. En efecto, ya en el estudio de Jose et al, se menciona que el aumento de la FC intrínseca por el efecto de la temperatura explica el 55 % de la varianza (Jose, Stitt y col. 1970). Por otra parte, Christensen demostró un incremento de la FC, manteniendo la temperatura central constante (Christensen, Galbo y col. 1979).

![Fig. 3. Evolución de la frecuencia cardiaca durante un ejercicio prolongado a carga constante (225 W). Figura realizada a partir de datos reales de una prueba realizada en cicloergómetro.](image-url)
3. **Estado de hidratación:** Como durante el ejercicio prolongado se produce una "derivación" del flujo sanguíneo desde los órganos centrales hacia la circulación cutánea, el grado de hidratación puede jugar un papel importante en la respuesta del corazón. Se ha demostrado una reducción del volumen de sangre, que se manifiesta sobre todo al comienzo de un ejercicio prolongado (Rowell, O´Leary y col. 1996). En un trabajo destinado a estudiar los efectos de la hidratación sobre el rendimiento cardíaco se mostró, además de ausencia del aumento progresivo de la FC, una falta de diferencias significativas entre diferentes estados de hidratación (Savard, Nielsen y col. 1988; Nielsen, Hales y col. 1993; Geor, McCutcheon y col. 1995; Nielsen, Strange y col. 1997). Las razones de las discrepancias se deben a que el efecto del desplazamiento de la sangre no tiene por objeto un descenso del gasto cardíaco, sino que se produce para la disipación de la energía calorífica desde el centro hacia la periferia. De ahí, los resultados tan contradictorios de los diferentes estudios. Los principales efectos del desplazamiento de la sangre sobre la función cardíaca dependen de: la posición corporal, estado de hidratación previo y durante la realización del ejercicio.

- En posición de decúbito, los efectos de la gravedad son menos acusados que en posición de pie, de manera que el desplazamiento de la sangre es menor (Saltin 1964; Nielsen, Hales y col. 1993; Nielsen, Strange y col. 1997). Como consecuencia la presión venosa central puede aumentar y determinar un descenso de la FC.
- Algunos autores no han observado diferencias entre dos estados diferentes de hidratación (Saltin 1964; Savard, Nielsen y col. 1988; Geor, McCutcheon y col. 1995). Se piensa que el descenso del volumen de sangre no es considerable pues se produce extravasación de líquido desde el compartimento intracelular al plasma.
Por tanto, no se puede concluir que el estado de hidratación desencadenar un incremento de la FC y el consecuente descenso del VE, para mantener Q₁ (Dawson, Shave y col. 2007).

1.3.2.2. Respuesta circulatoria.

Dado que se produce un aumento de la FC y un descenso del VE, parecería lógico pensar en el mantenimiento de la presión arterial sistólica. Sin embargo, se ha demostrado un descenso de la PAM en esfuerzos de mayor intensidad respecto a otros de menor intensidad pero de la misma duración (Sagawa 1981). Si se considera que la presión arterial sistólica no aumenta, la explicación razonable del descenso sería la disminución de la presión arterial diastólica. El descenso de la presión diastólica sería la consecuencia de la vasodilatación indirecta provocada por el desplazamiento de la sangre desde el centro a la periferia.

1.3.2.3. Regulación cardiovascular durante el ejercicio prolongado.

Los mecanismos de control cardiovascular durante el ejercicio físico de duración prolongada son aún peor conocidos que para el ejercicio de corta duración (Rowell, O´Leary y col. 1996). En la figura 5 se observa un esquema del mecanismo de regulación.

---

¹ Véase apartado 1.3.1.3. sobre regulación cardiovascular.
El sistema se encontrará en equilibrio cuando la relación entre el control de la temperatura y el del flujo muscular se encuentren igualadas. En el momento en que sea prioritaria la eliminación del calor para el control de la temperatura, los centros de control cardiovascular realizarán los ajustes correspondientes, aumentando el flujo cutáneo y por consiguiente pudiendo provocar un descenso del flujo muscular. La consecuencia puede ser un descenso del rendimiento (Brandon 1995). Este descenso del rendimiento puede ser debido a: un descenso de la presión venosa central consecutiva a un menor retorno venoso.

1.4. Respuesta respiratoria al ejercicio.

1.4.1. Respuesta respiratoria al ejercicio de intensidad creciente.

Aunque desde el punto de vista funcional el modelo respiratorio monoalveolar no es correcto, considerar la función respiratoria de esta forma tan sencilla es muy
adecuado para comprender la respuesta general durante el ejercicio dinámico de intensidad creciente.

Parece coherente que, durante el ejercicio, aumenten los tres procesos generales de la respiración, ventilación ($V_E$), difusión (DL) y transporte, si bien, la complejidad metodológica no es igual. La medición de la $V_E$, suficientemente estandarizada, permite su análisis durante el ejercicio de forma simple. Los otros dos procesos respiratorios, DL y transporte, no son fáciles de analizar. Otro proceso importante de la función respiratoria, lo constituye la relación entre el aire alveolar y el flujo de sangre en el capilar, esto es la relación ventilación alveolar/perfusión ($V_A/Q$). Este parámetro, depende de la coordinación e integración cardiorrespiratoria.

1.4.1.1. Mecánica respiratoria: ventilación alveolar.

La mayor demanda de energía durante el ejercicio determina un incremento de la $V_E$. La respuesta ventilatoria en un amplio rango de intensidad es proporcional: a mayores necesidades de aporte de oxígeno y eliminación de carbónico, mayor incremento de la $V_E$. Sin embargo, a partir de cierta intensidad, se produce una pérdida de la relación lineal (Henke, Sharratt y col. 1988; Blackie, Fairbarn y col. 1991). El mecanismo fisiológico que explica esta pérdida de la linealidad es complejo al ser multifactorial. No obstante, es corriente atribuirlo a un “intento” del pulmón de compensar la situación de acidosis metabólica, con una alcalosis respiratoria (Calderón 2001: 218). Por otra parte, si consideramos constante el espacio muerto alveolar, la ventilación alveolar ($V_A$) se ajusta de forma similar. Cualquiera de los dos parámetros ventilatorios, $V_E$ o $V_A$, dependen del volumen y frecuencia respiratoria (FR). Estos dos parámetros aumentan durante el ejercicio de forma proporcional a la intensidad del mismo. Sin embargo, y en concordancia con la $V_E$, a cierta intensidad se produce una estabilización del volumen corriente ($V_T$) y un incremento
1.4.1.2. Intercambio gaseoso y transporte durante el ejercicio.

La ley de la difusión induce a pensar que durante el ejercicio, al aumentar la superficie, se produce un incremento del intercambio de gases. Es complejo indicar si esta respuesta es proporcional a la intensidad del ejercicio y si llegado a un punto o zona, podría dificultar el intercambio de gases. A pesar de las dificultades, muchos autores opinan que, en condiciones de normoxia, la difusión no constituye un factor limitante (West, Tsukimoto y col. 1991; West y Mathieu-Costello 1995; St Croix, Harms y col. 1998). En un análisis inicial básico, la proporcionalidad en las respuesta de la $V_{A}$ y de Q sugiere la no variación de la relación $V_{A}/Q$, considerando que el incremento de ambas variables sea igual. No obstante, el mayor incremento ventilatorio respecto

---

2 Véase aparatado 1.4.1.1. sobre mecánica respiratoria.
del gasto cardíaco, determinaría una elevación de la relación, pudiendo constituir un límite en el intercambio de gases (Calbet 2003; Aliverti, Dellaca y col. 2005). Este hecho ha llevado a los investigadores a formularse las siguientes cuestiones:

1. ¿Durante el ejercicio físico se produce una falta de oxigenación de la sangre arterial consecutiva a problemas de difusión, perfusión o ambos?

2. Si en efecto se produce una hipoxemia durante el ejercicio, ¿es el aparato respiratorio un factor limitante del rendimiento?

Los investigadores han propuesto que, en efecto, durante el ejercicio de elevada intensidad se puede producir hipoxemia (Reeves y Taylor 1996). Para diferenciarla de la hipoxemia consecutiva a determinadas patologías, se describe como "hipoxemia fisiológica". Los mecanismos propuestos son: hipoventilación, alteración de la difusión, alteración de la relación $V_A/Q$. Solamente durante el ejercicio en condiciones de hipoxia, la difusión puede limitar el intercambio gaseoso, incluso a intensidad ligera, aumentando su efecto cuando se incrementa la carga. Ello es debido a que se produce una descompensación DL, valorada por la capacidad de difusión para el monóxido de carbono ($DL_{CO}$) y la captación del oxígeno por la hemoglobina, estimada a partir del producto de la pendiente de la recta de la curva de disociación de la hemoglobina por el volumen de sangre (West 2002: 26-8). Por otra parte, la desigualdad de la relación $V_A/Q$ podría estar provocada tanto por una alteración de las vías aéreas como del flujo.

La mayor demanda de energía durante el ejercicio dinámico requiere una mayor intensidad de transporte gaseoso en los dos sentidos, es decir, desde el pulmón a lo tejidos y de estos hacia la atmósfera. A una intensidad próxima a la máxima capacidad, la modificación de la curva de saturación de la hemoglobina es determinante del transporte de los gases (Calderón 2001: 202). El efecto Haldane
minimiza la diferencia de presión parcial de CO₂ (PpCO₂) y de H⁺. Así, para una
determinada producción de CO₂, se posibilita que el músculo pueda funcionar con un
valor menor de PpCO₂ y de H⁺. También facilita un incremento de la ventilación a un
valor menor de PpCO₂ y H⁺ en los músculos.

A consecuencia del incremento en la producción de CO₂ y de ácidos no
volátiles, principalmente ácido láctico, aumenta la concentración de iones hidrógeno
(Gladden 1996). En estas condiciones el organismo debe controlar dicha
concentración dentro de un estrecho rango. Ello implica que el transporte de los gases
durante el ejercicio se relaciona estrechamente con el estado ácido-base del
organismo (Gladden 1996; Johnson, Heigenhauser y col. 1996). En un amplio rango
de intensidad, el pH se mantiene muy próximo a los valores de reposo; a partir de un
porcentaje de intensidad, el pH desciende en relación inversa. Cuando el ejercicio se
desarrolla en condiciones de suficiente O₂, el incremento en la producción de CO₂
(VCO₂) no repercute en el pH plasmático, debido a que el aparato respiratorio funciona
como un sistema abierto perfecto y por tanto facilita su eliminación. Sin embargo,
cuando el O₂ intramitocondrial es insuficiente respecto a la velocidad de oxidación en
la fibra muscular, se produce un incremento de la concentración de ácido láctico
(Gladden 1996; Calderón 2001: 218). El momento en que la obtención de energía se
realiza mayormente a expensas del metabolismo anaeróbico, disminuyendo la tasa de
obtención de energía por vías aeróbicas, se denomina transición aeróbica anaeróbica
o de forma más conocida como umbral anaeróbico, aunque en este sentido existe una
gran controversia de carácter terminológico (Wasserman, Whipp y col. 1973; Aunola
1.4.1.3. Regulación de la respiración durante el ejercicio de intensidad creciente.

Las hipótesis que intentan explicar el control respiratorio durante el ejercicio se pueden agrupar en: prealimentación (feedforward), retroalimentación (feedback) y potenciación a corto plazo (short term potentiation). Un esquema de las mismas puede observarse en la figura 6 (Waldrop, Eldridge y col. 1996).

1. **Mecanismo de prealimentación (feedforward).** Se ha propuesto la existencia de un CC situado en el SNC que dirige la acción de la musculatura respiratoria. El CC permitiría coordinar tres parámetros fundamentales del movimiento: el sistema respiratorio, el cardiovascular y la locomoción. A pesar de los esfuerzos de los investigadores por identificar el CC, no es posible definir un lugar concreto, aunque se ha propuesto la región hipotalámica (Dempsey, Adams y col. 1996).

2. **Mecanismo de retroalimentación (feedback).** La información a los centros de control de la respiración, puede originarse en receptores pulmonares o extrapulmonares. Los receptores que responden a estímulos mecánicos en reposo, que originan reflejos respiratorios, podrían intervenir en el control respiratorio durante el ejercicio. Igualmente, se ha comprobado que las terminaciones sensitivas del músculo puedan suministrar información a los centros de gobierno de la respiración. Por último, se ha postulado la participación de reflejos cardiovasculares en el control de la respiración (Waldrop, Eldridge y col. 1996).

3. **Mecanismo intrínseco de las neuronas (Short-term potentiation).** Las propias neuronas de control nervioso de la respiración y de otras terminaciones nerviosas parecen poseer la capacidad incrementar su actividad eléctrica de forma independiente de la información central o periférica. La potenciación a corto plazo de la respiración se activa por una amplia
variedad de entradas, que tienen efectos facilitadores. Por ejemplo, se ha demostrado que la hiperpnea que se produce cuando se estimula el seno carotídeo continúa unos segundos después de que disminuye el estímulo (Waldrop, Eldridge y col. 1996).

Fig. 6. Esquema de los diferentes elementos que influyen en el comando central en la regulación respiratoria durante el ejercicio.

Como apuntan Elbridge y Waldrop, la idea del control respiratorio durante el ejercicio es consecuencia de la acción en “paralelo” de todos los sistemas, esto es, la superposición de los mecanismos en función de determinadas variables del ejercicio: tipo, intensidad, duración y características individuales (Waldrop, Eldridge y col. 1996). Por otra parte, el control respiratorio va íntimamente ligado al control cardiovascular de manera que ambos mecanismos de regulación interaccionan entre sí en función de la demanda metabólica de los músculos (Rowell, O’Leary y col. 1996). A continuación, se resume el control respiratorio en función de la intensidad del ejercicio.
1.4.1.3.1. Regulación de la respiración por debajo de la transición aeróbica-anaeróbica.

El componente rápido de la ventilación se debería a la acción “directora” del CC. Este hecho es trascendental, pues permite al organismo disponer de una gran cantidad de aire antes de conocer realmente las necesidades del mismo y representa una respuesta ancestral del ser vivo, que le permite poner en “conexión” el sistema locomotor y sistema de aporte de oxígeno (Dempsey, Adams y col. 1996; Waldrop, Eldridge y col. 1996). Sin embargo, el CC no parece el único responsable, ya que, se ha demostrado que las terminaciones nerviosas tipo III del músculo pueden provocar un incremento de la ventilación, aunque muy ligero (Kaufman y Forster 1996). Sin embargo, el hecho de que la ventilación aumente aún después de la sección de las raíces dorsales ha hecho pensar a muchos investigadores que su contribución es nula. Como los valores de presión parcial de los gases respiratorios a nivel arterial no cambian, la posibilidad de una intervención de los quimioreceptores periféricos no parece en principio probable (Powers y Howley 2001: 205). El componente lento también es debido a la acción del CC que determinan una mayor actividad de la mecánica respiratoria, al tiempo que el músculo activo, vía espinal transmite la información a los centros bulbares y suprabulbares (Waldrop, Eldridge y col. 1996). La acción del CC se ve mejorada por el fenómeno de potenciación a corto plazo de las neuronas de los centros bulbares. Aunque en efecto, también durante esta fase no hay cambios sustanciales en la composición de la sangre arterial, se ha demostrado que cambios en la concentración de otras moléculas (potasio) o pequeñas oscilaciones de determinadas variables pueden estimular los quimioreceptores, y estos, contribuir al aumento de la ventilación (Hardarson, Skarphedinson y col. 1998). Aunque, no parece que la retroalimentación procedente de receptores del aparato respiratorio, contribuyan al incremento de la ventilación, su obvia activación juega un papel de

Si la intensidad no aumenta, la ventilación permanece estable, y se justifica por el “mantenimiento” de la actividad del CC y de la retroalimentación periférica (respiratoria y muscular).

1.4.1.3.2. Regulación de la respiración por encima de la transición aeróbica-anaeróbica.

Diversos mecanismos han intentado explicar la hiperventilación en esfuerzos intensos (fig. 7):

1. **Aumento de la retroalimentación periférica no respiratoria.**

Principalmente de los músculos de la locomoción, que determinarían un doble reclutamiento creciente de fibras tipo II y de musculatura respiratoria (Dempsey, Adams y col. 1996; Waldrop, Eldridge y col. 1996).

2. **Aumento de la retroalimentación periférica respiratoria.**

Como se ha mencionado, el estado de acidosis estimularía los cuerpos carotídeos que determinarían un aumento de la ventilación. En efecto, a intensidades elevadas si se produce una variación tanto de las presiones parciales como de la concentración de hidrogeniones, aunque no tan elevadas como para justificar las hiperventilaciones observadas (Powers y Howley 2001: 205). Sin embargo, la liberación por el músculo de potasio, que alcanza cifras tan elevadas como 7 mEq L⁻¹, si explicarían la estimulación de los receptores. Una mayor controversia aún ha originado el hecho de la participación de reflejos vía receptores pulmonares (de Hering-Breuer, receptores J o nociceptores etc.). La participación del reflejo de Hering-Breuer durante el ejercicio es poco admitida. Sin embargo, en la actualidad ha cobrado un nuevo
impulso, no en cuanto a su contribución real al incremento ventilatorio, sino, indirectamente al intervenir modulando el modelo respiratorio (Benito, Calderón y col. 2006).

3. El aumento de la retroalimentación central a través de la estimulación de los quimioreceptores centrales. Se ha argumentado que aunque los cambios de presiones parciales y concentración de hidrógenos en el líquido cefalorraquídeo durante el ejercicio son nulos, podría producirse una variación en la sensibilidad al dióxido de carbono que justificase la hiperventilación (Powers y Howley 2001: 204).
1.4.2. **Respuesta respiratoria al ejercicio de larga duración.**

La respuesta respiratoria a esfuerzos prolongados se puede realizar en los mismos términos que para el ejercicio de intensidad creciente. Por tanto, el análisis de los estudios se puede realizar atendiendo a las funciones básicas de la función pulmonar:
Movilización del aire, tanto en inspiración como en espiración.

Difusión de los gases a través de la barrera alveolo-capilar y relación entre el gas alveolar y la sangre que fluye por el pulmón.

Transporte de los gases respiratorios.

En el epígrafe anterior, se ha descrito la respuesta, agrupando las funciones generales señaladas más arriba. Así, la movilización del aire es el resultado de la acción de la musculatura respiratoria en conjunto con las propiedades mecánicas de los elementos que constituyen el aparato respiratorio, principalmente el tórax, el pulmón y las vías respiratorias (West 2002: 14). Las últimas funciones señaladas, difusión, $V_a/Q$ y transporte, se puede analizar conjuntamente.

La función respiratoria durante los esfuerzos prolongados se relaciona también con la intensidad y tipo de ejercicio realizado.

1. **Intensidad:** Como casi siempre sucede, los datos disponibles son en su mayor parte de estudios en el laboratorio y con personas sanas moderadamente entrenadas o de subélite. Hasta el 50 % del VO$_{2\text{max}}$, intensidad que se puede mantener sin una buena condición física, el aparato respiratorio se ajusta perfectamente a la demanda de energía de manera que se puede mantener el ejercicio teóricamente de forma ilimitada. A intensidades del 60-80 %, intensidad que sólo se puede mantener con una buena condición física, el aparato respiratorio desarrolla, de forma similar al corazón, un "hyperventilation drift" (desplazamiento hiperventilatorio o aumento progresivo de la ventilación) (Dempsey, Aaron y col. 1988).

2. **Tipo de ejercicio:** Aunque la respuesta general de la función respiratoria en esfuerzos prolongados es relativamente independiente del tipo
de ergómetro empleado, es obvio que la mecánica respiratoria difiere. Las diferencias principales entre un esfuerzo en cicloergómetro y en tapiz son:

- Diferencias en la presión abdominal debido a la mecánica del movimiento (tapiz versus cicloergómetro). La diferente posición del tronco en el tapiz respecto del cicloergómetro puede condicionar la contracción-relajación del diafragma y por consiguiente el patrón respiratorio adoptado (Álvarez, Díaz y col. 2006).
- Efectos del aire sobre la pérdida de calor. Aunque en el laboratorio, naturalmente las condiciones son las mismas, en la actividad real, la mayor convección en el ciclismo pudiera condicionar una forma diferente de perdida de calor (Nassis y Geladas 2002).

1.4.2.1. Mecánica respiratoria durante los esfuerzos prolongados.

En los estudios realizados, se ha comprobado que la ventilación experimenta un incremento abrupto al inicio del ejercicio (Waldrop, Eldridge y col. 1996), como consecuencia de la fase rápida descrita en el control de la respiración. A partir de ese momento, la ventilación sigue elevándose a medida que avanza la duración: primero de forma más aguda y después con una menor pendiente. De forma resumida, para un esfuerzo de 80 min de duración, los incrementos son los siguientes:

- Paso de reposo hasta los 10 min: de 7 L min⁻¹ a 60 L min⁻¹.
- Paso de 10 min a 30 min: de 60 a 90 L min⁻¹.
- Paso de 30 a 80 min: de 90 L/min a 105 L min⁻¹.

Es decir, la ventilación se multiplica al principio por 10, luego por 1,5 y finalmente por 1,1. Cuando se analizan los factores que determinan la ventilación se comprueba naturalmente, el mismo comportamiento.
Los parámetros que determinan la $V_E$ muestran, como parece lógico, un comportamiento similar (fig. 8). Tanto el $V_T$ como la FR aumentan al comienzo del ejercicio, multiplicándose la FR por dos y el $V_T$ por 4. Según avanza el ejercicio, se produce un aumento ligero tanto de la FR como del $V_T$, pero con un incremento muy diferente: la FR aumenta de 30 L/min a los 10 min a 55 a los 80 min, mientras que el $V_T$ aumenta de 1875 mL a 1909 en el mismo tiempo. Es decir, la $V_E$ aumenta durante el ejercicio principalmente por un incremento de la FR (Dempsey, Aaron y col. 1988).

Fig. 8. Evolución de la ventilación y de los parámetros que la determinan durante un ejercicio prologado. Modificada de Dempsey y colaboradores (Dempsey, Aaron y col. 1988).

1.4.2.2. Intercambio gaseoso durante los esfuerzos prolongados.

Del epígrafe anterior se deduce que durante un ejercicio prolongado llega más aire a los alvéolos, de manera que presumiblemente se produciría una mayor capacidad de transferencia de los gases. Veamos que sucede con los valores de presión de los dos gases respiratorios: el oxígeno y el dióxido de carbono.
La PpO₂ arterial experimenta un descenso del reposo a los 10 min. A partir de ese tiempo se mantiene y cuando se superan los 30 minutos de ejercicio aumenta hasta alcanzar casi los valores de reposo a los 60 min manteniéndose hasta el final del ejercicio (80 min). La presión PpCO₂ desciende de forma continua desde los valores de reposo hasta unos 34 mm Hg a los 40 min; a partir de ese momento la PpCO₂ se estabiliza (Dempsey, Aaron y col. 1988; Dempsey, Adams y col. 1996).

La diferencia de la presión alveolar a la presión arterial de oxígeno aumenta de 20 a 25 mm Hg (o unas 2 a 2,5 veces los valores de reposo) durante los primeros 10 min y posteriormente se produce una estabilización de este parámetro. Considerando que la presión alveolar se mantiene constante, el descenso de la diferencia se produce por la disminución de la PpO₂ a nivel arterial. De cualquier forma, el aumento de la diferencia refleja una variación en la relación \( V_{\text{A}}/Q \) al principio y que durante la mayor parte del ejercicio la ventilación y la circulación pulmonar se encuentran ajustadas de forma correcta, no representando una limitación al ejercicio (Dempsey, Aaron y col. 1988; Johnson, Aaron y col. 1996).

En resumen, aunque no se tienen datos directos de la difusión alveolo-capilar durante el ejercicio prolongado, parece verosímil que esta función respiratoria aumente con el ejercicio, a consecuencia de una mayor cantidad de área de intercambio con un gradiente para los gases aumentado. Al mismo tiempo, la relación \( V_{\text{A}}/Q \) se mantiene en equilibrio, permitiendo que se realice el intercambio de gases de forma adecuada. Por tanto, durante el ejercicio prolongado, se estima que no se produce hipoxemia, más, la oxigenación de los tejidos está garantizada (Dempsey, Aaron y col. 1988; Johnson, Aaron y col. 1996).
1.4.2.3. Transporte de los gases y equilibrio ácido-base durante el ejercicio prolongado.

Dado que la funcional respiratoria mantiene los valores de saturación relativamente constantes, parece lógico pensar que los tejidos no deben experimentar una falta de oxígeno. La concentración de oxígeno durante el ejercicio aumenta ligeramente conforme avanza el ejercicio. Como se ilustra en la figura 9 el contenido arterial de oxígeno en la arteria femoral sigue el mismo comportamiento que la saturación de oxígeno en la sangre arterial. Así la diferencia arterio-venosa aumenta del reposo a los 10 min de comenzar el ejercicio y posteriormente va aumentando de forma ligera en un ejercicio de intensidad moderada.

Fig. 9. Evolución de la presión parcial de O₂ durante un ejercicio prolongado. Modificada de Dempsey y colaboradores (Dempsey, Aaron y col. 1988).

El estado ácido-base muestra una respuesta paradójica si la compramos con la correspondiente a un esfuerzo de intensidad creciente. En los primeros 20-30 min el pH arterial permanece sin cambios o se eleva ligeramente de 7,49 a 7,52 y al mismo tiempo se registra un descenso de la concentración de HCO₃⁻. A partir de los 30 min,
ambos parámetros se mantienen. Los cambios producidos en la concentración de $\text{HCO}_3^-$ se corresponden con la concentración de lactato en sangre arterial y se relacionan con el grado de hiperventilación e hipocapnia (véase $\text{PpCO}_2$ y figura 10). El lactato se eleva en los primeros 20 a 30 min de 2-4 mEq L$^{-1}$ y el $\text{HCO}_3^-$ desciende en la misma proporción.

A nivel local, en la circulación de la pierna, se ha registrado en la arteria femoral un valor de pH constante en un ejercicio de 70 min y de intensidad ligera-moderada (30-60 % $\text{VO}_2$ max). Sin embargo, el pH en la vena femoral desciende bruscamente en los primeros 30 min (7,38 a 7,26) y luego se mantiene. Este aumento de la acidez permite la liberación de oxígeno de la hemoglobina a los tejidos (efecto Bohr). Después de los 30 minutos, el pH se mantiene en los valores más bajos (pH = 7,26), lo que permite la desoxigenación de la hemoglobina.

![Fig. 10. Evolución de los parámetros que determinan el estado ácido-base durante un ejercicio prolongado. Modificada de Dempsey y colaboradores (Dempsey, Aaron y col. 1988).](image-url)
1.4.2.4. Regulación de la respiración durante el ejercicio prolongado.

Si los mecanismos de control de la respiración durante el ejercicio de intensidad creciente son mal entendidos, menos se sabe aún de los mecanismos que, por ejemplo explicarían el *drift* hiperventilatorio. Para explicar la regulación durante el ejercicio prolongado, se podría seguir la idea de Eldridge y Waldrop\(^3\) (Waldrop, Eldridge y col. 1996). Sin embargo, pensamos que es más conveniente realizar una explicación más general y apoyarse en los mecanismos propuestos por los citados autores.

Los mecanismos que podrían justificar la respuesta ventilatoria son:

1. **"Feedforward"**. Al igual que sucede en el esfuerzo de intensidad creciente, el mecanismo del *feedforward* podría ser el responsable del incremento de la ventilación en los primeros minutos. Sin embargo, la puesta en marcha de este mecanismo para justificar el *drift* hiperventilatorio se relaciona estrechamente con la intensidad durante el ejercicio prolongado (Dempsey, Aaron y col. 1988). La respuesta "paradójica" del estado ácido-base, con una concentración de ácidos en oposición a la estimulación de los receptores químicos no podría justificar el *drift* hiperventilatorio.

2. **"Feedback"**. Las señales de retroalimentación a los centros de control de la respiración tienen diversos orígenes que de forma tradicional se dividen en nerviosos y químicos.

   - *Feedback por estímulos químicos*. Es posible que la hipocapnia que se produce durante el ejercicio prolongado provoque un descenso de este gas en el líquido cefalorraquídeo. Como consecuencia, el pH del *lcr* aumentaría sustancialmente debido probablemente a la dificultad de transmisión de la información (descenso de la PpCO\(_2\) y concentración

\(^3\) Véase apartado 1.4.1.3. sobre la regulación de la respiración.
de ácido láctico) y a la posible vasoconstricción arteriolar para proteger al SNC de una posible alcalinización. Por tanto, como señala Dempsey la relación causa efecto entre la concentración de protones y la hiperventilación sería que contrariamente a lo que sucede en el ejercicio de intensidad creciente, la concentración de protones no sería la causa de la hiperventilación (Dempsey, Aaron y col. 1988; Johnson, Heigenhauser y col. 1996; Powers y Howley 2001: 205).

- Feedback por estímulos nerviosos. El patrón respiratorio adoptado durante esfuerzos prolongados es el resultado de diversas señales que directa o indirectamente proceden de la relación pulmón-caja torácica-vías respiratorias. Los receptores pulmonares pueden verse implicados en el mantenimiento del drift hiperventilatorio. Aunque, en el ejercicio de larga duración no se produce un cambio sustancial del volumen corriente (V$_T$) que pudiera estimular por vía refleja los centros de control respiratorio, no se puede descartar su participación (Dempsey, Aaron y col. 1988). El hecho de que el V$_T$ no sea superior al 45 % de la capacidad vital forzada, no significa que el grado de distensión no sea en realidad una "información" a los centros de la respiración. Por otra parte, como se producen "reajustes" en el intercambio transcapilar de líquido a nivel de la circulación pulmonar, se podría producir una estimulación de los receptores J que podrían informar a los centros de control para que se mantuviera la respiración taquipneica.

Por último, dado el papel tan importante que juega el pulmón en el control de la temperatura corporal. Se ha demostrado que un incremento de la temperatura de 1 a 1,5 ºC provoca hiperventilación (MacDougall, Reddan y col. 1974; Dempsey, Thomson y col. 1975). Por tanto, un incremento de la temperatura central podría justificar en
parte el incremento de la ventilación durante el ejercicio prolongado (Hayashi, Honda y col. 2006). Durante el ejercicio, se produce un aumento de la temperatura central (37 a 39 ºC) en los primeros 30 a 40 min de un ejercicio de 80 minutos y a partir de ese tiempo permanece estable. Sin embargo, en otros estudios (Martin, Morgan y col. 1981) se han observado incrementos de la temperatura inferiores a 1ºC, que no parece suficiente como para justificar el drift hiperventilatorio.

1.5. Variables asociadas al rendimiento en triatlón.

La conjunción de tres modalidades deportivas así como la diversidad de distancias y circuitos dota al triatlón de una serie de peculiaridades específicas que van más allá de la suma de las mismas en cada modalidad deportiva (Bentley, Millet y col. 2002). Son numerosos los estudios que han tratado de encontrar variables fuertemente relacionadas con el rendimiento en el triatlón, sin embargo, como se muestra en la figura 11, los factores que pueden influir en el rendimiento son de diversa índole.
La mayoría de los estudios han buscado la relación entre las variables fisiológicas y el rendimiento en la competición. A continuación se presentan algunos de estos estudios y sus resultados.

1.5.1. Consumo de oxígeno.

El consumo de oxígeno ($\text{VO}_{2}$) a sido una variables ampliamente estudiada en su relación con el rendimiento en ejercicios de larga duración. Sin embargo, la relación entre esta variable y el rendimiento parece no ser tan fuerte en el triatlón como la
existente con una única de las disciplinas que lo componen, a lo que puede contribuir la unión de forma consecutiva de tres modalidades deportivas y el efecto de unas sobre otras (Millet y Vleck 2000). Así, algunos autores hablan de la importancia de mantener un alto porcentaje del consumo de oxígeno máximo (VO_{2max}) durante la competición como un factor determinante en éxito durante la competición (Miura, Kitagawa y col. 1997).

Centrándonos en el triatlón, son varios los estudios que han encontrado relaciones entre el VO_{2max} y el rendimiento (tabla 1) en triatlones de diferentes características en cuanto a las distancias (Butts, Henry y col. 1991; Miura, Kitagawa y col. 1997; Zhou, Robson y col. 1997; Schabort, Killian y col. 2000; Millet y Bentley 2004). Ahora bien, en otros casos no se ha encontrado ninguna relación significativa (De Vito, Bernardi y col. 1995; Le Gallais, Hayot y col. 1999; Hue 2003). Por lo tanto, es necesario tener prudencia a la hora de interpretar los resultados mostrados, ya que, a pesar de que en el triatlón un buen valor de VO_{2max} es necesario para obtener éxito (Sleivert y Rowlands 1996), el VO_{2max} se ha mostrado como buen discriminador cuando las capacidades de la muestra son heterogéneas, de forma que no se puede utilizar como variable para predecir el rendimiento en grupos homogéneos de triatletas (O'Toole y Douglas 1995; Sleivert y Rowlands 1996).
### Tabla 1

Resumen de los estudios que han mostrado relación entre el VO2max expresados en valores relativos al peso y el rendimiento en competición. Natación (Nat), ciclismo (Cic), carrera (Car). * Indica que la correlación es significativa (p<0.05).

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Nº sujetos</th>
<th>Distancia (km)</th>
<th>VO2max Nat</th>
<th>VO2max Cic</th>
<th>VO2max Car</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Butts, Henry y col. 1991)</td>
<td>16 ♂ 7 ♀</td>
<td>0,91 40 10</td>
<td>r = -0,71*</td>
<td>r = -0,85*</td>
<td>r = -0,81*</td>
</tr>
<tr>
<td>(Zhou, Robson y col. 1997)</td>
<td>10 ♂ -</td>
<td>1 30 8</td>
<td>r = -0,69*</td>
<td></td>
<td>r = -0,61</td>
</tr>
<tr>
<td>(Miura, Kitagawa y col. 1997)</td>
<td>17 ♂ -</td>
<td>1,5 40 10</td>
<td>r = -0,62*</td>
<td>r = -0,87*</td>
<td>r = -0,89*</td>
</tr>
<tr>
<td>(Schabort, Killian y col. 2000)</td>
<td>5 ♂ 5 ♀</td>
<td>1,5 40 10</td>
<td>r = -0,80*</td>
<td>r = -0,80*</td>
<td></td>
</tr>
<tr>
<td>(Millet y Bentley 2004)</td>
<td>16 ♂ 15 ♀</td>
<td>1,5 40 10</td>
<td>r = -0,80*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Tabla 1. Resumen de los estudios que han mostrado relación entre el VO2max expresados en valores relativos al peso y el rendimiento en competición. Natación (Nat), ciclismo (Cic), carrera (Car). * Indica que la correlación es significativa (p<0.05).*
1.5.2. Umbrales ventilatorios, de lactato y máximo estado estable de lactato.

Otra variable fisiológica que tradicionalmente se ha relacionado con el rendimiento en deportes de resistencia ha sido el umbral ventilatorio (VT) o umbral anaeróbico, ya sea expresado en porcentaje del VO₂max o en velocidad a la que ocurre.

En este sentido, el primer estudio que encuentra una correlación significativa entre la velocidad al VT corriendo y la marca de una competición de 1 km de natación, 30 km de ciclismo y 9 km de carrera a pie fue el realizado por Sleivert y colaboradores con 17 chicos y 8 chicas de diferentes niveles (Sleivert y Wenger 1993). Posteriormente, otro trabajo no ha encontrado esta relación aunque mostró otra entre el VT en ciclismo y la marca final (Zhou, Robson y col. 1997). Sin embargo, otros estudios no han encontrado relación entre el VT en ciclismo y el rendimiento en la competición (Le Gallais, Hayot y col. 1999). Así, observamos un diferencias entre los trabajos que pueden ser debidas a la varianza distancias utilizadas para la competición, niveles de los sujetos participantes y metodologías de determinación del VT.

En relación al máximo estado estable de lactato (MLSS) únicamente tempos estudiado un trabajo que evaluá MLSS y su relación con el rendimiento. Éste estudio realizado por Van Schuylenberg y colaboradores consistía en evaluar el máximo estado estable de lactato (MLSS) en cada disciplina de un grupo de 10 estudiantes de Educación Física que se presentaron voluntarios y poseían al menos un año de experiencia en triatlón (Van Schuylenbergh, Eynde y col. 2004). Los resultados mostraron que una ecuación que incluía como variables independientes la velocidad al MLSS corriendo, la velocidad al MLSS nadando y la concentración de lactato en sangre al MLSS corriendo explicaba el 98% de la varianza de la marca de una
competición de 500 m de natación, 20 km de ciclismo y 5 km de carrera a pie (Van Schuylenbergh, Eynde y col. 2004).

1.5.3. Otras variables.

Diversos estudios han explorado la relación de otras variables con el rendimiento en la competición. Algunas de las variables que han mostrado relación con la marca de la competición han sido, pico máximo de potencia (PPO) en una prueba incremental en cicloergómetro y la velocidad máxima en una prueba incremental en tapiz rodante (Zhou, Robson y col. 1997; Schabort, Killian y col. 2000). Más recientemente, Millet y Bentley han encontrado una correlación de $r = -0,85$ entre PPO obtenido en cicloergómetro y la marca en un triatlón sobre distancia olímpica. Cuando los datos se corregían y se expresaban como relativos al peso, la correlación descendía hasta -0,70 con la marca del triatlón (Millet y Bentley 2004).

La economía de la carrera y del ciclismo también han sido exploradas como variables que podrían estar relacionadas con el rendimiento. Así en un estudio realizado con 17 triatletas, la economía de la carrera y del ciclismo estuvieron relacionados con el rendimiento en un triatlón olímpico (Miura, Kitagawa y col. 1997). Por otro lado, otros autores hablan de la economía de la carrera como posible variable para predecir el rendimiento (Dengel, Flynn y col. 1989; Laurenson, Fulcher y col. 1993) y discriminar entre triatletas de distintos niveles (Millet, Millet y col. 2000).

Aunque algunos autores sugieren que no existe un único perfil antropométrico que pueda relacionarse con el rendimiento en triatlón (Laurenson, Fulcher y col. 1993), la morfología ha sido relacionada con el rendimiento en un estudio llevado a cabo durante el Campeonato del Mundo de 1997. Este estudio mostró tras un análisis de componentes principales, que se podían distinguir cuatro factores, a saber, la robustez,
la adiposidad, la longitud de los segmentos y la masa esquelética. Estos factores permitían explicar el 47% de la varianza en la marca de la competición (Landers, Blanksby y col. 2000).

Finalmente, únicamente aparece en la literatura un estudio realizados con triatletas de élite y en el que además de pruebas incrementales se realizaban pruebas submáximas que simulaban la segunda transición (30 min de ciclismo seguido de 20 min de carrera a pie). En este trabajo la concentración de lactato al final del tramo de ciclismo de la prueba de transición y la distancia recorrida durante la carrera a pie de dicha prueba explicaban el 93% de la varianza de la marca de competición (Hue 2003).

1.6. La problemática de la segunda transición.

Dos momentos muy importantes durante la competición son las dos transiciones. La primera transición puede definirse como el paso del segmento de natación al de ciclismo, desde que el triatleta sale del agua hasta que se sube a la bicicleta para comenzar el sector de ciclismo. La segunda transición se define como el paso del tramo de ciclismo al tramo de carrera desde que el triatleta baja de la bici hasta que comienza a correr saliendo del área de transición.

Centrándonos en las transiciones, se ha sugerido que la importancia de la primera transición reside fundamentalmente en aspectos tácticos (Millet y Vleck 2000), mientras que la segunda transición tiene enormes implicaciones fisiológicas gracias a la contribución del cambio de reglamento, que permitía realizar el tramo de ciclismo en grupo, reduciendo así la importancia del ciclismo y aumentando la de la carrera a pie (Rowlands y Downey 2000), cuya marca es la que muestra la mayor varianza de las tres disciplinas del triatlón (Landers, Blanksby y col. 2000). Con todo esto, los triatletas han indicado que la segunda transición provoca sensación de descoordinación
(Quigley y Richards 1996), lo que ha aumentado el interés de los investigadores en la respuesta tanto fisiológica como biomecánica a la segunda transición, sugiriendo en ocasiones que el rendimiento está mayormente relacionado con las demandas específicas del triatlón y no con las demandas de cada una de las disciplinas que lo componen (Zderic, Ruby y col. 1997).

1.6.1. **Respuesta cardiorrespiratoria durante la segunda transición.**

La respuesta respiratoria y cardiaca a la segunda transición ha sido estudiada en diferentes ocasiones y por diferentes grupos de investigación, con resultados comunes en muchos casos desde que en los primeros estudios realizados sobre la segunda transición del triatlón, Kreider y colaboradores sugirieran que en el segmento de carrera se daban alteraciones de la respuesta cardiorrespiratoria (comparándola con una carrera de control) y de la termorregulación que podrían ser importantes para el rendimiento (Kreider, Boone y col. 1988).

Un primer grupo de estudios ha evaluado la hipótesis de la aparición durante la carrera del triatlón de los denominados *drifts* cardiovasculares y ventilatorios⁴ (Dempsey, Aaron y col. 1988; Raven y Stevens 1988). Varios estudios han mostrado que durante la segunda transición aparece un aumento significativo de VO₂, VE, FC, FR y las relaciones VE/VO₂ y VE/VCO₂ cuando se comparan con una carrera de control (Hue, Le Gallais y col. 1998; Miura, Kitagawa y col. 1999; Hue, Galy y col. 2001; Hue, Le Gallais y col. 2001), llegando a sugerirse que estas alteraciones son exclusivas de ciclismo, pues un trabajo que incluía dos pruebas incrementales en cicloergómetro y tapiz rodante respectivamente y dos transiciones, una transición ciclismo-carrera y otra pasando de carrera a carrera (R-R) presenta resultados similares (Hue, Le Gallais y col. 1999).

---

⁴ Véanse los apartados relativos a la respuesta cardiovascular y respiratoria al ejercicio de larga duración.
Otro conjunto de trabajos ha centrado sus investigaciones sobre las alteraciones de la DL\textsubscript{CO} durante la segunda transición. Disminuciones de la DL\textsubscript{CO} se han presentado cuando se comparaban valores pre y post transición (Hue, Le Gallais y col. 2001; Galy, Hue y col. 2003). Estas alteraciones en la difusión, que podrían estar causadas por variaciones de la relación $V_a/Q^5$ se han relacionado con la modalidad del ejercicio (Hue, Le Gallais y col. 2001), aumento de la viscosidad del plasma, aumento de la deformabilidad de las células rojas, disminución del volumen de plasma y del factor atrial natriurético (Galy, Hue y col. 2003).

Otra hipótesis evaluada se relaciona con a fatiga de los músculos respiratorios durante la transición. Boussana y colaboradores, evaluaron la fuerza y resistencia de los músculos respiratorios antes y después de una transición ciclismo-carrera y de otra transición carrera-carrera. Estos autores encontraron un descenso de la fuerza de los músculos inspiratorios en ambas transiciones, pero no hubo diferencias al comparar los valores de ambas. Cuando estudiaron la resistencia de los músculos respiratorios, ésta fue significativamente menor tras la transición ciclismo-carrera que cuando se comparaba con la transición carrera-carrera (Boussana, Matecki y col. 2001). En una investigación posterior, este mismo grupo corroboró sus hipótesis y concluyeron que a pesar de la intensidad submáxima de la transición (en torno al 75% del VO\textsubscript{2max}), la posición durante el ciclismo provoca una fatiga de los músculos respiratorios que se mantuvo durante la carrera posterior (Boussana, Galy y col. 2003). A este respecto, se ha propuesto que la posición durante el ciclismo genera un mayor trabajo mecánico en el diafragma (Hill, Jacoby y col. 1991), lo que supondría a lo largo de los 40 km de ciclismo una fatiga respiratoria.

Otro grupo de trabajos ha estudiado la influencia de la cadencia durante el ciclismo en la carrera posterior. En este sentido, las investigaciones muestran

\[^5\] Véanse apartados 1.4.1.2. y 1.4.2.2. sobre intercambio gaseoso en ejercicio.
resultados distintos en los que es necesario ahondar con mayor profundidad, ya que, se ha observado tanto un aumento de coste metabólico de la carrera en función de la cadencia utilizada (Vercruyssen, Brisswalter y col. 2002), como la ausencia de influencia de la misma sobre la respuesta cardiorrespiratoria de la carrera (Bernard, Vercruyssen y col. 2003; Vercruyssen, Suriano y col. 2005).


1.6.2. Respuesta biomecánica durante la segunda transición.

Son varios los estudios que han evaluado las diferencias en variables biomecánicas y el patrón de carrera en un segmento de carrera posterior a un segmento de ciclismo, sin embargo, existe una gran heterogeneidad en las variables estudiadas así como en los protocolos utilizados, lo que en cierta medida puede contribuir al desacuerdo.

En el primer estudio que exploraba el efecto del ciclismo sobre variables biomecánicas de la carrera, Quigley y Richards no hallaron diferencias significativas en el tiempo de apoyo, el tiempo de vuelo, la longitud de zancada, el desplazamiento del
centro de masas y las fuerzas de reacción vertical, de forma que los autores sugieren que la problemática de la transición puede no estar relacionada con la mecánica individual de la carrera (Quigley y Richards 1996). Estos resultados están en contraposición a los presentados por otros grupos en relación a la inclinación del tronco durante la carrera (Hausswirth, Bigard y col. 1997), la frecuencia y longitud de zancada (Hue, Le Gallais y col. 1998; Millet, Millet y col. 2000; Millet, Millet y col. 2001).

Otros estudios han evaluado el efecto del “drafting” (posibilidad de completar el segmento de ciclismo en grupo). En un primer estudio realizado por Hausswirth y colaboradores, los sujetos realizaron dos triatlones, uno de ellos en solitario y otro completando el ciclismo detrás de un ciclista profesional. Observaron que el “drafting” mejoraba la marca de la carrera posterior y que la cadencia del pedaleo era mayor durante la modalidad de drafting (Hausswirth, Lehenaff y col. 1999). Posteriormente, evaluaron dos modalidades de drafting, una continua y otra alterna cada 500 m en el sector de ciclismo de un triatlón de la modalidad de sprint. Los resultados mostraron que los triatletas obtenían beneficios en la carrera posterior cuando el drafting era continuo. Por otro lado, la longitud de zancada fue menor en los dos primeros kilómetros de la carrera posterior al drafting discontinuo, lo que los autores relacionaron con la mayor cadencia que supuso esta modalidad y su relación la longitud y la frecuencia de la zancada (Hausswirth, Vallier y col. 2001).

Otros trabajos han estudiado el efecto de la cadencia sobre el rendimiento y las variables biomecánicas durante la carrera posterior. En un interesante estudio realizado por Vercruyssen y colaboradores se evaluaba el efecto de la cadencia de pedaleo sobre el coste energético y el patrón de la carrera. Se establecieron tres cadencias; cadencia libre, cadencia energéticamente óptima y cadencia óptima mecánica. Los resultados del estudio mostraron que la frecuencia de zancada era mayor en la carrera posterior al ciclismo que en la carrera de control realizada a la
misma velocidad, independientemente de la cadencia establecida, lo que según los autores, podía relacionarse con el aumento del coste energético observado en las transiciones (Vercruysen, Brisswalter y col. 2002). Estos resultados se han confirmado posteriormente en otros trabajos (Gottschall y Palmer 2002; Bernard, Vercruysen y col. 2003) en los que se mostraban alteraciones cinemáticas de la carrera tras el ciclismo realizado a diferentes cadencias.

La electromiografía (EMG) también se ha utilizado para tratar de explicar las variaciones observadas en las variables biomecánicas. Hausswirth y colaboradores determinaron que el EMG no se relacionaba con el aumento del coste metabólico de la carrera observado durante el triatlón, aunque las variaciones del EMG eran menores en triatletas de mayor nivel (Hausswirth, Brisswalter y col. 2000). En un estudio posterior, Heiden y Burnett estudiaban el nivel de activación y la duración de la misma en el vasto medial, vasto lateral, recto femoral, bíceps femoral, gemelo lateral y glúteo mayor. Los resultados mostraron que existían cambios en la contracción en la carrera posterior al ciclismo, aunque estas desaparecían a lo largo de la carrera (Heiden y Burnett 2003).

Finalmente, únicamente un trabajo comprueba el efecto de las características de la bicicleta sobre el patrón de carrera. Este estudio determinaba que un ángulo de 81° con la horizontal generaba beneficios en la carrera posterior cuando se comparaba con un ángulo de 75°. En cuanto al patrón de la carrera, la longitud de zancada fue significativamente mayor cuando el ciclismo se realizó con el tubo del sillín a 81° (Garside y Doran 2000).
2. HIPÓTESIS Y OBJETIVOS.

2.1. Hipótesis.

La hipótesis de este trabajo es siguiente:

- La prefatiga (ciclismo) provoca alteraciones cardiorrespiratorias durante la carrera a pie y éstas se relacionan con el rendimiento en competición en triatletas jóvenes de élite.

2.2. Objetivos.

Los objetivos de este trabajo son los siguientes:

- Evaluar la respuesta cardiorrespiratoria a la segunda transición en triatletas jóvenes de élite.

- Comparar el coste metabólico de la carrera a pie durante la segunda transición con una carrera de control en triatletas jóvenes de élite.

- Comprobar la relación entre las alteraciones cardiorrespiratorias y el coste metabólico con el rendimiento en competición.
3. MATERIAL Y MÉTODOS.

3.1. Sujetos.

Para participar en el estudio se seleccionó a los seis mejores sujetos a nivel nacional de categoría cadete siguiendo criterios de calidad elaborados por los entrenadores responsables del Plan Nacional de Tecnificación Deportiva (PNTD) de la FETRI. Todos ellos fueron informados de los objetivos y características de las pruebas y, puesto que todos eran menores de edad, sus padres o sus tutores legales firmaron un consentimiento informado de acuerdo con las directrices de la declaración de Helsinki para la investigación con seres humanos (World Medical Association 2004).

La tabla 2 muestra las variables descriptivas de los sujetos participantes en el estudio.

<table>
<thead>
<tr>
<th></th>
<th>Edad (años)</th>
<th>Peso (kg)</th>
<th>Talla (cm)</th>
<th>FC_max (puls min⁻¹)</th>
<th>VO2_max (mL min⁻¹ kg⁻¹)</th>
<th>IMC</th>
<th>% grasa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>15,2</td>
<td>60,8</td>
<td>173,7</td>
<td>192</td>
<td>78,2</td>
<td>20,1</td>
<td>7,68</td>
</tr>
<tr>
<td></td>
<td>± 0,8</td>
<td>± 6,2</td>
<td>± 6,4</td>
<td>± 5</td>
<td>± 4,0</td>
<td>± 0,7</td>
<td>± 0,66</td>
</tr>
<tr>
<td>Min</td>
<td>14</td>
<td>55,0</td>
<td>168,0</td>
<td>187</td>
<td>72,9</td>
<td>19,5</td>
<td>6,61</td>
</tr>
<tr>
<td>Max</td>
<td>16</td>
<td>72,0</td>
<td>186,0</td>
<td>198</td>
<td>85,1</td>
<td>21,1</td>
<td>8,65</td>
</tr>
</tbody>
</table>

**Tabla 2.** Variables descriptivas de los participantes en el estudio. Desviación estándar (DE), mínimo (Min), máximo (Max), frecuencia cardiaca máxima (FCmax), consumo de oxígeno máximo (VO2max), índice de masa corporal (IMC).

En la tabla 3 muestra que la experiencia media en triatlón de los participantes fue de 18 meses, aunque en algún caso la experiencia era incluso de 32 meses. Durante los entrenamientos semanales el mayor volumen se dedicaba a la natación (5 sesiones semanales) frente a un menor volumen en ciclismo y carrera (3 sesiones semanales).
<table>
<thead>
<tr>
<th></th>
<th>V. ciclismo</th>
<th>V. natación</th>
<th>V. carrera</th>
<th>Exp. Comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(sesiones/semana)</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>(meses)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Min</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Max</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>32</td>
</tr>
</tbody>
</table>

Tabla 3. Volúmenes de entrenamiento aproximados en cada disciplina y experiencia competitiva de los participantes. Desviación estándar (DE), mínimo (Min), máximo (Max).

En este grupo no existía patrón común respecto al deporte que habían practicado antes de iniciarse en el triatlón, excepto en la natación, que había sido realizada por 5 de los 6 sujetos de la muestra. Otros deportes practicados fueron el campo a través, fútbol o judo.

3.2. Material de investigación.

3.2.1. Analizador de gases portátil.

Para la medición y análisis de los gases respirados, se utilizó un analizador de gases portátil modelo Jaeger Oxycon Mobile (Erich Jaeger, Viasys Healthcare, Germany). Este analizador de gases es capaz de medir respiración a respiración, tanto volumen de aire como la composición del mismo. Está compuesto por dos pequeñas petacas que pueden ir sujetas en el pecho o en la espalda gracias a un arnés. El conjunto pesa menos de dos kilogramos y mientras que las mediciones del VO₂ y el VCO₂ se realizan por los métodos electroquímico y de conductividad térmica respectivamente, la medición del volumen de aire se realiza través de una turbina Triple V® de baja resistencia y espacio muerto, que cumple las normativas de la American Thoracic Society (Miller, Hankinson y col. 2005) y de la European Respiratory Society (Quanjer, Tammeling y col. 1993). El Jaeger Oxycon Mobile® es un analizador reciente en el mercado y la validación del mismo ha sido comprobada en
varias ocasiones (Rosdahl y Gullstrand 2004; Perret y Mueller 2006; Díaz, Benito y col. 2007).

**Fig. 12.** Sujeto participante en el estudio durante la fase de ciclismo de C-R.

**Fig. 13.** Sujeto participante en el estudio con el analizador de gases colocado.
3.2.2. Cicloergómetro.

Las pruebas se realizaron en un cicloergómetro Cardgirus Medical (G&G Innovación S.A., España), de rango desde 25 a 3000 vatios, con incrementos mínimos de 1 vatio/segundo y un freno electromagnético que ofrece la resistencia sobre el eje pedalier. Todos los sujetos estaban familiarizados con el uso de este material y su posición fue ajustada antes de cada prueba, variando la altura del sillín y la profundidad del manillar.

3.2.3. Otros materiales.

Además del material referido en los apartados anteriores, se utilizaron otros materiales que se resumen a continuación:

- Ordenadores para recogida y análisis de los datos, así como para el control del cicloergómetro y el analizador de gases.
- Báscula de precisión para medir el agua que los sujetos podían beber.
- Material convencional de antropometría entre los que se incluyen báscula, tallímetro, plicómetro, calibre y cinta métrica.
- Cronómetros para controlar las marcas.
- Cinta de pulsómetro POLAR (Polar Electro, Kempele, Finlandia) para controlar la frecuencia cardiaca.

3.3. Personal investigador.

El presente trabajo ha sido diseñado y realizado por el autor del mismo, con la tutela de sus directores y la ayuda de colaboradores del departamento que se detalla a continuación:

- Directores: Dr. Pedro José Benito Peinado y Dr. Francisco Javier Calderón Montero.
Colaboradores: Dña. Ana Belén Peinado Lozano, Dña. María Álvarez Sánchez, Dr. Augusto García Zapico, D. Juan Rodríguez Biehn y D. Carlos Martín Caro.

3.4. Protocolo experimental.

El protocolo experimental escogido para el estudio estuvo compuesto de dos pruebas de campo que se realizaban en orden aleatorio, y con un día de descanso entre ambas. Todas las pruebas se realizaron en la ciudad de Soria la semana posterior al Campeonato de España de Triatlón de Selecciones Autonómicas sobre una distancia de 0,75 Km de nado, 22 Km de ciclismo y 5 Km de carrera a pie. Estos datos han sido incorporados en el estudio complementando el diseño experimental con las variables resultado de este evento.

Prueba 1 o de transición (C-R). Tras un calentamiento de 10 min de carrera y bici, los sujetos completaban un periodo de 30 min de ciclismo en un cicloergómetro Cardgirus® (G&G Innovación S.A., España) a una carga de 3,5 W Kg\(^1\) correspondiente, según las observaciones de los entrenadores responsables del PNTD, a la carga media desarrollada durante una competición y similar a la utilizada anteriormente en otros estudios (Quigley y Richards 1996; Vercruysen, Brisswalter y col. 2002). Al término de la media hora de ciclismo los sujetos tenían que realizar una transición en un tiempo máximo de 1 min para comenzar a correr 3000 m a la máxima velocidad posible (Lepers, Millet y col. 2001; Bernard, Vercruysen y col. 2003), en una pista de tartán de 400 m. Los datos registrados para cada variable se promediaron en conjunto y vuelta a vuelta. Para controlar el nivel de hidratación, todos los sujetos podían beber 250 mL de agua fresca en los 20 primeros minutos de la fase de ciclismo (fig. 14).
Fig. 14. Esquema del protocolo de realización de la prueba de transición (C-R).

Prueba 2 o de control (R). Tras un calentamiento de 5 min de carrera, la prueba consistía en correr 3000 m en la pista de tartán de 400 m a la máxima velocidad posible (fig. 15), o lo que es lo mismo, completar únicamente la segunda fase de la prueba de transición. De la misma forma que en C-R los datos se promediaron en conjunto y vuelta a vuelta para su posterior análisis. Tanto en la fase de carrera de C-R como en la carrera de control, se calculó el coste metabólico de carrera según la siguiente ecuación 4 y bajo las indicaciones de di Prampero (di Prampero 1986).

\[
OC \text{ (mL de O}_2\text{ kg}^{-1}\text{ km}^{-1}) = \frac{\text{VO}_2 \text{ (mL kg}^{-1}\text{ h}^{-1}) \times 60}{\text{Velocidad (km h}^{-1})}
\]

Ecuación 4
Fig. 15. Esquema del protocolo de realización de la prueba de control (R).

Durante las dos pruebas se incentivó a los triatletas para que rindieran al máximo posible, y se evitó darles *feedback* sobre las marcas y los tiempos parciales de la fase de carrera de C-R y durante R. Además, al término de ambas pruebas se registro el esfuerzo percibido de los triatletas con la escala del esfuerzo percibido de Borg (Borg 1990).

### 3.5. Variables.

Como resultado de los datos recopilados por los distintos materiales, así como de los cálculos matemáticos llevados a cabo, se obtuvieron las variables fundamentales que se detallan en la tabla 4.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Descripción</th>
<th>Unidad de medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso</td>
<td>Peso.</td>
<td>kg</td>
</tr>
<tr>
<td>Talla</td>
<td>Talla.</td>
<td>cm</td>
</tr>
<tr>
<td>Edad</td>
<td>Edad.</td>
<td>años</td>
</tr>
<tr>
<td>IMC</td>
<td>Índice de masa corporal.</td>
<td>kg m⁻²</td>
</tr>
<tr>
<td>%grasa</td>
<td>Porcentaje de grasa corporal (Martin, Spenst y col. 1990).</td>
<td>%</td>
</tr>
<tr>
<td>VO₂</td>
<td>Consumo de oxígeno.</td>
<td>mL min⁻¹ kg⁻¹</td>
</tr>
<tr>
<td>VCO₂</td>
<td>Producción de dióxido de carbono.</td>
<td>mL min⁻¹</td>
</tr>
<tr>
<td>FC</td>
<td>Frecuencia cardiaca.</td>
<td>pulsaciones min⁻¹</td>
</tr>
<tr>
<td>VO₂max</td>
<td>Consumo de oxígeno máximo alcanzado durante las pruebas.</td>
<td>mL min⁻¹ kg⁻¹</td>
</tr>
<tr>
<td>FCmax</td>
<td>Frecuencia cardiaca máxima.</td>
<td>pulsaciones min⁻¹(ppm)</td>
</tr>
<tr>
<td>Vₑ</td>
<td>Ventilación.</td>
<td>L min⁻¹</td>
</tr>
<tr>
<td>Vₜ</td>
<td>Volumen corriente.</td>
<td>L o L min⁻¹</td>
</tr>
<tr>
<td>FR</td>
<td>Frecuencia respiratoria.</td>
<td>respiraciones min⁻¹</td>
</tr>
<tr>
<td>Vₑ/ VO₂</td>
<td>Equivalente respiratorio del oxígeno.</td>
<td>s.u.</td>
</tr>
<tr>
<td>Vₑ/ VCO₂</td>
<td>Equivalente respiratorio del CO₂.</td>
<td>s.u.</td>
</tr>
<tr>
<td>Tₜot</td>
<td>Tiempo total.</td>
<td>seg</td>
</tr>
<tr>
<td>Tᵢ</td>
<td>Tiempo inspiratorio.</td>
<td>seg</td>
</tr>
<tr>
<td>Tₑ</td>
<td>Tiempo expiratorio.</td>
<td>seg</td>
</tr>
<tr>
<td>RER</td>
<td>Cociente respiratorio.</td>
<td>s.u.</td>
</tr>
<tr>
<td>IDC</td>
<td>Ciclo inspiratorio completo</td>
<td>s.u.</td>
</tr>
<tr>
<td>MIF</td>
<td>Ciclo inspiratorio medio.</td>
<td>L s⁻¹</td>
</tr>
<tr>
<td>OC</td>
<td>Coste metabólico.</td>
<td>mL de O₂ kg⁻¹ Km⁻¹</td>
</tr>
<tr>
<td>Vel</td>
<td>Velocidad.</td>
<td>Km min⁻¹</td>
</tr>
</tbody>
</table>

Tabla 4. Variables fundamentales del estudio
3.6. Análisis estadístico.

Se realizó un análisis exploratorio de los datos con el objetivo de evidenciar el tipo de distribución y así poder utilizar análisis paramétricos o no paramétricos. La prueba de Kolmogorov-Smirnov y la asimetría y kurtosis sirvieron para este fin.

Para evaluar las diferencias entre la fase de ciclismo de C-R y la fase de carrera de C-R y, entre la fase de ciclismo de C-R y R se llevó a cabo una prueba t-Student para muestras relacionadas. Para estudiar las diferencias en la evolución de las variables medidas a lo largo de la carrera de C-R y R y las diferencias entre las mismas se realizó un análisis de la varianza (ANOVA) de dos factores (ejercicio x vuelta) para medidas repetidas. Para identificar dónde se localizaban las diferencias se utilizó un análisis post-hoc de Bonferroni, ya que tiene en cuenta el número de comparaciones que se realizan.

Por último se llevó a cabo un análisis de regresión lineal siguiendo el método por pasos, para tratar de encontrar las variables que mayor relación guardan con el rendimiento en competición. El coeficiente de determinación ($R^2$) se utilizó para observar la proporción de varianza explicada por la ecuación. Todos los residuos fueron estudiados para demostrar el ajuste del modelo.

Se utilizó el software SPSS 12.0 para Windows® (SPSS Worldwide Headquarters, Chicago, IL) y se fijó el nivel de significación en $\alpha<0,05$. 
4. RESULTADOS.

Los resultados se presentan como media ± DE. Para una mejor comprensión de los resultados, estos se dividirán en tres partes. En el apartado 4.1. se muestran los resultados referentes a la prueba t-Student que compara las medias de las variables en cada ejercicio, es decir, se analizan por separado el sector de ciclismo y carrera de C-R (transición), comparando ambos con R (control). En el apartado 4.2. se muestran los resultados obtenidos en el ANOVA de dos factores (ejercicio x vuelta) para medidas repetidas, que comparan el efecto del ciclismo sobre la carrera posterior (carrera de C-R frente R), es decir, analiza el efecto de ambos factores así como la interacción doble. Por último en el apartado 4.3. se muestra el análisis de regresión lineal que se llevo a cabo tomando como variable dependiente marca de la competición.

4.1. Comparación entre ejercicios.

El análisis de comparación entre los ejercicios mostró que el VO₂, VCO₂, VE, VE/VO₂, VE/VCO₂, FR, FC y MIF fueron significativamente mayores durante la fase de carrera de C-R y R cuando se comparaban con la fase de ciclismo de C-R. Por otro lado, Tᵢ, Tₑ y Tₜₒₜ fueron significativamente mayores en la fase de ciclismo de C-R en comparación con R y la carrera de C-R (tabla 5).
Únicamente el \( V_T \) y el IDC no mostraron diferencias significativas en ningún caso y el RER solo mostró valores significativamente mayores durante la carrera de C-R en comparación con la fase de ciclismo, mientras que los valores fueron muy similares cuando se comparaban la fase de ciclismo de C-R y R (fig 16).
<table>
<thead>
<tr>
<th>Variable</th>
<th>C-R</th>
<th>R</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO₂ (mL min⁻¹)</td>
<td>4220 ± 604</td>
<td>4238 ± 451</td>
<td>3108 ± 701</td>
</tr>
<tr>
<td>VCO₂ (mL min⁻¹)</td>
<td>3615 ± 304</td>
<td>3639 ± 476</td>
<td>2614 ± 354</td>
</tr>
<tr>
<td>Vₑ  (L min⁻¹)</td>
<td>132,4 ± 17,2</td>
<td>127,2 ± 18,8</td>
<td>79,5 ± 13,8</td>
</tr>
<tr>
<td>Vₑ/VO₂</td>
<td>35,0 ± 5,0</td>
<td>32,2 ± 3,1</td>
<td>27,4 ± 2,9</td>
</tr>
<tr>
<td>Vₑ/VCO₂</td>
<td>35,5 ± 4,3</td>
<td>34,0 ± 3,7</td>
<td>29,4 ± 3,2</td>
</tr>
<tr>
<td>VT (L min⁻¹)</td>
<td>2,32 ± 0,38</td>
<td>2,32 ± 0,40</td>
<td>2,26 ± 0,32</td>
</tr>
<tr>
<td>FR (resp min⁻¹)</td>
<td>57,4 ± 12,4</td>
<td>55,2 ± 12,8</td>
<td>35,7 ± 7,0</td>
</tr>
<tr>
<td>FC (ppm)</td>
<td>186 ± 7</td>
<td>181 ± 4</td>
<td>153 ± 13</td>
</tr>
<tr>
<td>Tₑ (s)</td>
<td>0,55 ± 0,21</td>
<td>0,58 ± 0,19</td>
<td>0,84 ± 0,17</td>
</tr>
<tr>
<td>Tₑ (s)</td>
<td>0,54 ± 0,10</td>
<td>0,57 ± 0,12</td>
<td>0,91 ± 0,17</td>
</tr>
<tr>
<td>Tₑ (s)</td>
<td>1,08 ± 0,31</td>
<td>1,15 ± 0,29</td>
<td>1,75 ± 0,33</td>
</tr>
<tr>
<td>RER</td>
<td>0,87 ± 0,05</td>
<td>0,85 ± 0,04</td>
<td>0,84 ± 0,03</td>
</tr>
<tr>
<td>MIF</td>
<td>4,45 ± 0,86</td>
<td>4,19 ± 0,87</td>
<td>2,76 ± 0,49</td>
</tr>
<tr>
<td>IDC</td>
<td>0,50 ± 0,05</td>
<td>0,50 ± 0,04</td>
<td>0,48 ± 0,02</td>
</tr>
<tr>
<td>Vel (km h⁻¹)</td>
<td>16,25 ± 0,80</td>
<td>16,72 ± 0,53</td>
<td>-</td>
</tr>
<tr>
<td>OC (mL O₂ kg⁻¹ km⁻¹)</td>
<td>256,22 ± 21,47</td>
<td>250,46 ± 17,82</td>
<td>-</td>
</tr>
<tr>
<td>Borg</td>
<td>13,2 ± 2,8</td>
<td>12,5 ± 3,3</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 5. Diferencias entre los diferentes tipos de ejercicio y condiciones experimentales para las variables estudiadas (media ± DE). Fase de carrera de C-R (C-R), carrera de control (R) y fase de ciclismo de C-R (C). * indica diferencias significativas con C-R. ** indica diferencias significativas con R. *** indica tendencia a la significación con C-R. (p=0,07).
4.2. Evolución de los parámetros cardiorrespiratorios y diferencias entre transición y control.

La tabla 5 muestra las diferencias encontradas entre la carrera de control y la fase de carrera de C-R. Se puede observar que la relación $V_{E}/VO_{2}$ y la FC fueron mayores durante la fase de carrera de C-R, mientras que el RER únicamente mostró una tendencia a la significación. También se puede observar que la velocidad se comportó de forma contraria y fue significativamente menor durante la fase de carrera de C-R.

Cuando se evaluaba la interacción entre los dos factores (ejercicio x vuelta) el $VO_{2}$ durante la carrera de control fue significativamente mayor entre la segunda y la octava vuelta cuando se comparaba con la primera, comportamiento que no aparecía durante la carrera de C-R (fig. 17). Por otra parte, aunque se observaba una tendencia del $VO_{2}$ a ser mayor durante la carrera de control, únicamente la primera vuelta de R tendía a la significación además de ser la única menor que durante la carrera de C–R (fig. 17).

El $VCO_{2}$ se comportó de manera muy similar al $VO_{2}$. Excepto en la primera y segunda vuelta, en las cuales se observaba una tendencia a ser menor durante R. Únicamente durante la primera vuelta de R, el $VCO_{2}$ fue significativamente menor que en la primera vuelta de C-R (fig. 18). Cuando se comparaba vuelta a vuelta, el comportamiento fue idéntico al del $VO_{2}$ (fig. 18).
Fig. 17. Evolución del VO₂ a lo largo de la carrera de control y la carrera de transición. # indica tendencia a la significación con la carrera de control. (p=0,06) * indica diferencias significativas con la primera vuelta. (p<0,05).

Fig. 18. Evolución del VCO₂ a lo largo de la carrera de control y la carrera de transición. * indica diferencias significativas con la carrera de control. a indica diferencias significativas con la primera vuelta. (p<0,05).
De nuevo el análisis de la $V_E$ mostró diferencias significativas entre la primera vuelta de la carrera de C-R y R, y desde la segunda a la octava vuelta de R cuando se comparaban con la primera de ellas (fig. 19).

![Fig. 19. Evolución de la VE a lo largo de la carrera de control y la carrera de transición. * Indica diferencias significativas con la carrera de control. a Indica diferencias significativas con la primera vuelta. (p<0,05).](image)

Curiosamente, no se observaba ninguna diferencia significativa en las relaciones $V_E/VO_2$ y $V_E/VCO_2$. Ahora bien, existía una clara tendencia a que éstas fueran menores durante R comparadas con la fase de carrera de C-R (figuras 20 y 21).
Fig. 20. Evolución del equivalente respiratorio para el oxígeno a lo largo de la carrera de control y la carrera de transición.

Fig. 21. Evolución del equivalente respiratorio para el dióxido de carbono a lo largo de la carrera de control y la carrera de transición.
El $V_T$ tendió a ser mayor durante R entre las vueltas 2 y 8, sin embargo esta tendencia no se mostró significativa. Por otra parte, aunque también se observa ligera tendencia a ser menor durante R, la FR no mostró diferencias significativas en ningún caso (fig. 22 y 23).

![Fig. 22. Evolución del $V_T$ a lo largo de la carrera de control y la carrera de transición. # indica tendencia a la significación con la carrera de control. (p=0,08).](image)
Para la FC, la primera vuelta de R fue significativamente menor que la misma vuelta de la carrera de C-R, mientras que la segunda vuelta mostró tendencia a la significación (fig. 24). Cuando se comparaba vuelta a vuelta se observó que la primera vuelta de R fue significativamente menor que el resto. Además, la séptima y octava vuelta de R mostraron valores significativamente mayores que la segunda vuelta. En la fase de carrera de C-R la séptima y octava vuelta fueron significativamente mayores que la vuelta 1 (fig. 24), por tanto se puede observar una ausencia de estabilización de la FC que parece tener una ligera pendiente.

Fig. 23. Evolución de la FR a lo largo de la carrera de control y la carrera de la transición.
Cuando se estudió el RER, se observaron diferencias significativas en la primera vuelta de R cuando se comparaba con la misma vuelta de C-R. Además, se observó una tendencia no significativa a ser menor durante R (fig. 25). Por otro lado, no encontró ninguna diferencia entre vueltas de una misma prueba (fig. 25). Por último, se observa una tendencia a disminuir a lo largo de la carrera, siendo siempre superiores los valores durante C-R.
Fig. 25. Evolución del RER a lo largo de la carrera de control y la carrera de la transición. * Indica diferencias significativas con la carrera de control (p<0,05).

Para estudiar el patrón respiratorio (figuras 26 a 29) se analizaron los datos correspondientes a Tᵢ, Tₑ y Tₜ₁₀, así como las relaciones Vₑ/Tᵢ o IDC y Tᵢ/Tₜ₁₀ o MIF. Únicamente el Tₑ mostró diferencias significativas en la octava vuelta de R cuando ésta se comparaba con la primera (fig. 26). Además, el MIF fue significativamente mayor entre la quinta y la octava vuelta de R cuando eran comparadas con la primera vuelta (fig. 28).
Fig. 26. Evolución del Ti a lo largo de la carrera de control y la carrera de la transición.

Fig. 27. Evolución del tiempo espiratorio a lo largo de la carrera de control y la carrera de la transición. * Indica diferencias significativas con la primera vuelta (p<0,05). § Indica tendencia a la significación con la primera vuelta (p=0,07).
Fig. 28. Evolución del $T_{tot}$ a lo largo de la carrera de control y la carrera de la transición.

Fig. 29. Evolución del MIF a lo largo de la carrera de control y la carrera de la transición. # Indica tendencia a la significación con la carrera de control ($p=0,08$). a Indica diferencias significativas con la primera vuelta ($p<0,05$). § Indica tendencia a la significación con la primera vuelta ($p=0,07$).
Por último, se evaluaron la velocidad en cada vuelta así como el coste metabólico de la carrera. Mientras que la velocidad mostró una tendencia no significativa a ser mayor durante R (fig. 32), el coste metabólico fue significativamente menor en la primera vuelta de R cuando se comparaba con la misma de C-R (fig. 31). Por otra parte, entre la cuarta y séptima vuelta de la carrera de C-R, la velocidad fue significativamente menor cuando eran comparadas con la última vuelta (fig. 32) y el coste metabólico fue mayor desde la segunda a la octava vuelta de R cuando éstas eran comparadas con la primera (fig. 31).
Fig. 31. Evolución del OC a lo largo de la carrera de control y la carrera de la transición. * Indica diferencias significativas con la carrera de control (p<0,05). a Indica diferencias significativas con la primera vuelta (p<0,05).

Fig. 32. Evolución de la velocidad a lo largo de la carrera de control y la carrera de la transición. ¥ Indica diferencias significativas con la octava vuelta. (p<0,05).
4.3. Relación de las variables con el rendimiento.

El análisis de regresión lineal permitió obtener dos ecuaciones para predecir la marca durante la competición y la marca del tramo de carrera de un triatlón de 0,75 km de natación, 22 km de ciclismo y 5 km de carrera a pie. En ambas ecuaciones, la única variable independiente significativa fue el RER durante la carrera de C-R (RER_{C-R}). Las ecuaciones obtenidas fueron las siguientes:

\[
\begin{align*}
\text{Marca total (s)} &= 46416.844 - 671.018 \times \text{RER}_{C-R} \\
R^2 &= 0.98 \\
t(4) &= 97.7 \\
-12.4
\end{align*}
\]
\text{Ecuación 5}

\[
\begin{align*}
\text{Marca en la carrera (s)} &= 2108.940 - 1041.126 \times \text{RER}_{C-R} \\
R^2 &= 0.94 \\
t(4) &= 17.9 \\
-7.69
\end{align*}
\]
\text{Ecuación 6}

Ambas ecuaciones predicen un amplio porcentaje de la varianza (98 y 94% respectivamente). Estimando la marca de la competición con la ecuación 5 se comete un error típico de la estimación de 6,3 s. Con la ecuación 6 se comete un error de 15,8 s al estimar el tiempo empleado en la carrera a pie de la competición.

Para el segmento de ciclismo no se obtuvo ninguna ecuación, ya que no existían variables que correlacionaran significativamente con el tiempo empleado en cubrir este tramo. También otras variables fueron probadas y en ningún caso se obtuvo una ecuación de regresión que explicara suficiente varianza.
5. DISCUSIÓN.

5.1. Discusión de las variables descriptivas de la muestra.

Una de las posibles limitaciones del estudio se refiere al reducido número de muestra participante. Sin embargo, por definición, los deportistas de élite son muy pocos en comparación con el número total de participantes, donde a menudo se trabaja con la población y no la muestra. En nuestro estudio con triatletas jóvenes, los valores de VO$_{2\text{max}}$ mostrados en la tabla 2 son similares a los presentados por otros autores para triatletas de élite (Sleivert y Rowlands 1996) y para triatletas que competían a nivel nacional (Basset y Boulay 2000). En otro trabajo que Bunc y colaboradores realizaron con jóvenes triatletas de élite, se proponen unos estándares necesarios pero no suficientes para llegar al nivel internacional. Excepto en los valores referentes al umbral ventilatorio, que en nuestro caso no fueron medidos por la ausencia de una prueba máxima, todos los resultados están de acuerdo con los presentados por este grupo para triatletas jóvenes de élite (Bunc, Heller y col. 1996).

Por lo tanto, podemos decir que los triatletas participantes en el estudio y seleccionados por el PNTD de la FETRI eran triatletas de élite. Además del alto estado de entrenamiento, la edad es otro limitante en la ampliación de la muestra porque no se cuenta con triatletas tan jóvenes. Sin embargo, el estudio de esta muestra es de especial relevancia cuando se intenta caracterizar a los futuros triatletas de élite.

5.2. Diferencias entre ejercicios.

Los resultados muestran diferencias entre el ciclismo y la carrera de C-R y R para las variables cardiorrespiratorias tales como la V$_E$, las relaciones V$_E$/VO$_2$ y V$_E$/VCO$_2$, la FR y la FC (tabla 5). Estos resultados son consistentes con los mostrados por otros estudios (Hue, Boussana y col. 2001; Hue, Le Gallais y col. 2001), pero están en desacuerdo con los resultados de Laursen y colaboradores, aunque en este caso el
ejercicio realizado era incremental y no a una intensidad submáxima (Laursen, Rhodes y col. 2005).

Las diferencias en la respuesta cardiorrespiratoria mostradas entre el ciclismo y la carrera a pie pueden venir determinadas por la menor masa muscular implicada en el ciclismo (Chilibeck, Paterson y col. 1996; Bijker, De Groot y col. 2002) y a una mayor implicación de la contracción excéntrica durante la carrera (Carter, Jones y col. 2000).

5.3. Diferencias y evolución de las variables cardiorrespiratorias durante la transición y el control.


Por otro lado, la ausencia de diferencias en el VO$_2$, medido en valores absolutos, de nuestro estudio está de acuerdo con los hallazgos de Boussana y colaboradores (Boussana, Galy y col. 2003). Este desacuerdo entre estudios puede deberse a diferencias de las muestras. En nuestro caso, los triatletas eran de élite y se
ha sugerido que éstos son capaces de reorganizar su patrón respiratorio antes que los de menor nivel (Millet, Millet y col. 2000).


En nuestro estudio los resultados muestran que el RER fue mayor durante C-R que durante R, lo que nos lleva a descartar la hipótesis apoyada por varios estudios (Guezennec, Vallier y col. 1996; Hausswirth, Bigard y col. 1996; Hue, Le Gallais y col. 1998), según la cual, se produce un desplazamiento del metabolismo hacia las grasas durante C-R por el agotamiento de los depósitos de glucógeno durante el ciclismo, aunque no podemos obviar la posibilidad de que esto suceda, ya que la duración del ciclismo en nuestra prueba de C-R es inferior a la duración media de la competición en un triatlón olímpico. Otra posible razón, estaría relacionada con la acumulación de lactato, sin embargo ésta ha sido descartada por varios estudios (Hue, Le Gallais y col. 2000; Hue, Le Gallais y col. 2001) y no puede ser contrastada debido a la ausencia de pruebas de lactato.
Varios estudios han encontrado evidencias de fatiga de los músculos respiratorios (Boussana, Galy y col. 2003), determinando que el ciclismo provoca una fatiga de los mismos mayor que la carrera (Boussana, Matecki y col. 2001). Nuestro estudio muestra diferencias significativas en la relación $V_{E}/VO_{2}$, lo que está de acuerdo con los estudios de Hue y colaboradores, aunque éstos muestran diferencias significativas para otras variables respiratorias (Hue, Le Gallais y col. 1998; Hue, Le Gallais y col. 1999; Hue, Le Gallais y col. 2001). Sin embargo, y dado que la relación $V_{E}/VO_{2}$ expresa la eficiencia respiratoria, podemos pensar que durante el ciclismo se produjo una fatiga de los músculos respiratorios. A este respecto, la ausencia de diferencias significativas en otras variables respiratorias como la relación $V_{E}/VCO_{2}$ y la $V_{E}$, puede obedecer a diferentes razones:

1. Dado el alto nivel de nuestra muestra, la carga escogida para el sector de ciclismo de C-R pudo ser insuficiente para fatigar a nuestros triatletas, o bien, la respuesta respiratoria fue rápidamente compensada durante el inicio de la carrera, aunque es necesario profundizar más sobre esta última posibilidad.

2. Se ha sugerido que la posición típica del ciclismo durante el triatlón provoca un aumento del trabajo del diafragma y una fatiga respiratoria (Hill, Jacoby y col. 1991). Nuestros triatletas realizaron el sector de ciclismo sin el acople del manillar, lo que podría haber favorecido un trabajo más adecuado del diafragma y una menor fatiga de los músculos respiratorios.

En otros estudios se ha investigado la respuesta respiratoria a la transición a través de la medición de los volúmenes y capacidades pulmonares. En nuestro caso estas variables no fueron medidas, sin embargo, y a pesar de que se han mostrado diferencias en los volúmenes y capacidades pulmonares en función de la posición en la que se realizaba la espirometría (Álvarez, Díaz y col. 2006), algunos estudios no
han descrito la posición en la que se realizaban las pruebas (Hue, Le Gallais y col. 2001; Boussana, Galy y col. 2003), lo que impide establecer conclusiones determinantes que apoyen una u otra hipótesis. Ahora bien, los estudios que describen la posición de la prueba (Hue, Le Gallais y col. 1999; Hue, Boussana y col. 2001), establecen que el aumento encontrado en la FRC, RV y RV/TLC se debe a un edema pulmonar transitorio y a una fatiga de los músculos respiratorios, en especial de los espiratorios (Hue, Le Gallais y col. 1999), lo que estaría de acuerdo con nuestro hallazgo en la relación $V_e/VO_2$.


En otros estudios se ha relacionado el aumento de FC con el aumento de la temperatura central y la deshidratación (Kreider, Boone y col. 1988; Guezennec, Vallier y col. 1996; Hausswirth, Bigard y col. 1996; Hausswirth, Bigard y col. 1997). Nuestros resultados están de acuerdo con el aumento de la FC durante C-R, sin embargo, no podemos concluir nada a cerca de la deshidratación de los triatletas, ya
que en nuestro caso se hidrató a los sujetos durante el sector de ciclismo de acuerdo con las indicaciones de los entrenadores y no se midió la hemoconcentración.

Bshouty y Younes mostraron que un aumento del $V_T$ puede relacionarse con una acumulación de líquido extravascular en los pulmones (Bshouty y Younes 1992). En nuestro estudio, no hubo diferencias en el $V_T$ entre C-R y R, excepto una tendencia a la significación en la primera vuelta, de modo que, en nuestros sujetos, o se compensó rápidamente o no se puede hablar de edema pulmonar transitorio.

Respecto a la evolución de las variables cardiorespiratorias a lo largo de la carrera de C-R, los resultados muestran una tendencia al aumento del $VO_2$, $VE$, $VE/VO_2$, $VE/VCO_2$, FR y FC, junto con una tendencia al descenso del $V_T$. Este comportamiento, junto con el aumento progresivo del MIF, principalmente a expensas de un aumento en la FR, a través del descenso del $T_i$, indica un ajuste respiratorio en el transcurso de la carrera. Estos resultados están de acuerdo con los encontrados por Guezennec y colaboradores, que sugieren diversos factores para explicar este comportamiento, entre los que se encuentran la deshidratación o los efectos de enzimas musculares (Guezennec, Vallier y col. 1996).

Por último, se observó un efecto global del ejercicio sobre la velocidad de la carrera, que fue significativamente menor durante C-R. En nuestro conocimiento únicamente el trabajo de Bernard y colaboradores presenta datos relativos a la velocidad de carrera. En nuestro caso las marcas fueron de $669,2 \pm 30,1$ s para C-R y $645,5 \pm 20,0$ s para R, lo que supone marcas inferiores a los $631,1 \pm 47,6$ y $583,0 \pm 28,3$ s presentados anteriormente (Bernard, Vercruyssen y col. 2003). Estas diferencias pueden estar relacionadas con los efectos de la cadencia elegida, ya que varios estudios han mostrado diferencias en el rendimiento en función de la misma (Lepers, Millet y col. 2001; Gottschall y Palmer 2002; Bernard, Vercruyssen y col. 2003).
Vercruyssen, Suriano y col. 2005). En el resto de estudios realizados previamente, si la velocidad fue medida, ésta no fue presentada en los resultados a pesar de la enorme utilidad, ya que estos resultados demuestran un efecto de la prefatiga (ciclismo) sobre la capacidad de rendir al máximo durante C-R (Hausswirth, Lehenaff y col. 1999; Hausswirth, Vallier y col. 2001; Hue, Valluet y col. 2002).

En resumen, no podemos establecer una conclusión definitiva, pero los resultados demuestran un efecto negativo del ciclismo sobre la carrera posterior que puede tener una naturaleza multifactorial relacionada con la fatiga de los músculos respiratorios, deshidratación y/o aumento de la temperatura central u otros factores de origen neuromuscular.

5.4. Diferencias y evolución del coste metabólico de la carrera.

El OC de la carrera es un indicador indirecto de la eficiencia y economía de la carrera del atleta, luego resulta una variable de gran importancia desde el punto de vista del rendimiento. El OC de la carrera en una transición ha sido explorado por otros grupos de investigación anteriormente. En nuestro estudio, el OC durante la carrera de C-R fue de 256,22 ± 21,47 mL O$_2$ Kg$^{-1}$ km$^{-1}$, lo que supone valores ligeramente superiores a los encontrados por otros autores (Guezennec, Vallier y col. 1996; Hausswirth, Brisswalter y col. 2000). Sin embargo, los datos son ligeramente inferiores (256,22 ± 21,47 vs 264,0 ± 14,0 mL O$_2$ Kg$^{-1}$ km$^{-1}$) a los presentados por Miura y colaboradores para los triatletas de menor marca (Miura, Kitagawa y col. 1999) que tenían una experiencia en triatlón de 3,3 años, es decir, el doble de experiencia que nuestro grupo. Estas diferencias pueden deberse a la edad de nuestros triatletas, menor que en la mayoría de los estudios, pero a su alto nivel de rendimiento a pesar de ésta.
Varios trabajos han estudiado la evolución de la economía de la carrera en jóvenes (Krahenbuhl, Morgan y col. 1989; Ariens, van Mechelen y col. 1997). Ariens y colaboradores encontraron en un estudio longitudinal que la economía de la carrera a velocidades submáximas mejoraba con la edad en chicos y chicas de entre los 13 y los 27 años (Ariens, van Mechelen y col. 1997), lo que a su vez está de acuerdo con los resultados mostrados por el estudio Sjodin y Svedenhag (Sjodin y Svedenhag 1992). Así, pensamos que las diferencias encontradas con otros estudios en relación al coste metabólico de la carrera pueden deberse a la juventud de nuestra muestra, 15,2 ± 0,8 en nuestro caso frente a 31 ± 5 años (Hausswirth, Brisswalter y col. 2000) o 29 ± 3 años (Guezennec, Vallier y col. 1996), y la menor experiencia de nuestros sujetos.

En nuestro estudio no hubo diferencias en el OC entre la carrera de C-R y R. Estos resultados no están de acuerdo con los encontrados anteriormente por los trabajos de otros grupos (Guezennec, Vallier y col. 1996; Hausswirth, Brisswalter y col. 2000). Estas diferencias pueden deberse a algunos factores.

1. Las muestras eran distintas en términos de edad y nivel. Millet y colaboradores han sugerido que triatletas de mayor nivel eran capaces de reorganizar su patrón de carrera mejor que los triatletas de menor nivel (Millet, Millet y col. 2000) y en nuestro estudio los triatletas tenían un nivel mayor que en los estudios de Guezennec y Hausswirth (Guezennec, Vallier y col. 1996; Hausswirth, Brisswalter y col. 2000).

2. Diferencias en el protocolo utilizado. Mientras que en nuestro estudio el sector de carrera se realizaba a la máxima intensidad posible y el sector de ciclismo de C-R tenía una carga fija, según determinaron los entrenadores, de 3,5 W Kg⁻¹, en otros estudios tanto la intensidad del sector de...
ciclismo de C-R como la carrera se monitorizaba respecto al VO$_{2\text{max}}$
(Guezzennec, Vallier y col. 1996; Hue, Le Gallais y col. 1998; Hausswirth, Brisswalter y col. 2000; Hue, Valluet y col. 2002). Por eso no podemos excluir la posibilidad de que la intensidad utilizada durante el ciclismo fuera insuficiente para prefatigar a los sujetos en la transición.

A pesar de estos desacuerdos con estos estudios, es necesario hacer notar que en nuestro caso, la velocidad fue controlada y ésta fue significativamente menor en la carrera de C-R que en R. Por otra parte, el VO$_2$ durante la carrera de C-R fue ligeramente menor que en R y la $V_E$ fue mayor, aunque no significativamente, en la carrera C-R. Si tenemos en cuenta estos resultados mostrados en la tabla 3, se observa que, a pesar del aumento de la $V_E$ y la FR en la carrera de C-R, los triatletas fueron menos eficientes en la utilización del oxígeno durante la misma cuando se comparaba con R. El hecho de encontrar un VO$_2$ menor durante C-R nos hace pensar que éste estuvo limitado por algún factor. Tradicionalmente, los factores limitantes del VO$_2$ pueden dividirse entre factores centrales y periféricos (Bassett y Howley 2000). Ya que la frecuencia cardiaca aumento significativamente en la carrera de C-R cuando se comparaba con R, la pérdida de eficiencia en la utilización del VO$_2$ encontrada durante la carrera de C-R, podría deberse fundamentalmente a factores periféricos como el descenso de la activación muscular u otros factores neuromusculares (Paavolainen, Nummela y col. 1999; Vercruyssen, Suriano y col. 2005; Nummela, Paavolainen y col. 2006; Bernard, Vercruyssen y col. 2007), aunque es necesario investigar en mayor profundidad para conocer la verdadera contribución de cada factor.

Las únicas diferencias que se encontraron entre la carrera de control y la carrera de C-R en términos de OC de la carrera aparecieron en la primera vuelta. Estas diferencias pueden atribuirse a que en la carrera de control los sujetos partían desde parado, mientras que en la carrera de C-R el valor de partida del VO$_2$ era mayor,
lo que aumenta la relación VO₂/Vel. Por lo tanto, estas diferencias pueden carecer de importancia desde el punto de vista de la respuesta fisiológica.


En conclusión, las alteraciones aparecidas en el OC pueden tener, de la misma forma que la respuesta cardiorrespiratoria, una naturaleza multifactorial, seguramente relacionada con los efectos acumulativos de la fatiga.

### 5.5. Variables relacionadas con el rendimiento en competición.

En nuestro estudio no se encontró relación alguna entre el VO₂\(_{\text{max}}\) y el rendimiento durante la competición. Estos resultados están de acuerdo con los

---

\(^6\) Estos han sido discutidos anteriormente en el apartado 4.2. sobre las diferencias y evolución de las variables cardiorrespiratorias.

1. Se ha sugerido que un buen nivel de VO_{2\text{max}}, expresado en términos relativos, es necesario para tener éxito en competiciones de resistencia como el triatlón (Sleivert y Rowlands 1996), aunque en muestras homogéneas en términos de VO_{2\text{max}}, éste no sería un buen discriminador del rendimiento de los deportistas (O’Toole y Douglas 1995; Sleivert y Rowlands 1996) debido a los efectos acumulativos de la sucesión de disciplinas deportivas en el triatlón (Millet y Vleck 2000).

2. La distancia de la competición utilizada durante nuestro estudio (0,75 km de natación, 22 km de ciclismo y 5 km de carrera) es menor que las distancias utilizadas en otras ocasiones (Butts, Henry y col. 1991; Zhou, Robson y col. 1997) y entre las que se incluye la distancia olímpica (Miura, Kitagawa y col. 1997; Schabort, Killian y col. 2000; Millet y Bentley 2004).

Independientemente de la escasez de relaciones entre la mayoría de las variables medidas y el rendimiento en la competición, el análisis de regresión lineal mostró dos ecuaciones que permiten predecir el tiempo de competición y el tiempo del tramo de carrera, ambas con R^2 mayor de 0,9. Otros estudios han presentado ecuaciones de regresión. Hue y colaboradores determinaron una ecuación para predecir el tiempo total de competición y otra para el tiempo de sector de carrera, sin embargo, las variables introducidas fueron la concentración de lactato al final del tramo de ciclismo de C-R y la distancia recorrida en la carrera de C-R (Hue 2003). Por otro
lado, en otra ocasión se han presentado ecuaciones de regresión que incluían como variables la velocidad correspondiente al MLSS corriendo y nadando o la concentración de lactato al MLSS (Van Schuylenbergh, Eynde y col. 2004).

En nuestro caso la única variable que fue introducida con éxito fue el RER durante la carrera de C-R. La heterogeneidad de las variables introducidas en los diferentes estudios es de carácter multifactorial, ya que las distancias, perfiles de los recorridos o planteamientos tácticos de las competiciones varían según el caso.

Ahora bien, si observamos detenidamente las ecuaciones 1 y 2, podemos darnos cuenta de que los triatletas con un RER cercano a 1 son los que obtienen mejor resultado, es decir, aquel que es capaz de “ahorrar” glucógeno durante la fase de ciclismo puede desarrollar mayor velocidad durante la carrera, lo que a su vez podría estar relacionado con las estrategias de carrera, ya que varios estudios han mostrado las ventajas que desde el punto de vista del rendimiento, tiene el uso del drafting durante el tramo de ciclismo (Hausswirth, Lehenaff y col. 1999; Hausswirth, Vallier y col. 2001).

En resumen, establecer ecuaciones de regresión en triatlón puede ser una tarea demasiado complicada debido a la varianza mostrada por los circuitos y al gran número de factores y variables que pueden afectar al rendimiento, pero sirve de indicador de la importancia relativa de algunas variables sobre el rendimiento final.

---

7 Véase apartado 1.5. sobre las variables relacionadas con el rendimiento en triatlón.
6. CONCLUSIONES Y FUTURAS LÍNEAS DE INVESTIGACIÓN.

Las conclusiones de este estudio son las siguientes:

- La segunda transición está relacionada con el rendimiento durante la competición y debería de ser tenida en cuenta en los programas de entrenamiento.

- La carga utilizada durante el ciclismo de la transición ciclismo – carrera, aunque es similar a la utilizada en otros estudios, puede ser insuficiente para inducir alteraciones cardiorrespiratorias o del coste energético de la carrera en triatletas de élite.

- La naturaleza de las alteraciones cardiorrespiratorias y del coste metabólico de la carrera responden a numerosos factores, seguramente relacionados con los efectos acumulativos de la fatiga.

- Las ecuaciones de regresión presentadas demostraron explicar un alto porcentaje de la varianza de la marca obtenida durante la competición y el sector de carrera de la misma, lo que podría ser utilizado por los entrenadores como método de evaluación del estado de forma.

Las futuras líneas de investigación podrían concretarse en:

- Evaluar la respuesta cardiorrespiratoria y el coste metabólico de la carrera de los triatletas a lo largo de una o varias temporadas para comprobar el efecto del entrenamiento.
• Describir diferentes grupos con el fin de encontrar variables discriminatorias en función del nivel de los deportistas.

• Estudiar el efecto del acople del manillar sobre la fatiga de los músculos respiratorios.

• Estudiar diferentes metodologías de entrenamiento para mejorar la respuesta del organismo durante la carrera durante la competición.

• Estudiar a través de la electromiografía la aparición de trastornos neuromusculares durante la transición.

• Comparar la respuesta fisiológica entre triatletas de diferentes edades y niveles.
7. REFERENCIAS.


Álvarez, M., V. Díaz, y col. (2006). Variation in lung volumes with position. 11th Annual Congress of the European College of Sport Science, Lausanne (Suiza), ECSS.


Díaz, V., P. J. Benito, y col. (2007). Validation of Jaeger Oxycon Mobile portable metabolic system. 12th Annual Congress of the European College of Sport Science, Jyväskylä (Finland), ECSS.


Rosedahl, H. y L. Gullstrand (2004). Validity and reproducibility of the Oxycon Mobile portable BBB metabolic system as compared to the Douglas bag technique. 9th Annual Congress of European College of Sport Science, Clermont-Ferrand (France), European College of Sport Science.


ANEXO I ÍNDICE DE FIGURAS.

Fig. 1. Esquema del funcionamiento del sistema de prealimentación. ....................... 8

Fig. 2. Esquema del funcionamiento del sistema de retroalimentación. ...................... 9

Fig. 3. Evolución de la frecuencia cardiaca durante un ejercicio prolongado a carga constante (225 W). ........................................................................................................ 12

Fig. 4. Mecanismos de control cardiovascular durante el ejercicio. ......................... 15

Fig. 5. Respuesta de la ventilación, volumen corriente y frecuencia respiratoria en un ejercicio de intensidad creciente.................................................................................. 17

Fig. 6. Esquema de los diferentes elementos que influyen en el comando central en la regulación respiratoria durante el ejercicio. .............................................................. 21

Fig. 7. Interacciones que tienen lugar en el control de la respiración durante el ejercicio.................................................................................................................. 25

Fig. 8. Evolución de la ventilación y de los parámetros que la determinan durante un ejercicio prologado........................................................................................................ 28

Fig. 9. Evolución de la presión parcial de O₂ durante un ejercicio prolongado. ........ 30

Fig. 10. Evolución de los parámetros que determinan el estado ácido-base durante un ejercicio prolongado........................................................................................................ 31

Fig. 11. Variables y factores influyentes en el rendimiento durante la competición en triatlón. .................................................................................................................. 35

Fig. 12. Sujeto participante en el estudio durante la fase de ciclismo de C-R. .......... 49

Fig. 13. Sujeto participante en el estudio con el analizador de gases colocado. ..... 49

Fig. 14. Esquema del protocolo de realización de la prueba de transición .......... 52

Fig. 15. Esquema del protocolo de realización de la prueba de control.................... 53

Fig. 16. Valores medios del RER para cada ejercicio................................................. 57

Fig. 17. Evolución del VO₂ a lo largo de la carrera de control y la carrera de la transición. .................................................................................................................. 60

Fig. 18. Evolución del VCO₂ a lo largo de la carrera de control y la carrera de transición. .................................................................................................................. 60

Fig. 19. Evolución de la VE a lo largo de la carrera de control y la carrera de transición. .................................................................................................................. 61
Fig. 20. Evolución del equivalente respiratorio para el oxígeno a lo largo de la carrera de control y la carrera de transición…………………………………………………………... 62

Fig. 21. Evolución del equivalente respiratorio para el dióxido de carbono a lo largo de la carrera de control y la carrera de transición…………………………………………………………... 62

Fig. 22. Evolución del Vt a lo largo de la carrera de control y la carrera de transición.. ………………………………………………………………………………………………………………………………………………………………………... 63

Fig. 23. Evolución de la FR a lo largo de la carrera de control y la carrera de la transición. ………………………………………………………………………………………………………………………………………………………………………... 64

Fig. 24. Evolución FC a lo largo de la carrera de control y la carrera de la transición. ………………………………………………………………………………………………………………………………………………………………………... 65

Fig. 25. Evolución del RER a lo largo de la carrera de control y la carrera de la transición... ………………………………………………………………………………………………………………………………………………………………………... 66

Fig. 26. Evolución del Ti a lo largo de la carrera de control y la carrera de la transición.. ………………………………………………………………………………………………………………………………………………………………………... 66

Fig. 27. Evolución del tiempo espiratorio a lo largo de la carrera de control y la carrera de la transición.. ………………………………………………………………………………………………………………………………………………………………………... 67

Fig. 28. Evolución del Ttot a lo largo de la carrera de control y la carrera de la transición. ………………………………………………………………………………………………………………………………………………………………………... 68

Fig. 29. Evolución del MIF a lo largo de la carrera de control y la carrera de la transición... ………………………………………………………………………………………………………………………………………………………………………... 68

Fig. 30. Evolución del IDC a lo largo de la carrera de control y la carrera de la transición. ………………………………………………………………………………………………………………………………………………………………………... 69

Fig. 31. Evolución del OC a lo largo de la carrera de control y la carrera de la transición.. ………………………………………………………………………………………………………………………………………………………………………... 70

Fig. 32. Evolución de la velocidad a lo largo de la carrera de control y la carrera de la transición.. ………………………………………………………………………………………………………………………………………………………………………... 70
ANEXO II ÍNDICE DE TABLAS.

Tabla 1. Resumen de los estudios que han mostrado relación entre el VO$_{2\text{max}}$ expresados en valores relativos al peso y el rendimiento en competición. ....... 37

Tabla 2. Variables descriptivas de los participantes en el estudio. ......................... 47

Tabla 3. Volúmenes de entrenamiento aproximados en cada disciplina y experiencia competitiva de los participantes................................................................. 48

Tabla 4. Variables fundamentales del estudio .......................................................... 54

Tabla 5. Diferencias entre los diferentes tipos de ejercicio y condiciones experimentales para las variables estudiadas......................................................... 58
### ANEXO III  ABREVIATURAS.

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAM</td>
<td>Presión arterial media.</td>
</tr>
<tr>
<td>C – R</td>
<td>Prueba de transición ciclismo – carrera.</td>
</tr>
<tr>
<td>CC</td>
<td>Comando central.</td>
</tr>
<tr>
<td>DE</td>
<td>Desviación estándar.</td>
</tr>
<tr>
<td>DLco</td>
<td>Capacidad de difusión del monóxido de carbono.</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromiograma.</td>
</tr>
<tr>
<td>FC</td>
<td>Frecuencia cardiaca.</td>
</tr>
<tr>
<td>FETRI</td>
<td>Federación Española de Triatlón.</td>
</tr>
<tr>
<td>FR</td>
<td>Frecuencia respiratoria</td>
</tr>
<tr>
<td>FRC</td>
<td>Capacidad residual funcional.</td>
</tr>
<tr>
<td>IDC</td>
<td>Ciclo inspiratorio completo.</td>
</tr>
<tr>
<td>IMC</td>
<td>Índice de masa corporal.</td>
</tr>
<tr>
<td>ITU</td>
<td>Federación internacional de triatlón.</td>
</tr>
<tr>
<td>MIF</td>
<td>Flujo inspiratorio medio.</td>
</tr>
<tr>
<td>MLSS</td>
<td>Máximo estado estable de lactato.</td>
</tr>
<tr>
<td>OC</td>
<td>Coste metabólico.</td>
</tr>
<tr>
<td>PNTD</td>
<td>Plan Nacional de Tecnificación Deportiva.</td>
</tr>
<tr>
<td>PpCO₂</td>
<td>Presión parcial de CO₂.</td>
</tr>
<tr>
<td>ppm</td>
<td>Pulsaciones por minuto.</td>
</tr>
<tr>
<td>PPO</td>
<td>Pico de potencia máxima.</td>
</tr>
<tr>
<td>PRT</td>
<td>Resistencias periféricas totales.</td>
</tr>
<tr>
<td>PS</td>
<td>Presión sistólica.</td>
</tr>
<tr>
<td>Q</td>
<td>Gasto cardiaco.</td>
</tr>
<tr>
<td>R</td>
<td>Carrera de control.</td>
</tr>
<tr>
<td>R – R</td>
<td>Prueba de transición carrera – carrera.</td>
</tr>
<tr>
<td>RER</td>
<td>Cociente respiratorio.</td>
</tr>
</tbody>
</table>
RV  Volumen residual.
SNC  Sistema nervioso central.
T_e  Tiempo espiratorio.
T_i  Tiempo inspiratorio.
TLC  Capacidad pulmonar total.
T_{lim}  Tiempo límite.
T_{tot}  Tiempo total.
T_{tot}  Tiempo total.
V_A  Ventilación alveolar.
V_{CO_2}  Producción de dióxido de carbono.
VDF  Volumen diastólico final.
VE  Volumen de eyeción.
V_e  Ventilación.
V_{E/VCO_2}  Equivalente respiratorio del CO_2.
V_{E/VO_2}  Equivalente respiratorio del oxígeno.
V_e  Velocidad.
VO_2  Consumo de oxígeno.
VO_{2max}  Consumo de oxígeno máximo.
VSF  Volumen sistólico final.
V_T  Volumen corriente.
VT  Umbral ventilatorio.
<table>
<thead>
<tr>
<th>ANEXO IV</th>
<th>UNIDADES DE MEDIDA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Litros.</td>
</tr>
<tr>
<td>h</td>
<td>Horas.</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramos.</td>
</tr>
<tr>
<td>km</td>
<td>Kilómetros.</td>
</tr>
<tr>
<td>m</td>
<td>Metros.</td>
</tr>
<tr>
<td>min</td>
<td>Minutos.</td>
</tr>
<tr>
<td>mL</td>
<td>Mililitros.</td>
</tr>
<tr>
<td>s</td>
<td>Segundos.</td>
</tr>
<tr>
<td>W</td>
<td>Vatios.</td>
</tr>
</tbody>
</table>