Microindentation characterization of polymers and polymer based nanocomposites

V. Lorenzo
• Hardness and hardness measurement
 – Vickers hardness
 – Relationships between hardness and other mechanical properties of polymers
 – DSI
 – Microindentation and viscoelasticity
• Microhardness of heterogeneous polymer systems
 – Microhardness of semycrystalline polymers
 – Microhardness of blends
 – Microhardness and physical ageing
 – Microhardness of PMC's
 – Microhardness of PMnC's
• DEFINITION: a measure of the resistance to permanent surface deformation or damage.
 – Local character of measurement
 – What is the meaning of surface damage?

• METHODS OF TESTING:
 – Scratching
 – Static indentation
 – Dynamic indentation
 – ...

May 2011
• Hardness and hardness measurement
 – Vickers hardness
 – Relationships between hardness and other mechanical properties of polymers
 – DSI
 – Microindentation and viscoelasticity

• Microhardness of heterogeneous polymer systems
 – Microhardness of semycrystalline polymers
 – Microhardness of blends
 – Microhardness and physical ageing
 – Microhardness of PMC's
 – Microhardness of PMnC's
• Static penetration test

• Diamond square based pyramidal indentor (angle between the faces: 136º)
 – Diamond: indentor remains undeformed during the test
 – Pyramidal: geometric similarity of indentations ⇒ hardness is load independent
 – 136º: HV ≈ HB if HB < 600
Stages of the test
Stages of the test
Stages of the test

- Indentor
- Residual indentation

Unloading

Specimen
Vickers hardness definition

- Average pressure on the lateral surface of the residual indentation
- HYP.: the geometries of indentor and indentation are similar \(\Rightarrow \)
 - \(h = \frac{d}{7} \) and \(S_{\text{lat}} = \frac{d^2}{(2 \cdot \sin 68^\circ)} \)

 \(d \): diagonal of the base of the residual imprint

 \(h \): indentation depth; \(S_{\text{lat}} \): contact area

- \(HV = 2 \cdot \sin 68^\circ P/d^2 \)

 \(HV \): Vickers hardness; \(P \): load

- MICROHARDNESS: hardness measured after applying small loads (grams) \(\Rightarrow \) diagonal of the residual indentation: \(\mu m \)
Microindentation of polymers

Stress distribution under the indentor

- Classical results and FEM calculations:
 - Stresses are confined to a hemispherical region with radius \(\approx 1.5d \approx 10h \)

- Some practical considerations:
 - Minimal distance between two indentations
 - Minimal distance between indentations and edges
 - Minimal thickness of films
 - Very small sample quantity (ng)
• Hardness and hardness measurement
 – Vickers hardness
 – Relationships between hardness and other mechanical properties of polymers
 – DSI
 – Microindentation and viscoleasticity
• Microhardness of heterogeneous polymer systems
 – Microhardness of semycrystalline polymers
 – Microhardness of blends
 – Microhardness and physical ageing
 – Microhardness of PMC's
 – Microhardness of PMnC's

Relationships between MH and other mechanical properties

![Graph showing relationships between MH and other mechanical properties](image)
• Hardness and hardness measurement
 – Vickers hardness
 – Relationships between hardness and other mechanical properties of polymers
 – DSI
 – Microindentation and viscoelasticity
• Microhardness of heterogeneous polymer systems
 – Microhardness of semycrystalline polymers
 – Microhardness of blends
 – Microhardness and physical ageing
 – Microhardness of PMC's
 – Microhardness of PMnC's
DSI: Depth Sensing Indentation

- 1980's: continuous measurements of load and indentation depth
- Very small loads (mN) ⇒ resolution: µN
- Very small indentation depths (tenths of µm) ⇒ resolution: nm
- Berkovich indenter

Results of DSI tests

- Hardness under load
- Creep
- Elastic modulus
- Delayed elastic recovery
- Deformation energy
- Recoverable energy
- ...
- And, of course, hardness
• Hardness and hardness measurement
 – Vickers hardness
 – Relationships between hardness and other mechanical properties of polymers
 – DSI
 – Microindentation and viscoelasticity
• Microhardness of heterogeneous polymer systems
 – Microhardness of semycrystalline polymers
 – Microhardness of blends
 – Microhardness and physical ageing
 – Microhardness of PMC's
 – Microhardness of PMnC's
100 \frac{h(t)}{d} = \alpha + \beta \exp\left(-\frac{t}{\tau}\right)

Delayed elastic recovery study by means of DSI measurements

V. Lorenzo et al.: communication to EPF2011, Granada, 26th June-1st July
Creep study by means of DSI measurements

- Model:

\[h^2(t) = \frac{\pi}{2} P_0 \cotg \alpha \left[\frac{1}{E_1} + \frac{1}{E_2} \left(1 - \exp \left(\frac{E_2 t}{\eta_2} \right) \right) + \frac{t}{\eta_1} \right] \]

Table

<table>
<thead>
<tr>
<th>Sample</th>
<th>E (MPa)</th>
<th>(\tau) (s)</th>
<th>Cit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>410</td>
<td>0.48</td>
<td>23</td>
</tr>
<tr>
<td>S</td>
<td>675</td>
<td>0.46</td>
<td>18</td>
</tr>
</tbody>
</table>

V. Lorenzo et al.: communication to EPF2011, Granada, 26th June-1st July
Delayed elastic recovery study by means of DSI measurements

Model:

\[h(t) = h(0) + A(1 - \exp(-t/\tau)) \]

- Retardation time, \(\tau \), structure independent
- Not a quantitative agreement
 - Interferometry experiments
 - Indenter geometry
 - Sampling frequency
 - Creep results:
 - Non linearity

V. Lorenzo et al.: communication to EPF2011, Granada, 26th June-1st July
• Hardness and hardness measurement
 – Vickers hardness
 – Relationships between hardness and other mechanical properties of polymers
 – DSI
 – Microindentation and viscoleasticity
• Microhardness of heterogeneous polymer systems
 – Microhardness of semycrystalline polymers
 – Microhardness of blends
 – Microhardness and physical ageing
 – Microhardness of PMC's
 – Microhardness of PMnC's
Local character of the measurement

- Microindentation “averages” the properties of some μm^3 of the material around the indentor.

- Microindentation and heterogeneity of the specimen:
 - Characteristic length of heterogeneities $> d \Rightarrow MH = f(x, y)$
 - Information about distribution of phases
 - Characterization of phases
 - Characteristic length of heterogeneities $< d \Rightarrow MH$ is not a function of the position
 - Bulk properties of the material
• Hardness and hardness measurement
 – Vickers hardness
 – Relationships between hardness and other mechanical properties of polymers
 – DSI
 – Microindentation and viscoelasticity
• Microhardness of heterogeneous polymer systems
 – Microhardness of semycrystalline polymers
 – Microhardness of blends
 – Microhardness and physical ageing
 – Microhardness of PMC's
 – Microhardness of PMnC's
Polyethylenes that has been quickly cooled form the melt:

- Length of crystallites < d ⇒ MH is not a function of the position ⇒ MH is an increasing function of crystallinity level
- Information about deformation mechanism

• It is not possible to obtain a 100% crystalline or amorphous PE sample.

• Mechanical properties of phases can be obtained by extrapolating MH measurements

• Isothermally crystallized iPP displays spherulites of the α and β polymorphs ⇒ properties of the α and β spherulites

• Hardness and hardness measurement
 – Vickers hardness
 – Relationships between hardness and other mechanical properties of polymers
 – DSI
 – Microindentation and viscoleasticity

• Microhardness of heterogeneous polymer systems
 – Microhardness of semycrystalline polymers
 – Microhardness of blends
 – Microhardness and physical ageing
 – Microhardness of PMC's
 – Microhardness of PMnC's
Blends of miscible A and B polymers: homogeneous at d scale \(\Rightarrow \)
\[MH = f(\%A) \]

Blends of inmiscible A and B polymers: separated domains of A and B

- If \(\%A < \%B \Rightarrow \) characteristic length of A domains < d \(\Rightarrow \) MH is a continuous function of \(\%A \)
 - Continuity of MH(\(\%A \)) \(\Leftrightarrow \) miscibility
- If \(\%A \) is comparable con \(\%B \):
 - Characteristic length of A domains \(< d\)
 - Characteristic length of A domains \(> d\)
 - MH is a function of the position
 - Characterization of individual phases
Microhardness of blends of PEO with iPMMA

Microhardness of blends of polyolefins and LCP's

• Hardness and hardness measurement
 – Vickers hardness
 – Relationships between hardness and other mechanical properties of polymers
 – DSI
 – Microindentation and viscoelasticity
• Microhardness of heterogeneous polymer systems
 – Microhardness of semycrystalline polymers
 – Microhardness of blends
 – Microhardness and physical ageing
 – Microhardness of PMC's
 – Microhardness of PMnC's
Microhardness and physical ageing

- A – Tg: liquid
 - Cooperative movement of chains
- Tg – B: glass
 - Movements of local groups
- B – C: physical ageing
 - Densification:
 - Local free volume fluctuations
 - Correlation length $< 10^{-1} \, \mu m$
Physical ageing of LCP's and SMP's as revealed by MH tests

V. Lorenzo et al.: Materials and Design 30 (2009) 2431–2434
• Hardness and hardness measurement
 – Vickers hardness
 – Relationships between hardness and other mechanical properties of polymers
 – DSI
 – Microindentation and viscoleasticity
• Microhardness of heterogeneous polymer systems
 – Microhardness of semycrystalline polymers
 – Microhardness of blends
 – Microhardness and physical ageing
 – Microhardness of PMC's
 – Microhardness of PMnC's
Composites are multiphasic materials: fillers dimensions ~ some tens of µm ⇒ characteristic dimensions of heterogeneities > d ⇒ MH is position function ⇒ MH is not an adequate tool for characterizing composite materials

But it can be used for:

- Characterizing matrix and fillers.
- Characterizing interphases:
 - Transcrystalline structures in GF reinforced PP composites
• Hardness and hardness measurement
 – Vickers hardness
 – Relationships between hardness and other mechanical properties of polymers
 – DSI
 – Microindentation and viscoelasticity

• Microhardness of heterogeneous polymer systems
 – Microhardness of semycrystalline polymers
 – Microhardness of blends
 – Microhardness and physical ageing
 – Microhardness of PMC's
 – Microhardness of PMnC's
• Agglomerated fillers:
 – characteristic length of heterogeneities > d ⇒ MH is a function of position
• If the fillers are well dispersed:
 – characteristic length of heterogeneities < d ⇒ MH = f(% filler)
 ⇒ information about the reinforcement effect of the filler.
PC-clay nanocomposites obtained by dissolution

Microindentation of polymers

May 2011
Other heterogeneous polymeric materials

- Characterization of coatings
- Multi-layer extrusion
- Skin-core structures in injection molded polymers
- Composition gradients
- ...
• Microindentation is an adequate tool for exploring structure of polymeric materials.

• The volume of material that is deformed in hardness test is around d^3.

• The information that can be obtained from a hardness test depends on the characteristic length of the heterogeneities of the sample, l:
 - If $l < d$, bulk properties of the material.
 - If $l > d$, local character information.
The research group

• ICTP (CSIC)
 – Prof. J.M. Pereña
 – Prof. R. Benavente
 – Prof. E. Pérez
 – Prof. M.L. Cerrada
 – Dr. J. Arranz

• ETSII (UPM)
 – Prof. J. Martínez
 – Prof. De la Orden
 – Prof. G. Pinto
 – Prof. V. Lorenzo

and all the postdoc, students and technicians that have collaborated with us.
Thank you very much for your attention

Merci pour votre attention

شكرا