Mixing Snapshots and Fast Time Integration of PDEs

Rapun Banzo, Maria Luisa; Terragni, Filippo y Vega de Prada, José Manuel (2011). Mixing Snapshots and Fast Time Integration of PDEs. En: "IV International Conference on Computational Methods for Coupled Problems in Science and Engineering COUPLED PROBLEMS 2011", 20/06/2011 - 22/06/2011, Kos Island, Grecia. pp. 861-873.

Descripción

Título: Mixing Snapshots and Fast Time Integration of PDEs
Autor/es:
  • Rapun Banzo, Maria Luisa
  • Terragni, Filippo
  • Vega de Prada, José Manuel
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: IV International Conference on Computational Methods for Coupled Problems in Science and Engineering COUPLED PROBLEMS 2011
Fechas del Evento: 20/06/2011 - 22/06/2011
Lugar del Evento: Kos Island, Grecia
Título del Libro: Proceedings of IV International Conference on Computational Methods for Coupled Problems in Science and Engineering COUPLED PROBLEMS 2011
Fecha: 2011
Materias:
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Fundamentos Matemáticos de la Tecnología Aeronáutica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (283kB) | Vista Previa

Resumen

A local proper orthogonal decomposition (POD) plus Galerkin projection method was recently developed to accelerate time dependent numerical solvers of PDEs. This method is based on the combined use of a numerical code (NC) and a Galerkin sys- tem (GS) in a sequence of interspersed time intervals, INC and IGS, respectively. POD is performed on some sets of snapshots calculated by the numerical solver in the INC inter- vals. The governing equations are Galerkin projected onto the most energetic POD modes and the resulting GS is time integrated in the next IGS interval. The major computa- tional e®ort is associated with the snapshots calculation in the ¯rst INC interval, where the POD manifold needs to be completely constructed (it is only updated in subsequent INC intervals, which can thus be quite small). As the POD manifold depends only weakly on the particular values of the parameters of the problem, a suitable library can be con- structed adapting the snapshots calculated in other runs to drastically reduce the size of the ¯rst INC interval and thus the involved computational cost. The strategy is success- fully tested in (i) the one-dimensional complex Ginzburg-Landau equation, including the case in which it exhibits transient chaos, and (ii) the two-dimensional unsteady lid-driven cavity problem

Más información

ID de Registro: 12976
Identificador DC: http://oa.upm.es/12976/
Identificador OAI: oai:oa.upm.es:12976
URL Oficial: http://congress.cimne.com/coupled2011/frontal/default.asp
Depositado por: Memoria Investigacion
Depositado el: 12 Dic 2012 14:55
Ultima Modificación: 21 Abr 2016 12:16
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM