HALA! SESAR Research Network
Towards Higher Levels of Automation in ATM

A wide range for research.

HALA! RESEARCH NETWORK
WHITE PAPER

ATACCS’2011
27/5/2011
HALA! SESAR Research Network
Towards Higher Levels of Automation in ATM

CONTENTS:

- Objectives of HALA!
- Main Activities
- HALA! Management Team
- Participants
- Intended Audience
- Heritage in ATM and Automation
- The new paradigm shift in Automation in ATM
 - Overall system performance as main driver for ATM Automation
 - The three interdependent dimensions for the paradigm change.
 - New roles assignment based on:
 - “best time”
 - “decision place”
 - “best player”
- HALA! main research areas
HALA! SESAR Research Network
Towards Higher Levels of Automation in ATM

Higher Levels of Automation in ATM

- Go beyond traditional approaches on automation in ATM
- Cover ATM automation activities not currently addressed by the other work packages of the SESAR work programme
- Foster research in automation in ATM
- Offer better framework conditions for ATM research
HALA! SESAR Research Network
Towards Higher Levels of Automation in ATM

PhDs
• 2 Call for PhDs
• First call has already taken place
• Second Call for PhDs -> June 2011

Conferences
• HALA! Annual conference (ATACCS)
• Summer School
• Joint Conference

Promote the Best Research in Automation in ATM

Progress on Automation
• White paper

Scientific collaborative platform
Pollinizer (facilitator) www.hala-sesar.net
Currently there are over **80 Organizations** in the Network!

300+ researchers registered in the HALA! Network

- **55%** Universities
- **26%** Research Centres
- **19%** Companies
HALA! SESAR Research Network
Towards Higher Levels of Automation in ATM

Participants

Researchers in ATM
Researchers in related areas
Researchers in human factors
Researchers in control and automation
Mathematics experts
Researchers in avionics
HALA! SESAR Research Network
Towards Higher Levels of Automation in ATM

- SESAR and NextGen automation strategy
- Automation limits based on human performance consequences!
- Automation vs. Human factors
- Learn from other Safety Critical industries: nuclear industry, etc...
- State of the art of automation in safety critical applications
Shift from Airspace – Based operation towards a Trajectory – Based operation concept.

“In the ATM Target Concept it is recognised that humans will constitute the core of the future European ATM Systems operations.”
D3. – ATM Target Concept. SESAR.

Shift from a controller-based system towards a more distributed system.

SESAR will help create a paradigm shift.
NEW PARADIGM SHIFT IN ATM AUTOMATION

HALA! SESAR Research Network
Towards Higher Levels of Automation in ATM

Focus on ATM Invariant Processes

Automation driven by overall system performance

New role assignment based on:
- “best time”
- “decision place”
- “best player”
ATM Invariants

Goals
- Safety (Separation Assurance)
- Efficiency (broad sense: user, provider & society)

Limitations
- Airport Capacity
- Atmospheric Behaviour
The three interdependent dimensions for the paradigm change

New role assignment based on:

1. **First dimension** "BEST TIME" for decision making: Strategic vs. tactical planning layer
2. **Second dimension** "DECISION PLACE": Controlled vs. autonomy.
3. **Third dimension** "BEST PLAYER": Human vs. automated player.
First dimension “BEST TIME” for decision making: Strategic vs. Tactical layer questions to be answered

STRATEGIC VS. TACTICAL

- What is the impact of uncertainties in a system when most decisions are taken long time in advance?
- As ATM processes, at different planning layers, will have feedback to absorb unexpected changes: will the overall system (composed by different nested loops) maintain the required stability?
- Do strategic functions imply more complex and rigid operational scenarios?
- Can tactical decisions alone manage ATM goals and limitations?
- Other?
What is the level of correlation between complexity and centric controlled systems?

Autonomy: where? When? Are segregated airspace structures (UMAS/MAS) a solution?

In which scenario (controlled or autonomous) will automation provide higher overall system performance?

Is high traffic density/complexity a key factor limiting autonomy?

Do tactical decisions imply autonomous and fully automated processes?

Does strategic decision making imply centric controlled scenarios?

Others?
NEW PARADIGM SHIFT IN ATM AUTOMATION

Third dimension “BEST PLAYER”: Human vs. Automated player questions to be answered

HUMAN VS. MACHINE

- Should trajectory management (e.g., Trajectory deconfliction, even tactical decisions) be fully automated?
- To what extent do strategic decisions require human intervention?
- How can uncertainty be managed in automated systems?
- Are the current frameworks for automation, cognition and human factors enough to capture ATM singularities?
- Is a fully automated air transport system socially/psychologically acceptable?
- Can the ATM system be decomplexified through automation?
- How to deal with transition issues when implementing higher levels of automation?
- How can resilience be taken into account in automated systems design?
- Does uncertainty require human centred decision-making?
HALA! main research areas

Technical Support: Automation Complexity

Strategic Versus Tactical

Controlled Systems Versus Aircraft Autonomy

New Roles Assignment

Social Impact: Economic Legal
HALA! main research areas

- Trajectory management
- Decision support tools
- Control system techniques
- Human factors
- UAS

Technical Support: Automation Complexity

Social Impact: Economic Legal
We need your expertise to improve the White Paper!

Please sens your ideas to hala@hala-sesar.net or USE THE FORUMS INSIDE the HALA! Website!
Thank you for your attention!