An Efficient Multiple Object Detection and Tracking Framework for Automatic Counting and Video Surveillance Applications

Blanco Adán, Carlos Roberto del; Jaureguizar Núñez, Fernando y García Santos, Narciso (2012). An Efficient Multiple Object Detection and Tracking Framework for Automatic Counting and Video Surveillance Applications. "IEEE Transactions on Consumer Electronics", v. 58 (n. 3); pp. 857-862. ISSN 0098-3063. https://doi.org/10.1109/TCE.2012.6311328.

Descripción

Título: An Efficient Multiple Object Detection and Tracking Framework for Automatic Counting and Video Surveillance Applications
Autor/es:
  • Blanco Adán, Carlos Roberto del
  • Jaureguizar Núñez, Fernando
  • García Santos, Narciso
Tipo de Documento: Artículo
Título de Revista/Publicación: IEEE Transactions on Consumer Electronics
Fecha: 25 Septiembre 2012
Volumen: 58
Materias:
Palabras Clave Informales: Moving object detection, multiple object tracking, object counting, video surveillance applications, particle filtering, IP cameras, real-time applications.
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Señales, Sistemas y Radiocomunicaciones
Licencias Creative Commons: Reconocimiento

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (416kB) | Vista Previa

Resumen

Automatic visual object counting and video surveillance have important applications for home and business environments, such as security and management of access points. However, in order to obtain a satisfactory performance these technologies need professional and expensive hardware, complex installations and setups, and the supervision of qualified workers. In this paper, an efficient visual detection and tracking framework is proposed for the tasks of object counting and surveillance, which meets the requirements of the consumer electronics: off-the-shelf equipment, easy installation and configuration, and unsupervised working conditions. This is accomplished by a novel Bayesian tracking model that can manage multimodal distributions without explicitly computing the association between tracked objects and detections. In addition, it is robust to erroneous, distorted and missing detections. The proposed algorithm is compared with a recent work, also focused on consumer electronics, proving its superior performance.

Más información

ID de Registro: 13394
Identificador DC: http://oa.upm.es/13394/
Identificador OAI: oai:oa.upm.es:13394
Identificador DOI: 10.1109/TCE.2012.6311328
URL Oficial: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6311328&contentType=Journals+%26+Magazines&searchField%3DSearch_All%26queryText%3DAn+Efficient+Multiple+Object+Detection+and+Tracking+Framework+for+Automatic+Counting+and+Video+Surveillance+Ap
Depositado por: Doctor Carlos Roberto del Blanco Adán
Depositado el: 01 Oct 2012 05:43
Ultima Modificación: 21 Abr 2016 12:42
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM