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1. INTRODUCTION 

Global program analysis is becoming a practical tool in constraint logic program 
compilation in which information about calls, answers, and the effect of the con
straint store on variables at different program points is computed statically [Herme
negildo et al. 1992; Van Roy and Despain 1992; Muthukumar and Hermenegildo 
1992; Santos-Costa et al. 1991; Bueno et al. 1994]. The underlying theory, formal
ized in terms of abstract interpretation [Cousot and Cousot 1977], and the related 
implementation techniques are well understood for several general types of analysis 
and, in particular, for top-down analysis of Prolog [Debray 1989; 1992; Bruynooghe 
1991; Muthukumar and Hermenegildo 1992; Marriott et al. 1994; Charlier and Van 
Hentenryck 1994]. Several generic analysis engines, such as PLAI [Muthukumar 
and Hermenegildo 1992; 1990], GAIA [Charlier and Van Hentenryck 1994], and 
the CLP (TV) analyzer [Kelly et al. 1998b], facilitate construction of such top-down 
analyzers. These generic engines have the description domain and functions on this 
domain as parameters. Different domains give analyzers which provide different 
types of information and degrees of accuracy. The core of each generic engine is 
an algorithm for efficient fixed-point computation [Muthukumar and Hermenegildo 
1990; 1992; Charlier et al. 1993]. Efficiency is obtained by keeping track of which 
parts of a program must be reexamined when a success pattern is updated. Current 
generic analysis engines are nonincremental—the entire program is read, analyzed, 
and the analysis results written out. 

Despite the obvious progress made in global program analysis, most logic pro
gram and CLP compilers still perform only local analysis (although the <fc-Prolog 
[Hermenegildo and Greene 1991], Aquarius [Van Roy and Despain 1992], Andorra-I 
[Santos-Costa et al. 1991], and CLP (TV) [Kelly et al. 1998a] systems are notable 
exceptions). We believe that an important contributing factor to this is the simple, 
nonincremental model supported by global analysis systems, which is unsatisfactory 
for at least three reasons: 

—The first reason is that optimizations are often source-to-source transformations;1 

optimization consists of an analyze, perform transformation, then reanalyze cy
cle. This is inefficient if the analysis starts from scratch each time. Such analyze-
transform cycles may occur for example when program optimization and multi-
variant specialization are combined [Winsborough 1992; Puebla and Hermene
gildo 1995; 1999]. This is used, for instance, in program parallelization, where an 
initial analysis is used to introduce specialized predicate definitions with run-time 
parallelization tests, and then these new definitions are analyzed and those tests 
which become redundant in the multiply specialized program removed. It is also 
the case in optimization of CLP (TV) in which specialized predicate definitions are 
reordered and then reanalyzed. 

—The second reason is that incremental analysis supports incremental runtime 
compilation during the test-debug cycle. Again, for efficiency only those parts of 
the program which are affected by the changes should be reanalyzed. Incremental 

xBy source-to-source transformation we include transformations on the (high-level) internal com
piler representation of the program source, which for (constraint) logic program compilers tend to 
be very close to the source. 



compilation is important in the context of logic programs as traditional environ
ments have been interpretive, allowing the rapid generation of prototypes. Incre
mental analysis is especially important when the system uses analysis information 
in order to perform compile-time correctness checking of the program [Puebla 
et al. 2000; Hermenegildo et al. 1999b]. 

—The third reason is to better handle the optimization of programs in which rules 
are asserted (added) to or retracted (removed) from the program at runtime. 

Clearly, if we modify a program the existing analysis information for it may no 
longer be correct and/or accurate. However, analysis is often a costly task, and 
starting analysis again from scratch does not appear to be the best solution. In 
this article we describe how the fixed-point algorithm in the top-down generic anal
ysis engines for (constraint) logic programs can be extended to support incremental 
analysis. Guided by the applications mentioned above, we consider algorithms for 
different types of incrementality. The first, and simplest, type of incrementality is 
when program rules are added to the original program. The second type of incre
mentality is rule deletion. We give several algorithms to handle deletion. These 
capture different trade-offs between efficiency and accuracy. The algorithms for 
deletion can be easily extended to handle the third and most general type of incre
mentality, arbitrary change, in which program rules can be deleted or modified in 
any way. Finally, we consider a restricted type of arbitrary change: local change 
in which rules are modified, but the answers to the rules are unchanged for the 
calling patterns they are used with. This case occurs in program optimization, as 
correctness of the optimization usually amounts to requiring this property. Local 
change means that changes to the analysis are essentially restricted to recomputing 
the new call patterns which these rules generate. We give a modification to the 
fixed-point algorithm which handles this type of incrementality. Finally we give 
a preliminary empirical evaluation. We argue that the experimental results show 
that our algorithms are practically important. 

In the next section we present the formalization of a fixed-point algorithm which 
generalizes those used in generic analysis engines. In Section 3 we give an algorithm 
to handle incremental addition of rules. In Section 4 we give two algorithms to 
handle incremental deletion of rules. In Section 5 we modify these algorithms to 
handle arbitrary change of rules. We also give an algorithm to handle the special 
case of local change. In Section 6 we describe the implementation of the algorithms 
and our empirical evaluation. Section 7 discusses related work while Section 8 
concludes. 

2. A GENERIC ANALYSIS ALGORITHM 

We start by providing a formalization of a fixed-point algorithm for analysis of (con
straint) logic programs. We assume the reader is familiar with constraint logic pro
gramming (e.g., see Marriott and Stuckey [1998]) and abstract interpretation (see 
Cousot and Cousot [1977]). The aim of goal-directed top-down program analysis 
is, for a particular description domain, to take a program and a set of initial calling 
patterns and to annotate the program with information about the current environ
ment at each program point whenever that point is reached when executing calls 
described by the calling patterns. 



2.1 Program Analysis by Abstract Interpretation 

Abstract interpretation [Cousot and Cousot 1977] is a technique for static pro
gram analysis in which execution of the program is simulated on a description (or 
abstract) domain (D) which is simpler than the actual (or concrete) domain (C). 
Values in the description domain and sets of values in the actual domain are related 
via a pair of monotonic mappings (a, 7): abstraction a : C —> D and concretization 
7 : D ^ C which form a Galois connection. A description d e D approximates an 
actual value c € C i f a(c) < d where < is the partial ordering on D. Correctness 
of abstract interpretation guarantees that the descriptions computed approximate 
all of the actual values which occur during execution of the program. 

Different description domains may be used which capture different properties with 
different accuracy and cost. The description domain that we use in our examples 
is the definite Boolean functions [Armstrong et al. 1994], denoted Def. The key 
idea in this description is to use implication to capture groundness dependencies. 
The reading of the function x —> y is "if the program variable x is (becomes) 
ground, so is (does) program variable y." For example, the best description of the 
constraint f(X, Y) = f(a, g(U, V)) is X A (Y <-> (U A V)). Groundness information 
is directly useful for many program optimizations such as constraint simplification, 
parallelization, and simplification of built-ins. It is also indirectly useful for almost 
all other optimizations of (constraint) logic programs, since it can be combined with 
many other analysis domains to give more precise analysis information. 

We now recall some standard definitions in constraint logic programming. A con
straint logic program or program is a set of rules of the form A : - L\,..., Ln. where 
L i , . . . , Ln are literals and A is an atom said to be the head of the rule. A literal is 
an atom or a primitive constraint. We assume that each atom is normalized; that 
is to say, it is of the form p(xi,..., xm) where p is an m-ary predicate symbol and 

distinct variables. A primitive constraint is defined by the underly
ing constraint domain and is of the form c(e i , . . . , em) where c is an m-ary predicate 
symbol and the e i , . . . , em are expressions. For simplicity, in the examples we shall 
restrict ourselves to the Herbrand domain (Prolog) where primitive constraints are 
of the form e\ = &2 where e\ and &2 are terms. 

As an example of goal-directed top-down program analysis, consider the following 
program for appending lists: 

app(X,Y,Z) : - X=[], Y=Z. 
app(X,Y,Z) : - X=[U|V], Z=[U|W], app(V,Y,W). 

Assume that we are interested in analyzing the program for the call app(X, Y, Z) 
with initial description Y indicating that we wish to analyze it for any call to 
app with the second argument definitely ground. We will denote this as the calling 
pattern app(X, Y, Z) : Y. In essence the analyzer must produce the program analysis 
graph given in Figure 1, which can be viewed as a finite representation of the 
(possibly infinite) set of (possibly infinite) AND-OR trees explored by the concrete 
execution [Bruynooghe 1991]. Finiteness of the program analysis graph (and thus 
termination of analysis) is achieved by considering description domains with certain 
characteristics (such as being finite, or of finite height, or without infinite ascending 
chains) or by the use of a widening operator [Cousot and Cousot 1977]. The graph 
has two sorts of nodes: those belonging to rules (also called "AND-nodes") and 



{app(X, Y, Z) : Y i-> Y A (X <-• Z)) 

app(X,Y,Z)° :- X = [J1, Y = Z2 app(X,Y,Z)3 :- X = [U|V]4, Z = [U|W]B, app(V,Y,W)6 . 

0 : Y 

1 : YAX 

2 : X A Y A Z 

Fig. 1. Example program analysis graph. 

those belonging to atoms (also called "OR-nodes"). For example, the atom node 
{app(X, Y,Z) : 7 H> Y A ( I « Z)) indicates that when the atom app(X, Y, Z) is 
called with description Y the resulting description is Y A (X <-> Z). This answer 
description depends on the two rules defining app which are attached by arcs to 
the node. These rules are annotated by descriptions at each program point of the 
constraint store when the rule is executed from the calling pattern of the node 
connected to the rules. The program points are at the entry to the rule, the point 
between each two literals, and at the return from the call. Atoms in the rule body 
have arcs to OR-nodes with the corresponding calling pattern. If such a node is 
already in the tree it becomes a recursive call. Thus, the analysis graph in Figure 1 
has a recursive call to the calling pattern app(X, Y, Z) : Y. How this program 
analysis graph is constructed is detailed in Example 1. 

It is implicit in this approach that the description at each program point rep
resents sets of constraints rather than sequences of constraints. Although it is 
possible to base an analysis on sequences rather than sets, (e.g., see Charlier et al. 
[1994]) almost all generic (constraint) logic program analysis engines are set-based 
rather than sequence-based, so we shall focus on these. 

As we have seen, a program analysis graph is constructed from an initial set of 
calling patterns and a program. It is defined in terms of five abstract operations 
on the description domain. As is standard these are required to be monotonic 
and to approximate the corresponding concrete operations; for more details see for 
example Garcia de la Banda et al. [1998]. The abstract operations are 

—Arestrict(CP, V) which performs the abstract restriction of a description CP to 
the variables in the set V; 

—Aextend(CP, V) which extends the description CP to the variables in the set V; 

—Aadd(C, CP) which performs the abstract operation of conjoining the actual con
straint C with the description CP; 

—Aconj(CPi, CP2) which performs the abstract conjunction of two descriptions; 

—Alub(CPi, CP2) which performs the abstract disjunction of two descriptions. 

Y 
Y A(X • 

Y A(X • 

Y A(X • 

(UAV)) 

(U AV)) A(Z • 

(U AV)) A(Z • 
(U AW)) 

(U AW)) A(V • W) 



As an example, the abstract operations for the description domain Def are de
fined as follows. We start by defining the abstraction operation ajjef which gives 
the best description of a constraint. It will be used in the Aadd operation and is 
defined as 

aDef(x = t) = (x <-• /\{y e vars(t)}) 

where x is a variable, t is a term, and the function vars returns the set of variables 
appearing in some object. For instance, ajjef(X = [U\V]) is X <-> (U A V). We 
note that term constraints can always be simplified to conjunctions of this form. 
Extending to conjunctions, we have 

«De/(ei A • • • A ek) = aDeS(ei) A • • • A aDef(ek) 

where e i , . . . , ek are term equations. 
The abstract operations for the description domain Def are defined as follows: 

Arestrict(CP,Vr) = 3-VCP 

Aextend(CP,Vr) = CP 

Aadd(C, CP) = aDef{C) A CP 

Aconj(CPi, CP2) = CPX A CP2 

Alub(CPi,CP2) = CP1UCP2 

where 3-yF represents 3«i • • • 3vkF where {vi,... ,vk} = vars(F) — V, and U is 
the least upper bound (lub) operation over the Def lattice (e.g., Armstrong et al. 
[1994]). The top (T) of the the Def lattice is the formula true while the bottom 
(_L) is the formula false. 

For a given program and calling pattern there may be many different analysis 
graphs. However, for a given set of initial calling patterns, a program and abstract 
operations on the descriptions, there is a unique least analysis graph which gives 
the most precise information possible. 

For the reader with a formal bent, an alternative way of understanding the anal
ysis graph is in terms of the recursive equations for the general goal-dependent 
semantics given in Garcia de la Banda et al. [1998]. The least analysis graph 
corresponds to their least fixed point. 

2.2 The Generic Algorithm 

We will now describe our generic top-down analysis algorithm which computes the 
least analysis graph. This algorithm captures the essence of the particular analysis 
algorithms used in systems such as PLAI [Muthukumar and Hermenegildo 1990; 
1992], GAIA [Charlier and Van Hentenryck 1994], and the CLP(^) analyzer [Kelly 
et al. 1998b]. It will form the basis for our algorithms for incremental analysis. How
ever there are several minor differences between the generic algorithm we present 
and these systems: 

—First, the order in which rules for the same predicate are processed to compute 
the graph is not fixed, since the algorithm is parametric in the analysis strategy 
used to determine this order. The reasons for this are two-fold: the first reason 
is generality. The second reason is that the analysis strategy used for static 



analysis is not necessarily good for incremental analysis, and so we need to be 
able to explicitly refer to and reason about different strategies. 

—Second, the algorithm keeps detailed information about dependencies for each 
literal in the graph. This is finer grained dependency information than that usu
ally maintained in top-down analysis algorithms. We require this extra precision 
for efficiency in most of the incremental analysis algorithms.2 

—Third, the algorithm is deliberately simplified. It does not include many minor 
optimizations, so as not to obscure the core behavior of the algorithm. Also, it is 
only defined for pure CLP programs. However, standard analysis techniques for 
handling constructs such as cuts, not, and -> and other built-ins can be added 
without difficulty [Bueno et al. 1996]; indeed the implementation actually handles 
(almost) full ISO-Prolog. 

We first introduce some notation. CP, possibly subscripted, stands for a descrip
tion (in the abstract domain). AP, possibly subscripted, stands for a description 
occurring as an answer description. Each literal in the program is subscripted with 
an identifier or pair of identifiers. The expression A : CP denotes a calling pattern. 
This consists of an atom (unsubscripted or subscripted) together with a calling 
description for that atom. 

As indicated earlier, rules are assumed to be normalized: only distinct variables 
are allowed to occur as arguments to atoms. Furthermore, we require that each rule 
defining a predicate p has identical sequence of variables xpi,... xPn in the head 
atom, i.e., p(xpi,... xPn). We call this the base form of p. Rules in the program are 
written with a unique subscript attached to the head atom (the rule number), and 
dual subscript (rule number, body position) attached to each body literal, e.g., 

Hk '•- Bfc,l, • • •, Bfc,nfc-

where Bk,i is a subscripted atom or constraint. The rule may also be referred to 
as rule k, the subscript of the head atom. For example, the append program of 
Section 2.1 is written 

appiU.Y.Z) : - X=[]i,i, Y=Zlj2. 
app2(X,Y,Z) : - X=[U|V]2,i, Z=[U|W]2j2, app2i3(V,Y,W) . 

The base form of app is app(X, Y,Z), and each app atom only involves distinct 
variables as arguments. 

The program analysis graph is implicitly represented in the algorithm by means 
of two data structures, the answer table and the dependency arc table. Given the 
information in these it is straightforward to construct the graph and the associated 
program point annotations. The answer table contains entries of the form A : 
CP i—> AP. A is always a base form. This corresponds to an OR-node in the 
analysis graph of the form {A : CP i—> AP). It is interpreted as the answer pattern 
for calls of the form CP to A is AP. A dependency arc is of the form Hk '• CPo => 
[CPi] Bki '• C?2- This is interpreted as follows: if the rule with Hk as head is called 
with description CPo then this causes literal Bk,i to be called with description CP2. 

2In fact, as we shall see, the overhead of keeping more detailed information is compensated for by 
avoiding redundant recomputation when an answer pattern is changed. 



The remaining part CP\ is the program annotation just before B]~}i is reached and 
contains information about all variables in rule k. CP\ is not really necessary, but is 
included for efficiency. Dependency arcs represent the arcs in the program analysis 
graph from atoms in a rule body to an atom node. For example, the program 
analysis graph in Figure 1 is represented by 

answer table: app(X, Y, Z) : Y i—> Y A (X <-> Z) 
dependency arc table: 

app2(X,Y,Z): Y => [Y A {X <-• {U A V)) A {Z <-• (U AW))] app2i3(V,Y,W): Y 

Intuitively, the analysis algorithm is just a graph traversal algorithm which places 
entries in the answer table and dependency arc table as new nodes and arcs in the 
program analysis graph are encountered. To capture the different graph traversal 
strategies used in different fixed-point algorithms, we use a priority queue. Thus, 
the third, and final, structure used in our algorithms is a prioritized event queue. 
Events are of three forms: 

—newcall(A : CP) which indicates that a new calling pattern for atom A with 
description CP has been encountered. 

—arc(R) which indicates that the rule referred to in R needs to be (re)computed 
from the position indicated. 

—updated(A : CP) which indicates that the answer description to calling pattern 
A with description CP has been changed. 

The generic analysis algorithm is given in Figure 2. Apart from the parametric 
description domain-dependent functions, the algorithm has several other undefined 
functions. The functions adcLevent and next_event respectively add an event to the 
priority queue and return (and delete) the event of highest priority. 

When an event being added to the priority queue is already in the priority queue, 
a single event with the maximum of the priorities is kept in the queue. When an 
arc Hk : CP =>• [CP"]Bk,i : CP' is added to the dependency arc table, it replaces 
any other arc of the form Hk : CP =>• [_]Bfc,i : - m the table and the priority queue. 
Similarly when an entry Hk : CP i-^ AP is added to the answer table, it replaces 
any entry of the form Hk : CP i—> _. Note that the underscore (_) matches any 
description, and that there is at most one matching entry in the dependency arc 
table or answer table at any time. 

The function initiaLguess returns an initial guess for the answer to a new calling 
pattern. The default value is _L but if the calling pattern is more general than an 
already computed call then its current value may be returned. 

The algorithm centers around the processing of events on the priority queue 
in mainJoop, which repeatedly removes the highest priority event and calls the 
appropriate event-handling function. When all events are processed it calls re-
move_useless_calls. This procedure traverses the dependency graph given by the 
dependency arcs from the initial calling patterns S and marks those entries in the 
dependency arc and answer table which are reachable. The remainder are removed. 

The function new_calling_pattern initiates processing of the rules in the definition 
of atom A, by adding arc events for each of the first literals of these rules, and 
determines an initial answer for the calling pattern and places this in the table. 
The function add_dependent_rules adds arc events for each dependency arc which 



analyze(S') 
foreach A : CP € S 

add_ever\t(newcall(A 
main_loop() 

CP)) 

main_loop() 
whi le E := next_event() 

if (E = newcall(A : CP)) 
new_calling_pattern(/t : CP) 

elseif (E = updated{A : CP)) 
add_dependent_rules(/t : CP) 

elseif [E = arc(R)) 
process_arc(i?) 

endwhi l e 
remove_useless_calls(Sr) 

new_calling_pattern(/t : CP) 
foreach rule Ak : - Bk>1,..., Bk>nk 

CPo := 
Aextend( CP, vars(Bk 1, • • •, Bkn 

GP\ := Arestrict(CPo,vars(Bk>1)) 
add_event(arc( 

Ak : CP^lCPo] Bk>1 : CP!)) 
AP := initial_guess(A : CP) 
if (AP / _L) 

add-event(updated(A : CP)) 
add A : CP i—> AP to answer table 

add_dependent_rules(/t : CP) 
foreach arc of the form 

Hk : CPo => [CPi] Bk>i : CP2 

in graph 
w h e r e there exists renaming a 

s.t. A : CP= (Bk>i : CP2)a 
add_event(arc( 

Hk : CPo => [CP!] Bk>i : CP2)) 

process_arc(H fc : CP0 => [CPi] Bk>i : CP2) 
if (Bk i is not a constraint) 

add Hk : CPo => [CPi] B fc ] i : CP2 

to dependency arc table 
VF := vars(Ak :- Bk>1,..., Bk>nk) 
CP3 := get_answer(Bfc>i : CP2, CPi,W) 
if (CP 3 / -L and i ^ nk) 

CPA := Arestrict(CP3,vars(Bk>i+1)) 
add_event( arc( 

Hk : CPo ^ [CP3] Bk>i+1 : CP4)) 
elseif (CP3 / ± and i = nk) 

AP\ := Arestrict(CPz,vars(Hk)) 
insert_ans¥er_info(i? : CPo 1—> AP\) 

get_answer(L : CP2, CPltW) 
if (L is a constraint) 

r e t u r n Aadd(L, CPi) 
else 

APo := lookup_answer(L : CP2) 
AP! := Aextend(AP0,VF) 
r e t u r n Aconj(CPi, AP\) 

lookup_answer(yl : CP) 
if (there exists a renaming a s.t. 

a (A : CP) 1—> AP in answer table) 
r e t u r n a~1(AP) 

else 
add_event(raewcaH(<j(yl : CP))) 
where a is a renaming s.t. 
<r(/t) is in base form 
r e t u r n _L 

insert_answer_inf o(H : CP 1—> AP) 
APo := lookup_answer(H : CP) 
AP! := Alub(AP, APo) 
if (APo / A Pi) 

add (H : CP 1—> AP\) to answer table 
add_event(-upcfcife(i(H : CP)) 

Fig. 2. Generic analysis algorithm. 

depends on the calling pattern (A : CP) for which the answer has been updated. 
The function process_arc performs the core of the analysis. It performs a single step 
of the left-to-right traversal of a rule body. If the literal B^i is an atom, the arc 
is added to the dependency arc table. The current answer for the call Bk,i '• CP<2 
is conjoined with the description CP\ from the program point immediately before 
Bki to obtain the description for the program point after B^i. This is either used 
to generate a new arc event to process the next literal in the rule if B^i is not 
the last literal; otherwise the new answer for the rule is combined with the current 
answer in insert_answer_info. The function get_answer processes a literal. If it is a 
constraint, it is simply abstractly added to the current description. If it is an atom, 
the current answer to that atom for the current description is looked up; then this 
answer is extended to the variables in the rule the literal occurs in and conjoined 
with the current description. The functions lookup_answer and insert_answer_info 



lookup an answer for a calling pa t tern in the answer table, and update the answer 
table entry when a new answer is found, respectively. The function lookup_answer 
also generates newcall events in the case tha t there is no entry for the calling 
pa t tern in the answer table. 

2.3 Example of the Generic Algorithm 

The following example briefly illustrates the operation of the generic fixed-point 
algorithm. It shows how the app program would be analyzed, to obtain the program 
analysis graph shown in Figure 1. 

Example 1. Analysis begins from an initial set S of calling pat terns . In our 
example S contains the single calling pa t te rn app(X,Y,Z) :Y. The first step in the 
algorithm is to add the initial calling pat terns as new calling pat terns to the priority 
queue. After this the priority queue contains 

newcalK app(X,Y,Z) :Y) 

and the answer and dependency arc tables are empty. The newcall event is taken 
from the event queue and processed as follows. For each rule defining app, an arc is 
added to the priority queue which indicates the rule body must be processed from 
the initial literal. An entry for the new calling pa t tern is added to the answer table 
with an initial guess of false (_L for Def) as the answer. The da ta structures are 
now 

priority queue: arc( app i (X, Y, Z) : Y =>• [Y] X = [ ] i i : true) 
arc( app 2 (X, Y, Z) : Y => [Y] X=[U|V]2,i : true) 

answer table: app(X, Y, Z) : 7 i - » false 
dependency arc table: no entries 

An arc on the event queue is now selected for processing, say the first. The routine 
get_answer is called to find the answer pa t te rn to the literal X=[] with description 
true. As the literal is a constraint, the parametric routine Aadd is used. It returns 
the answer pa t tern X. A new arc is added to the priority queue which indicates 
tha t the second literal in the rule body must be processed. The priority queue is 
now 

arc( app i (X, Y, Z) : Y => [X A Y] Y=Zij2 : X) 
arc( app 2 (X, Y, Z) : Y => [Y] X=[U|V]2',i : true). 

The answer and dependency arc table remain the same. 
Again, an arc on the event queue is selected for processing, say the first. As 

before, get_answer and Aadd are called to obtain the next annotat ion X A Y A Z. 
This time, as there are no more literals in the body, the answer table entry for 
app(X, Y,Z):Y is updated. Alub is used to find the least upper bound of the new 
answer X AY A Z with the old answer false. This gives X AY A Z. The entry in 
the answer table is updated, and an updated event is placed on the priority queue. 
The da ta structures are now 

priority queue: updatedX app(X, Y, Z) : Y) 
arc( app 2 (X, Y, Z) : Y => [Y] X=[U|V]2,i : true) 

answer table: app(X, Y, Z) :Y^XAY AZ 
dependency arc table: no entries 



The updated event can now be processed. As there are no entries in the de
pendency arc table, nothing in the current program analysis graph depends on the 
answer to this call, so nothing needs to be recomputed. The priority queue now 
contains 

arc{ app 2 (X, Y, Z) : Y => [Y] X=[U|V]2,i : true). 

The answer and dependency arc table remain the same. 

Similarly to before we process the arc, giving rise to the new priority queue 

arc( app 2 (X, Y, Z) : Y => [Y A {X <-• (U A V))] Z=[U|W] 2,2 : true). 

The arc is processed to give the priority queue 

arc{ app 2 (X, Y, Z) : Y => [Y A {X <-• {U AV))A{Z ^ (U AW))] 
app(V,Y,W)2,3 : Y). 

This time, because app2,3(V,Y,W) is an atom, the arc is added to the arc depen
dency table. The call get_answer(app(V,Y,W)2,3 : Y, Y A (X <-• (U A V)) A (Z <-• 
(U A W)) , {X, Y, Z, U, V, W}) is made. The answer table is looked up to find the 
answer to app(V,Y,W)2,3 : Y and, appropriately renamed, gives APQ = V AY AW. 
This description is extended to all variables (no change) and then conjoined with 
the second argument to give the next annotation Y AV AW A(X <-> U) A(Z <-> U). 
As this is the last literal in the body, the new answer Y A (X <-> Z) is obtained. 
We take the least upper bound of this answer with the old answer in the table, 
giving Y A(X ^ Z). As the answer has changed, an updated event is added to the 
priority queue. The da ta structures are now 

priority queue: u p d a t e d ( app(X, Y, Z) : Y) 
answer table: app(X, Y, Z) : Y 1—> Y A (X <-> Z) 
dependency arc table: app 2 (X, Y, Z) : Y => [Y A (X <-• (U A V)) 

A{Z <-• (U AW))] 
app2 ,3(V, Y, W) : Y 

The updated event is processed by looking in the dependency arc table for all arcs 
which have a body literal which is a variant of app(X, Y, Z) : Y and adding these 
arcs to the priority queue to be reprocessed. We obtain the new priority queue 

a r c ( a p p 2 ( X , Y, Z) : Y => [Y A {X <-• (U A V)) A {Z <-• (U AW))] 
app2 ,3(V, Y, W) :Y) 

This arc is reprocessed, and gives rise to the answer Y A (X <-> Z). Taking the 
least upper bound of this with the old answer, the result is identical to the old 
answer, hence no updated event is added to the priority queue. As there are no 
events on the priority queue, the analysis terminates with the desired answer and 
dependency arc table. • 

2.4 Correctness 

The generic algorithm provides a simple generic description of how top-down goal-
directed analysis is performed. It is somewhat less abstract than the semantic 
equations, since we need to capture the use of dependency information during 
analysis. The algorithm captures the behavior of several implemented algorithms 



while at the same time is suitable for incremental analysis. Different top-down goal-
directed analysis algorithms correspond to different event-processing strategies. In 
practice these algorithms also incorporate other optimizations. An example event-
processing strategy would be to always perform new call events first, to process 
nonrecursive rules before recursive rules, and to finish processing a rule before 
start ing another. This strategy would produce an algorithm which is quite close 
to the one used in PLAI or GAIA (the differences between the proposed algorithm 
and tha t used in PLAI are presented in more detail in Section 6). 

In essence, the algorithm defines a set of recursive equations whose least fixed 
point is computed using chaotic iteration [Cousot and Cousot 1977]. We note 
tha t even though the order in which events are processed is not fixed, the events 
themselves encode a left-to-right traversal of the rules, ensuring a unique result. 
For the least fixed point to be well-defined we require tha t the abstract operations 
are monotonic and tha t initiaLguess returns a value below the least fixed point. 
Under these s tandard assumptions we have 

THEOREM I . For a program P and calling patterns S, the generic analysis algo
rithm returns an answer table and dependency arc table which represents the least 
program analysis graph of P and S. 

The dependency arc table does not quite capture the annotations on rules in the 
analysis graph, since program points before constraint literals and the last program 
point do not correspond to stored arcs. This information can easily be recomputed 
from the dependency arc table, or indeed the algorithm can be simply modified to 
save it as it executes. 

The corollary of the above theorem is tha t the priority strategy does not involve 
correctness of the analysis. This corollary will be vital when arguing correctness of 
the incremental algorithms in the following sections. 

COROLLARY I . The result of the generic analysis algorithm does not depend on 
the strategy used to prioritize events. 

3. INCREMENTAL ADDITION 

If new rules are added to a program which has already been analyzed, we have to 
compute the success pat terns for each new rule, use this to update the answer table 
information for the atoms defined by the newly added rules, and then propagate the 
effect of these changes. Note tha t this propagation is not limited to the new rules, 
but rather a global fixed point has to be reached in order to ensure correctness of the 
analysis results. Existing analysis engines for (constraint) logic programming are 
unable to incrementally compute this new fixed point, and the only safe possibility 
is to s tar t analysis from scratch. However, the generic algorithm we propose can 
do this rather simply. Computat ion of the success pat terns for each rule is simply 
done by adding a set of arcs to the event queue before calling again mainJoop. 
Propagation of the effects corresponds to processing, in the usual way, the updated 
events for entries in the answer table which are modified due to the newly added 
rules. When execution of mainJoop ends, a new global fixed point has been reached. 

The new routine for analysis of programs in which rules are added incrementally 
is given in Figure 3. The routine takes as input the set of new rules R. If these 



incremental_addition(i?) 
foreach rule Ak :- Bki,..., Bkrlk £ R 

foreach entry A : CP i—> AP in the answer table 
CPo := Aextend(CP, vars(Ak :- Bk>1,..., Bk>nk)) 
GP\ := Arestrict(CP0, vars(Bk>1)) 
add_event(arc(/tfc : CP => [CPo] Bk>1 : CP!)) 

main_loop() 

Fig. 3. Incremental addition algorithm. 

match an a tom with a calling pa t tern of interest, then requests to process the 
rule are placed on the priority queue. Subsequent processing is exactly as for the 
nonincremental case. 

Example 2. As an example, we begin with the program for naive reversal of a 
list, r ev , already analyzed for the calling pa t te rn r e v ( X , Y) : true but without 
a definition of the append, app, predicate. The initial program is 

r e v i U , Y) : - X = [ ] M , Y = [ ] 1 > 2 . 
r e v 2 ( X , Y) : - X = [U|V] 2 , i , r ev 2 j 2 (V , W) , T = [U]2 ,3, app2 i4(W, T, Y) . 

The answer table and dependency arc tables are ( S t a t e 1) 

answer table: r e v ( X , Y) : true i—> X A Y 
app(X, Y, Z) : X i—> false 

dependency arc table: 
r e v 2 ( X , Y) : true => [X <-• (U A V)} r e v 2 j 2 ( V , W) : true 
r e v 2 ( X , Y) : true ^ [{X <-• (U A V)) A V A W A (T <-• U)\ app2 i 4(W, T, Y) : W 

We now add the rules for app one at a time. The first rule to be added is 

app 3 (X, Y, Z) : - X = [ ] 3 , i , Y = Z3>2. 

The incremental analysis begins by looking for entries referring to app in the answer 
table. It finds the entry app(X, Y,Z):X so the arc 

app 3 (X,Y,Z) :X=>[X] X = [ ] 3 > 1 : X 

is put in the priority queue. After processing this rule, the new answer X A (Y ^ Z) 
for app(X,Y,Z) : X is obtained. Taking the least upper bound of this with the 
current answer we obtain X A (Y ^ Z), and the answer table entry is updated 
(causing an updated(app(I.,Y,Z) : X) event). Examining the dependency arc table, 
the algorithm recognizes tha t the answer from rule 2 must now be recomputed. This 
gives rise to the new answer (X ^ (U A V)) A V A W A (U ^ Y) which restricted 
to {X, Y} gives X ^ Y. Taking the least upper bound of this with the current 
answer XAY gives X ^ Y. The memo table entry for r e v ( X , Y) : true is updated 
appropriately, and an updated event is placed on the queue. Again the answer to 
rule 2 must be recomputed. First we obtain a new calling pa t tern app2 j4(X, Y, Z) 
: true. This means tha t the dependency arc 

r ev 2 (X ,Y) : true => [(X <-• (U A V)) A V A W A (T <-• U)\ app2 i 4(W,T,Y) : W 

in the dependency arc table is replaced by 

r ev 2 (X ,Y) : true ^ [(X <-• (U A V) A {V <-• W) A (T <-• U)} app2 i 4(W,T,Y) : true 



This sets up a new call app(X, Y, Z) : true. The current answer for the old call 
app(X, Y, Z) : X can be used as an initial guess to the new, more general, call. 
The algorithm examines rule 3 for the new calling pat tern. It obtains the same 
answer I A ( 7 « Z ) . 

This leads to a new answer for r e v 2 ( X , Y), {X <-• {UAV))A{V <-• W)AWA{T <-• 
[/) A (T <-> y ) , which restricted to {X, Y} gives X <-> Y. This does not change 
the current answer, so the main loop of the analysis is finished. The reachability 
analysis removes the entry app(X, Y, Z) : I H I A ( 7 H 2 ) from the answer 
table. The resulting answer and dependency arc table entries are ( S t a t e 2) 

answer table: r e v ( X , Y) : true i—> X <-> Y 
app(X, Y, Z) : true i-> X A {Y <-• Z) 

dep. arc table: 
rev 2 (X,Y) : trwe => [X <-• (£/ A V)] r ev 2 j 2 (V,W) : true 
rev 2 (X,Y) : trwe => [X ^ (U AV) A (V '^ W) A (T ^ U)} app2 j 4(W,T,Y) : trwe 

If the second rule for app 

app 4 (X,Y,Z) : - X = [U|V] 4 , i , Z = [U|W]4 ,2 , app4 i3(V,Y,W) . 

is added, the analysis proceeds similarly. The final memo and dependency arc table 
entries are ( S t a t e 3) 

answer table: r e v ( X , Y) : true i—> X <-> Y 
app(X, Y, Z) : true ^ {X AY) ^ Z 

dep. arc table: 
(A) r e v 2 ( X , Y) : true ^ [X <-• ( [ / A V ) ] rev2 j 2(V,W) : true 
(B) rev 2 (X,Y) : t rwe^> [X <-• (£/ A V) A (V <-• W") A (T <-• £/)] app2 j4(W,T,Y):trMe 
(C) app 4 (X,Y,Z) : trwe => [X ^ (U A V) A Z <-• ( [ / A l f ) ] app4 i3(V,Y,W) : trwe 

D 

Correctness of the incremental addition algorithm follows from correctness of 
the original generic algorithm. Essentially, execution of the incremental addition 
algorithm corresponds to executing the generic algorithm with all rules but with 
the new rules having the lowest priority for processing. It therefore follows from 
Corollary 1 that : 

THEOREM 2. If the rules in a program are analyzed incrementally with the in
cremental addition algorithm, the same answer and dependency arc tables will be 
obtained as when all rules are analyzed at once by the generic algorithm. 

In a sense, therefore, the cost of performing the analysis incrementally can be no 
worse than performing the analysis all at once, as the generic analysis could have 
used a priority strategy which has the same cost as the incremental strategy. We 
will now formalize this intuition. Our cost measure will be the number of calls to 
the underlying parametric functions. This is a fairly simplistic measure, but our 
results continue to hold for reasonable measures. 

Let Cnoninc(F, R, S) be the worst-case number of calls to the parametric functions 
F when analyzing the rules R and call pat terns S for all possible priority strategies 
with the generic analysis algorithm. 



Let Cadd(F, R, R', S) be the worst-case number of calls to the parametric func
tions F when analyzing the new rules R' for all possible priority strategies with 
the incremental addition algorithm after already analyzing the program R for call 
patterns S. 

THEOREM 3. Let the set of rules R be partitioned into i?i,..., Rn rule sets. For 
any call patterns S and parametric functions F, 

n j<i 

(F,R,S)>Y,Cadd(P,(\jRj),Ri,S). 
i=i j=i 

The theorem holds because the priority strategies which give the worst-case be
havior for each of the i?i, ..., Rn can be combined to give a priority strategy for 
analyzing the program nonincrementally. 

We note that our theorems comparing relative complexity of incremental and 
nonincremental analysis (Theorems 3, 5, and 8) are rather weak, since they relate 
only the worst-case complexity. Unfortunately, it is difficult to provide more in
sightful analytic comparisons; instead we will provide an empirical comparison in 
Section 6. 

4. INCREMENTAL DELETION 

In this section we consider deletion of rules from an already analyzed program and 
how to incrementally update the analysis information. The first thing to note is 
that, unlike incremental addition, we need not change the analysis results at all. 
The current approximation is trivially guaranteed to be correct, because an answer 
table entry A : CP i-^ AP is computed by taking the least upper bound of the 
contribution of all rules in the definition of A. If some rules with A as head are 
deleted, the previously computed answer pattern AP is still clearly correct for the 
remaining rules. This approach is obviously inaccurate but simple. 

4.1 Refinement 

More accuracy can be obtained by applying a strategy similar to narrowing [Cousot 
and Cousot 1979]. Narrowing is a generic fixed-point approximation technique in 
which analysis proceeds from above the least fixed point and iterates downward 
until a fixed point (not necessarily the least fixed point) is reached. We can use 
this approach because the current approximations in the answer table are greater 
than or equal to those in the answer table of the program analysis graph for the 
modified program. Applying the analysis engine as usual except taking the greatest 
lower bound (gib), written n, of new answers with the old rather than the least 
upper bound is guaranteed to produce a correct, albeit perhaps imprecise, result. 
We can let this process be guided from the initial changes using the dependency 
graph information. Care must be taken to treat new calling patterns that arise in 
this process correctly. Note this narrowing-like strategy is correct in part because 
of the existence of a Galois connection between the concrete and abstract domains, 
as this means that gib on the abstract domain approximates gib on the underlying 
concrete domain. 



top_down_delete(D, S) 
H := {A\(A :- B) £ D} 
T := depend(H) 
foreach A : CP € T 

delete entry A : CP i—> _ from answer table 
delete each arc A_ : CP =>[_]_ : _ from dependency arc table 

foreach A: CP € S n T 
add-event(newcall(A : CP)) 

main_loop() 

Fig. 4. Top-down incremental deletion algorithm. 

Example 3. Consider the program in Example 2 after both additions. The cur
rent answer table and dependency graph entries are given by State 3. Deleting 
rule 4 results in the following process. 

First we delete all dependency arcs which correspond to deleted rules. In this 
case we remove the arc app4(X, Y, Z) : true =>• [_] app4i(V, Y, W) : true. In 
general we may subsequently delete other dependency arcs which are no longer 
required. 

We recompute the answer information for all (remaining) rules for app(X, Y, Z) 
for all calling patterns of interest using the current answer information. We obtain 
app(X, Y, Z) : true H I A J Y H Z ) . 

Because this information has changed we now need to consider recomputing an
swer information for any calling patterns that depend on app(X, Y, Z) : true, in 
this case rev(X, Y) : true. Recomputing using rules 1 and 2 obtains the same an
swer information X <-> Y. The result is State 2 (with the useless entry for app(X, 
Y, Z):X removed). 

Deleting rule 3 subsequently leads back to State 1 as expected. In contrast, 
removing rule 3 from the program consisting of rules 1 to 4 does not result in re
covering State 1 as might be expected. This highlights the possible inaccuracy of 
the narrowing method. In this case rule 4 prevents more accurate answer informa
tion from being acquired. • 

The disadvantage of this method is its inaccuracy. Starting the analysis from 
scratch will often give a more accurate result. We now give two algorithms which 
are incremental yet are as accurate as the nonincremental analysis. 

4.2 "Top-Down" Deletion Algorithm 

The first accurate method we explore for incremental analysis of programs after 
deletion is to remove all information in the answer and dependency arc tables which 
depends on the rules which have been deleted and then to restart the analysis. Not 
only will removal of rules change the answers in the answer table, it will also mean 
that subsequent calling patterns may change. Thus we will also remove entries in 
the dependency arc table for those rules which are going to be reanalyzed. 

Information in the answer table and dependency arc table allows us to find these 
no longer valid entries. Let D be the set of deleted rules and H be the set of atoms 
which occur as the head of a deleted rule, i.e., H is {A|(A : - B) G D}. We let 
depend(H) denote the set of calling patterns whose answers depend on some atom 



in H. More precisely, depend(H) is the smallest superset of 

{(A : CP)\(A : CP ^ AP) e answer table and A £ H} 

such tha t if A : CP is in depend(H) and there is an dependency arc of the form 
B_ : CP0 => [.]A'_ : CP' such tha t A' : CP' is a renaming of A : CP then B : CP0 is 
also in depend(H). After entries for these dependent calling pat terns which are no 
longer valid are deleted, the usual generic analysis is performed. The routine for 
top-down rule deletion is given in Figure 4. It is called with the set of deleted rules 
D and a set of initial calling pat terns S. 

Example 4. Consider the program 

qi : - p i , i (X, Y ) , n , 2 ( X , Y, Z) , s l j 3 ( Y , Z) . 
p 2 (X , Y) : - X = a 2 , i , Y = b 2 j 2 . 
p 3 (X , Y) : - X = Y3 , i . 
r 4 ( X , Y, Z) : - X = Z4 , i . 
r 5 ( X , Y, Z) : - Y = Z s , i . 
s 6 (Y , Z) : - Y = c 6 , i . 

After program analysis we obtain (S ta te 5) 

answer table: q : true i—> true 
p(X, Y) : true^X ^ Y 
r ( X , Y, Z) : X ^Y^(X ^Y)A(Y ^ Z) 
s (Y, Z) :Y ^ Z ^ Y AZ 

dependency arc (D) qi : true =>• [trwe] p i i ( X , Y) : trwe 
ta&Ze: (E) qi : true => [X <r+Y]' r i j 2 ( X , Y, Z) : X <-• y 

(F) q i : trwe => [(X ^ Y) A (Y <-• Z)\ s l j 3 ( Y , Z) : y <-• Z 

Now consider the deletion of rule r^. H = {r(X, Y, Z)} and depend{H) = {r(X, Y, Z) : 
X <-> y , q : t rwe}. Hence, the answer table entries for r and q are deleted and also 
all the dependency arcs are deleted since they are all for predicate q which is going 
to be reanalyzed. The initial s tate (S ta te 6) when we star t the main loop is 

answer table: p(X, Y) : true i—> X <-> Y 
s (Y, Z) : y ^ Z ^ Y AZ 

dependency arc table: no entries 

The only entry in the priority queue is newcall(q : true). Then, the execution 
of main loop processes this event by adding the entry q : true i—> false to the 
answer table and an arc event for (D). This is selected; arc (D) is added again 
to the dependency arc table; and arc (E) is placed on the priority queue. This 
is selected; arc (E) is placed back in the dependency arc table, and the event 
newcall(r(.1, Y, Z) : X ^ Y) is placed on the queue. This generates an answer 
entry r ( X , Y, Z) : I « 7 K false and arc r 4 ( X , Y, Z) : X <-• Y => [X <-• 
y ] X = Z : trwe. This in tu rn generates new answer information (X ^ Y) A (Y ^ 
Z) and the event updated(r(X, Y, Z) : X ^ Y). This is replaced with arc (E), 
which is replaced with arc (F), which results in arc (F) being added again to the 
dependency graph and new answer info q : true i—> true and an event updated(q : 



true) which is removed with no effect. The resulting state is identical to the start ing 
s tate ( S t a t e 5). • 

Example 5. Consider again the r e v and app program in Example 2. After anal
ysis of the entire program we are in S t a t e 3 . Now consider the deletion of rule 
3 from the program consisting of rules 1 to 4. T = depend(app (X, Y, Z)) is all 
the calling pat terns, so the answer table and dependency arc table are emptied. 
Reanalysis is complete start ing from the initial calling pa t te rn rev(X, Y) : true and 
results in S t a t e 1 as expected. Note tha t this is the case in Example 3 for which 
the refinement method yielded an inaccurate answer. • 

Correctness of the incremental top-down deletion algorithm follows from correct
ness of the original generic algorithm. Execution of the top-down deletion algorithm 
is identical to tha t of the generic algorithm except tha t information about the an
swers to some call pat terns which do not depend on the deleted rules is already in 
the da ta structures. 

THEOREM 4. If a program P is first analyzed and then rules R are deleted from 
the program and the remaining rules are reanalyzed with the top-down deletion 
algorithm, the same answer and dependency arc tables will be obtained as when the 
rules P\ R are analyzed by the generic algorithm. 

The cost of performing the actual analysis incrementally can be no worse than 
performing the analysis all at once. Let Cdei-td(F,R,R',S) be the worst-case 
number of calls to the parametric functions F when analyzing the program R 
with rules R' deleted for all possible priority strategies with the top-down deletion 
algorithm after already analyzing the program R for call pat terns S. 

THEOREM 5. Let R and R' be sets of rules such that R' C R. For any call 
patterns S and parametric functions F, 

Cnoninc(F, R\ R , S) > Cdel-td(F, R, R , S). 

4.3 "Bottom-Up" Deletion Algorithm 

The last theorem shows tha t the top-down deletion algorithm is never worse than 
start ing the analysis from scratch. However, in practice it is unlikely to be tha t 
much better, as on average deleting a single rule will mean tha t half of the depen
dency arcs and answers are deleted in the first phase of the algorithm. The reason 
is tha t the top-down algorithm is very pessimistic—deleting everything unless it 
is sure tha t it will be both correct and useful. For this reason we now consider a 
more optimistic algorithm. The algorithm assumes tha t calling pat terns to changed 
predicate definitions are still likely to be useful. In the worst case it may spend a 
large amount of time reanalyzing calling pat terns tha t end up being useless. But 
in the best case we do not need to reexamine large parts of the program above 
changes when no actual effect is felt. 

The algorithm proceeds by computing new answers for calling pat terns in the 
lowest strongly connected component3 (SCC) of the set depend(H) of calling pat-

3 The set of nodes in a graph can be partitioned into strongly connected components S\,..., Sn 

n > 0 so that no node in Si can reach a node is Sj,Vj > i. Two nodes rii,ri2 are in the same 
strongly connected component Si if and only if both n\ can reach ni and ni can reach n\. 


