
Incremental Analysis of Constraint Logic Programs

MANUEL HERMENEGILDO and GERMAN PUEBLA

Universidad Politecnica de Madrid

KIM MARRIOTT

Monash University

and

PETER J. STUCKEY

University of Melbourne

Global analyzers traditionally read and analyze the entire program at once, in a nonincremental
way. However, there are many situations which are not well suited to this simple model and
which instead require reanalysis of certain parts of a program which has already been analyzed.
In these cases, it appears inefficient to perform the analysis of the program again from scratch,
as needs to be done with current systems. We describe how the fixed-point algorithms used in
current generic analysis engines for (constraint) logic programming languages can be extended to
support incremental analysis. The possible changes to a program are classified into three types:
addition, deletion, and arbitrary change. For each one of these, we provide one or more algorithms
for identifying the parts of the analysis that must be recomputed and for performing the actual
recomputation. The potential benefits and drawbacks of these algorithms are discussed. Finally,
we present some experimental results obtained with an implementation of the algorithms in the
PLAI generic abstract interpretation framework. The results show significant benefits when using
the proposed incremental analysis algorithms.

Categories and Subject Descriptors: D.1.2 [Programming Techniques]: Automatic Program
ming—Automatic analysis of algorithms, Program transformation; D.1.6 [Programming Tech
niques]: Logic programming; D.3.4 [Programming Languages]: Compilers; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning about programs—Logics of
programs

General Terms: Languages
Additional Key Words and Phrases: Abstract interpretation, constraint logic programming, in
cremental computation, static analysis

Authors' addresses: M. Hermenegildo and G. Puebla, Facultad de Informatica, Uni
versidad Politecnica de Madrid, 28660-Boadilla del Monte, Madrid, Spain; email:
{herme;german}@fi.upm.es; K. Marriott, School of Computer Science and Software Engineering,
Monash University Clayton 3168, Australia; email: marriott@csse.monash.edu.au; P.J. Stuckey,
Dept. of Computer Science and Software Engineering, The University of Melbourne, Parkville
3052, Australia; email: pjs@cs.mu.oz.au.

http://upm.es
mailto:marriott@csse.monash.edu.au
mailto:pjs@cs.mu.oz.au

1. INTRODUCTION

Global program analysis is becoming a practical tool in constraint logic program
compilation in which information about calls, answers, and the effect of the con
straint store on variables at different program points is computed statically [Herme
negildo et al. 1992; Van Roy and Despain 1992; Muthukumar and Hermenegildo
1992; Santos-Costa et al. 1991; Bueno et al. 1994]. The underlying theory, formal
ized in terms of abstract interpretation [Cousot and Cousot 1977], and the related
implementation techniques are well understood for several general types of analysis
and, in particular, for top-down analysis of Prolog [Debray 1989; 1992; Bruynooghe
1991; Muthukumar and Hermenegildo 1992; Marriott et al. 1994; Charlier and Van
Hentenryck 1994]. Several generic analysis engines, such as PLAI [Muthukumar
and Hermenegildo 1992; 1990], GAIA [Charlier and Van Hentenryck 1994], and
the CLP (TV) analyzer [Kelly et al. 1998b], facilitate construction of such top-down
analyzers. These generic engines have the description domain and functions on this
domain as parameters. Different domains give analyzers which provide different
types of information and degrees of accuracy. The core of each generic engine is
an algorithm for efficient fixed-point computation [Muthukumar and Hermenegildo
1990; 1992; Charlier et al. 1993]. Efficiency is obtained by keeping track of which
parts of a program must be reexamined when a success pattern is updated. Current
generic analysis engines are nonincremental—the entire program is read, analyzed,
and the analysis results written out.

Despite the obvious progress made in global program analysis, most logic pro
gram and CLP compilers still perform only local analysis (although the <fc-Prolog
[Hermenegildo and Greene 1991], Aquarius [Van Roy and Despain 1992], Andorra-I
[Santos-Costa et al. 1991], and CLP (TV) [Kelly et al. 1998a] systems are notable
exceptions). We believe that an important contributing factor to this is the simple,
nonincremental model supported by global analysis systems, which is unsatisfactory
for at least three reasons:

—The first reason is that optimizations are often source-to-source transformations;1

optimization consists of an analyze, perform transformation, then reanalyze cy
cle. This is inefficient if the analysis starts from scratch each time. Such analyze-
transform cycles may occur for example when program optimization and multi-
variant specialization are combined [Winsborough 1992; Puebla and Hermene
gildo 1995; 1999]. This is used, for instance, in program parallelization, where an
initial analysis is used to introduce specialized predicate definitions with run-time
parallelization tests, and then these new definitions are analyzed and those tests
which become redundant in the multiply specialized program removed. It is also
the case in optimization of CLP (TV) in which specialized predicate definitions are
reordered and then reanalyzed.

—The second reason is that incremental analysis supports incremental runtime
compilation during the test-debug cycle. Again, for efficiency only those parts of
the program which are affected by the changes should be reanalyzed. Incremental

xBy source-to-source transformation we include transformations on the (high-level) internal com
piler representation of the program source, which for (constraint) logic program compilers tend to
be very close to the source.

compilation is important in the context of logic programs as traditional environ
ments have been interpretive, allowing the rapid generation of prototypes. Incre
mental analysis is especially important when the system uses analysis information
in order to perform compile-time correctness checking of the program [Puebla
et al. 2000; Hermenegildo et al. 1999b].

—The third reason is to better handle the optimization of programs in which rules
are asserted (added) to or retracted (removed) from the program at runtime.

Clearly, if we modify a program the existing analysis information for it may no
longer be correct and/or accurate. However, analysis is often a costly task, and
starting analysis again from scratch does not appear to be the best solution. In
this article we describe how the fixed-point algorithm in the top-down generic anal
ysis engines for (constraint) logic programs can be extended to support incremental
analysis. Guided by the applications mentioned above, we consider algorithms for
different types of incrementality. The first, and simplest, type of incrementality is
when program rules are added to the original program. The second type of incre
mentality is rule deletion. We give several algorithms to handle deletion. These
capture different trade-offs between efficiency and accuracy. The algorithms for
deletion can be easily extended to handle the third and most general type of incre
mentality, arbitrary change, in which program rules can be deleted or modified in
any way. Finally, we consider a restricted type of arbitrary change: local change
in which rules are modified, but the answers to the rules are unchanged for the
calling patterns they are used with. This case occurs in program optimization, as
correctness of the optimization usually amounts to requiring this property. Local
change means that changes to the analysis are essentially restricted to recomputing
the new call patterns which these rules generate. We give a modification to the
fixed-point algorithm which handles this type of incrementality. Finally we give
a preliminary empirical evaluation. We argue that the experimental results show
that our algorithms are practically important.

In the next section we present the formalization of a fixed-point algorithm which
generalizes those used in generic analysis engines. In Section 3 we give an algorithm
to handle incremental addition of rules. In Section 4 we give two algorithms to
handle incremental deletion of rules. In Section 5 we modify these algorithms to
handle arbitrary change of rules. We also give an algorithm to handle the special
case of local change. In Section 6 we describe the implementation of the algorithms
and our empirical evaluation. Section 7 discusses related work while Section 8
concludes.

2. A GENERIC ANALYSIS ALGORITHM

We start by providing a formalization of a fixed-point algorithm for analysis of (con
straint) logic programs. We assume the reader is familiar with constraint logic pro
gramming (e.g., see Marriott and Stuckey [1998]) and abstract interpretation (see
Cousot and Cousot [1977]). The aim of goal-directed top-down program analysis
is, for a particular description domain, to take a program and a set of initial calling
patterns and to annotate the program with information about the current environ
ment at each program point whenever that point is reached when executing calls
described by the calling patterns.

2.1 Program Analysis by Abstract Interpretation

Abstract interpretation [Cousot and Cousot 1977] is a technique for static pro
gram analysis in which execution of the program is simulated on a description (or
abstract) domain (D) which is simpler than the actual (or concrete) domain (C).
Values in the description domain and sets of values in the actual domain are related
via a pair of monotonic mappings (a, 7): abstraction a : C —> D and concretization
7 : D ^ C which form a Galois connection. A description d e D approximates an
actual value c € C i f a(c) < d where < is the partial ordering on D. Correctness
of abstract interpretation guarantees that the descriptions computed approximate
all of the actual values which occur during execution of the program.

Different description domains may be used which capture different properties with
different accuracy and cost. The description domain that we use in our examples
is the definite Boolean functions [Armstrong et al. 1994], denoted Def. The key
idea in this description is to use implication to capture groundness dependencies.
The reading of the function x —> y is "if the program variable x is (becomes)
ground, so is (does) program variable y." For example, the best description of the
constraint f(X, Y) = f(a, g(U, V)) is X A (Y <-> (U A V)). Groundness information
is directly useful for many program optimizations such as constraint simplification,
parallelization, and simplification of built-ins. It is also indirectly useful for almost
all other optimizations of (constraint) logic programs, since it can be combined with
many other analysis domains to give more precise analysis information.

We now recall some standard definitions in constraint logic programming. A con
straint logic program or program is a set of rules of the form A : - L\,..., Ln. where
L i , . . . , Ln are literals and A is an atom said to be the head of the rule. A literal is
an atom or a primitive constraint. We assume that each atom is normalized; that
is to say, it is of the form p(xi,..., xm) where p is an m-ary predicate symbol and

distinct variables. A primitive constraint is defined by the underly
ing constraint domain and is of the form c(e i , . . . , em) where c is an m-ary predicate
symbol and the e i , . . . , em are expressions. For simplicity, in the examples we shall
restrict ourselves to the Herbrand domain (Prolog) where primitive constraints are
of the form e\ = &2 where e\ and &2 are terms.

As an example of goal-directed top-down program analysis, consider the following
program for appending lists:

app(X,Y,Z) : - X=[], Y=Z.
app(X,Y,Z) : - X=[U|V], Z=[U|W], app(V,Y,W).

Assume that we are interested in analyzing the program for the call app(X, Y, Z)
with initial description Y indicating that we wish to analyze it for any call to
app with the second argument definitely ground. We will denote this as the calling
pattern app(X, Y, Z) : Y. In essence the analyzer must produce the program analysis
graph given in Figure 1, which can be viewed as a finite representation of the
(possibly infinite) set of (possibly infinite) AND-OR trees explored by the concrete
execution [Bruynooghe 1991]. Finiteness of the program analysis graph (and thus
termination of analysis) is achieved by considering description domains with certain
characteristics (such as being finite, or of finite height, or without infinite ascending
chains) or by the use of a widening operator [Cousot and Cousot 1977]. The graph
has two sorts of nodes: those belonging to rules (also called "AND-nodes") and

{app(X, Y, Z) : Y i-> Y A (X <-• Z))

app(X,Y,Z)° :- X = [J1, Y = Z2 app(X,Y,Z)3 :- X = [U|V]4, Z = [U|W]B, app(V,Y,W)6 .

0 : Y

1 : YAX

2 : X A Y A Z

Fig. 1. Example program analysis graph.

those belonging to atoms (also called "OR-nodes"). For example, the atom node
{app(X, Y,Z) : 7 H> Y A (I « Z)) indicates that when the atom app(X, Y, Z) is
called with description Y the resulting description is Y A (X <-> Z). This answer
description depends on the two rules defining app which are attached by arcs to
the node. These rules are annotated by descriptions at each program point of the
constraint store when the rule is executed from the calling pattern of the node
connected to the rules. The program points are at the entry to the rule, the point
between each two literals, and at the return from the call. Atoms in the rule body
have arcs to OR-nodes with the corresponding calling pattern. If such a node is
already in the tree it becomes a recursive call. Thus, the analysis graph in Figure 1
has a recursive call to the calling pattern app(X, Y, Z) : Y. How this program
analysis graph is constructed is detailed in Example 1.

It is implicit in this approach that the description at each program point rep
resents sets of constraints rather than sequences of constraints. Although it is
possible to base an analysis on sequences rather than sets, (e.g., see Charlier et al.
[1994]) almost all generic (constraint) logic program analysis engines are set-based
rather than sequence-based, so we shall focus on these.

As we have seen, a program analysis graph is constructed from an initial set of
calling patterns and a program. It is defined in terms of five abstract operations
on the description domain. As is standard these are required to be monotonic
and to approximate the corresponding concrete operations; for more details see for
example Garcia de la Banda et al. [1998]. The abstract operations are

—Arestrict(CP, V) which performs the abstract restriction of a description CP to
the variables in the set V;

—Aextend(CP, V) which extends the description CP to the variables in the set V;

—Aadd(C, CP) which performs the abstract operation of conjoining the actual con
straint C with the description CP;

—Aconj(CPi, CP2) which performs the abstract conjunction of two descriptions;

—Alub(CPi, CP2) which performs the abstract disjunction of two descriptions.

Y
Y A(X •

Y A(X •

Y A(X •

(UAV))

(U AV)) A(Z •

(U AV)) A(Z •
(U AW))

(U AW)) A(V • W)

As an example, the abstract operations for the description domain Def are de
fined as follows. We start by defining the abstraction operation ajjef which gives
the best description of a constraint. It will be used in the Aadd operation and is
defined as

aDef(x = t) = (x <-• /\{y e vars(t)})

where x is a variable, t is a term, and the function vars returns the set of variables
appearing in some object. For instance, ajjef(X = [U\V]) is X <-> (U A V). We
note that term constraints can always be simplified to conjunctions of this form.
Extending to conjunctions, we have

«De/(ei A • • • A ek) = aDeS(ei) A • • • A aDef(ek)

where e i , . . . , ek are term equations.
The abstract operations for the description domain Def are defined as follows:

Arestrict(CP,Vr) = 3-VCP

Aextend(CP,Vr) = CP

Aadd(C, CP) = aDef{C) A CP

Aconj(CPi, CP2) = CPX A CP2

Alub(CPi,CP2) = CP1UCP2

where 3-yF represents 3«i • • • 3vkF where {vi,... ,vk} = vars(F) — V, and U is
the least upper bound (lub) operation over the Def lattice (e.g., Armstrong et al.
[1994]). The top (T) of the the Def lattice is the formula true while the bottom
(_L) is the formula false.

For a given program and calling pattern there may be many different analysis
graphs. However, for a given set of initial calling patterns, a program and abstract
operations on the descriptions, there is a unique least analysis graph which gives
the most precise information possible.

For the reader with a formal bent, an alternative way of understanding the anal
ysis graph is in terms of the recursive equations for the general goal-dependent
semantics given in Garcia de la Banda et al. [1998]. The least analysis graph
corresponds to their least fixed point.

2.2 The Generic Algorithm

We will now describe our generic top-down analysis algorithm which computes the
least analysis graph. This algorithm captures the essence of the particular analysis
algorithms used in systems such as PLAI [Muthukumar and Hermenegildo 1990;
1992], GAIA [Charlier and Van Hentenryck 1994], and the CLP(^) analyzer [Kelly
et al. 1998b]. It will form the basis for our algorithms for incremental analysis. How
ever there are several minor differences between the generic algorithm we present
and these systems:

—First, the order in which rules for the same predicate are processed to compute
the graph is not fixed, since the algorithm is parametric in the analysis strategy
used to determine this order. The reasons for this are two-fold: the first reason
is generality. The second reason is that the analysis strategy used for static

analysis is not necessarily good for incremental analysis, and so we need to be
able to explicitly refer to and reason about different strategies.

—Second, the algorithm keeps detailed information about dependencies for each
literal in the graph. This is finer grained dependency information than that usu
ally maintained in top-down analysis algorithms. We require this extra precision
for efficiency in most of the incremental analysis algorithms.2

—Third, the algorithm is deliberately simplified. It does not include many minor
optimizations, so as not to obscure the core behavior of the algorithm. Also, it is
only defined for pure CLP programs. However, standard analysis techniques for
handling constructs such as cuts, not, and -> and other built-ins can be added
without difficulty [Bueno et al. 1996]; indeed the implementation actually handles
(almost) full ISO-Prolog.

We first introduce some notation. CP, possibly subscripted, stands for a descrip
tion (in the abstract domain). AP, possibly subscripted, stands for a description
occurring as an answer description. Each literal in the program is subscripted with
an identifier or pair of identifiers. The expression A : CP denotes a calling pattern.
This consists of an atom (unsubscripted or subscripted) together with a calling
description for that atom.

As indicated earlier, rules are assumed to be normalized: only distinct variables
are allowed to occur as arguments to atoms. Furthermore, we require that each rule
defining a predicate p has identical sequence of variables xpi,... xPn in the head
atom, i.e., p(xpi,... xPn). We call this the base form of p. Rules in the program are
written with a unique subscript attached to the head atom (the rule number), and
dual subscript (rule number, body position) attached to each body literal, e.g.,

Hk '•- Bfc,l, • • •, Bfc,nfc-

where Bk,i is a subscripted atom or constraint. The rule may also be referred to
as rule k, the subscript of the head atom. For example, the append program of
Section 2.1 is written

appiU.Y.Z) : - X=[]i,i, Y=Zlj2.
app2(X,Y,Z) : - X=[U|V]2,i, Z=[U|W]2j2, app2i3(V,Y,W) .

The base form of app is app(X, Y,Z), and each app atom only involves distinct
variables as arguments.

The program analysis graph is implicitly represented in the algorithm by means
of two data structures, the answer table and the dependency arc table. Given the
information in these it is straightforward to construct the graph and the associated
program point annotations. The answer table contains entries of the form A :
CP i—> AP. A is always a base form. This corresponds to an OR-node in the
analysis graph of the form {A : CP i—> AP). It is interpreted as the answer pattern
for calls of the form CP to A is AP. A dependency arc is of the form Hk '• CPo =>
[CPi] Bki '• C?2- This is interpreted as follows: if the rule with Hk as head is called
with description CPo then this causes literal Bk,i to be called with description CP2.

2In fact, as we shall see, the overhead of keeping more detailed information is compensated for by
avoiding redundant recomputation when an answer pattern is changed.

The remaining part CP\ is the program annotation just before B]~}i is reached and
contains information about all variables in rule k. CP\ is not really necessary, but is
included for efficiency. Dependency arcs represent the arcs in the program analysis
graph from atoms in a rule body to an atom node. For example, the program
analysis graph in Figure 1 is represented by

answer table: app(X, Y, Z) : Y i—> Y A (X <-> Z)
dependency arc table:

app2(X,Y,Z): Y => [Y A {X <-• {U A V)) A {Z <-• (U AW))] app2i3(V,Y,W): Y

Intuitively, the analysis algorithm is just a graph traversal algorithm which places
entries in the answer table and dependency arc table as new nodes and arcs in the
program analysis graph are encountered. To capture the different graph traversal
strategies used in different fixed-point algorithms, we use a priority queue. Thus,
the third, and final, structure used in our algorithms is a prioritized event queue.
Events are of three forms:

—newcall(A : CP) which indicates that a new calling pattern for atom A with
description CP has been encountered.

—arc(R) which indicates that the rule referred to in R needs to be (re)computed
from the position indicated.

—updated(A : CP) which indicates that the answer description to calling pattern
A with description CP has been changed.

The generic analysis algorithm is given in Figure 2. Apart from the parametric
description domain-dependent functions, the algorithm has several other undefined
functions. The functions adcLevent and next_event respectively add an event to the
priority queue and return (and delete) the event of highest priority.

When an event being added to the priority queue is already in the priority queue,
a single event with the maximum of the priorities is kept in the queue. When an
arc Hk : CP =>• [CP"]Bk,i : CP' is added to the dependency arc table, it replaces
any other arc of the form Hk : CP =>• [_]Bfc,i : - m the table and the priority queue.
Similarly when an entry Hk : CP i-^ AP is added to the answer table, it replaces
any entry of the form Hk : CP i—> _. Note that the underscore (_) matches any
description, and that there is at most one matching entry in the dependency arc
table or answer table at any time.

The function initiaLguess returns an initial guess for the answer to a new calling
pattern. The default value is _L but if the calling pattern is more general than an
already computed call then its current value may be returned.

The algorithm centers around the processing of events on the priority queue
in mainJoop, which repeatedly removes the highest priority event and calls the
appropriate event-handling function. When all events are processed it calls re-
move_useless_calls. This procedure traverses the dependency graph given by the
dependency arcs from the initial calling patterns S and marks those entries in the
dependency arc and answer table which are reachable. The remainder are removed.

The function new_calling_pattern initiates processing of the rules in the definition
of atom A, by adding arc events for each of the first literals of these rules, and
determines an initial answer for the calling pattern and places this in the table.
The function add_dependent_rules adds arc events for each dependency arc which

analyze(S')
foreach A : CP € S

add_ever\t(newcall(A
main_loop()

CP))

main_loop()
whi le E := next_event()

if (E = newcall(A : CP))
new_calling_pattern(/t : CP)

elseif (E = updated{A : CP))
add_dependent_rules(/t : CP)

elseif [E = arc(R))
process_arc(i?)

endwhi l e
remove_useless_calls(Sr)

new_calling_pattern(/t : CP)
foreach rule Ak : - Bk>1,..., Bk>nk

CPo :=
Aextend(CP, vars(Bk 1, • • •, Bkn

GP\ := Arestrict(CPo,vars(Bk>1))
add_event(arc(

Ak : CP^lCPo] Bk>1 : CP!))
AP := initial_guess(A : CP)
if (AP / _L)

add-event(updated(A : CP))
add A : CP i—> AP to answer table

add_dependent_rules(/t : CP)
foreach arc of the form

Hk : CPo => [CPi] Bk>i : CP2

in graph
w h e r e there exists renaming a

s.t. A : CP= (Bk>i : CP2)a
add_event(arc(

Hk : CPo => [CP!] Bk>i : CP2))

process_arc(H fc : CP0 => [CPi] Bk>i : CP2)
if (Bk i is not a constraint)

add Hk : CPo => [CPi] B fc] i : CP2

to dependency arc table
VF := vars(Ak :- Bk>1,..., Bk>nk)
CP3 := get_answer(Bfc>i : CP2, CPi,W)
if (CP 3 / -L and i ^ nk)

CPA := Arestrict(CP3,vars(Bk>i+1))
add_event(arc(

Hk : CPo ^ [CP3] Bk>i+1 : CP4))
elseif (CP3 / ± and i = nk)

AP\ := Arestrict(CPz,vars(Hk))
insert_ans¥er_info(i? : CPo 1—> AP\)

get_answer(L : CP2, CPltW)
if (L is a constraint)

r e t u r n Aadd(L, CPi)
else

APo := lookup_answer(L : CP2)
AP! := Aextend(AP0,VF)
r e t u r n Aconj(CPi, AP\)

lookup_answer(yl : CP)
if (there exists a renaming a s.t.

a (A : CP) 1—> AP in answer table)
r e t u r n a~1(AP)

else
add_event(raewcaH(<j(yl : CP)))
where a is a renaming s.t.
<r(/t) is in base form
r e t u r n _L

insert_answer_inf o(H : CP 1—> AP)
APo := lookup_answer(H : CP)
AP! := Alub(AP, APo)
if (APo / A Pi)

add (H : CP 1—> AP\) to answer table
add_event(-upcfcife(i(H : CP))

Fig. 2. Generic analysis algorithm.

depends on the calling pattern (A : CP) for which the answer has been updated.
The function process_arc performs the core of the analysis. It performs a single step
of the left-to-right traversal of a rule body. If the literal B^i is an atom, the arc
is added to the dependency arc table. The current answer for the call Bk,i '• CP<2
is conjoined with the description CP\ from the program point immediately before
Bki to obtain the description for the program point after B^i. This is either used
to generate a new arc event to process the next literal in the rule if B^i is not
the last literal; otherwise the new answer for the rule is combined with the current
answer in insert_answer_info. The function get_answer processes a literal. If it is a
constraint, it is simply abstractly added to the current description. If it is an atom,
the current answer to that atom for the current description is looked up; then this
answer is extended to the variables in the rule the literal occurs in and conjoined
with the current description. The functions lookup_answer and insert_answer_info

lookup an answer for a calling pa t tern in the answer table, and update the answer
table entry when a new answer is found, respectively. The function lookup_answer
also generates newcall events in the case tha t there is no entry for the calling
pa t tern in the answer table.

2.3 Example of the Generic Algorithm

The following example briefly illustrates the operation of the generic fixed-point
algorithm. It shows how the app program would be analyzed, to obtain the program
analysis graph shown in Figure 1.

Example 1. Analysis begins from an initial set S of calling pat terns . In our
example S contains the single calling pa t te rn app(X,Y,Z) :Y. The first step in the
algorithm is to add the initial calling pat terns as new calling pat terns to the priority
queue. After this the priority queue contains

newcalK app(X,Y,Z) :Y)

and the answer and dependency arc tables are empty. The newcall event is taken
from the event queue and processed as follows. For each rule defining app, an arc is
added to the priority queue which indicates the rule body must be processed from
the initial literal. An entry for the new calling pa t tern is added to the answer table
with an initial guess of false (_L for Def) as the answer. The da ta structures are
now

priority queue: arc(app i (X, Y, Z) : Y =>• [Y] X = [] i i : true)
arc(app 2 (X, Y, Z) : Y => [Y] X=[U|V]2,i : true)

answer table: app(X, Y, Z) : 7 i - » false
dependency arc table: no entries

An arc on the event queue is now selected for processing, say the first. The routine
get_answer is called to find the answer pa t te rn to the literal X=[] with description
true. As the literal is a constraint, the parametric routine Aadd is used. It returns
the answer pa t tern X. A new arc is added to the priority queue which indicates
tha t the second literal in the rule body must be processed. The priority queue is
now

arc(app i (X, Y, Z) : Y => [X A Y] Y=Zij2 : X)
arc(app 2 (X, Y, Z) : Y => [Y] X=[U|V]2',i : true).

The answer and dependency arc table remain the same.
Again, an arc on the event queue is selected for processing, say the first. As

before, get_answer and Aadd are called to obtain the next annotat ion X A Y A Z.
This time, as there are no more literals in the body, the answer table entry for
app(X, Y,Z):Y is updated. Alub is used to find the least upper bound of the new
answer X AY A Z with the old answer false. This gives X AY A Z. The entry in
the answer table is updated, and an updated event is placed on the priority queue.
The da ta structures are now

priority queue: updatedX app(X, Y, Z) : Y)
arc(app 2 (X, Y, Z) : Y => [Y] X=[U|V]2,i : true)

answer table: app(X, Y, Z) :Y^XAY AZ
dependency arc table: no entries

The updated event can now be processed. As there are no entries in the de
pendency arc table, nothing in the current program analysis graph depends on the
answer to this call, so nothing needs to be recomputed. The priority queue now
contains

arc{ app 2 (X, Y, Z) : Y => [Y] X=[U|V]2,i : true).

The answer and dependency arc table remain the same.

Similarly to before we process the arc, giving rise to the new priority queue

arc(app 2 (X, Y, Z) : Y => [Y A {X <-• (U A V))] Z=[U|W] 2,2 : true).

The arc is processed to give the priority queue

arc{ app 2 (X, Y, Z) : Y => [Y A {X <-• {U AV))A{Z ^ (U AW))]
app(V,Y,W)2,3 : Y).

This time, because app2,3(V,Y,W) is an atom, the arc is added to the arc depen
dency table. The call get_answer(app(V,Y,W)2,3 : Y, Y A (X <-• (U A V)) A (Z <-•
(U A W)) , {X, Y, Z, U, V, W}) is made. The answer table is looked up to find the
answer to app(V,Y,W)2,3 : Y and, appropriately renamed, gives APQ = V AY AW.
This description is extended to all variables (no change) and then conjoined with
the second argument to give the next annotation Y AV AW A(X <-> U) A(Z <-> U).
As this is the last literal in the body, the new answer Y A (X <-> Z) is obtained.
We take the least upper bound of this answer with the old answer in the table,
giving Y A(X ^ Z). As the answer has changed, an updated event is added to the
priority queue. The da ta structures are now

priority queue: u p d a t e d (app(X, Y, Z) : Y)
answer table: app(X, Y, Z) : Y 1—> Y A (X <-> Z)
dependency arc table: app 2 (X, Y, Z) : Y => [Y A (X <-• (U A V))

A{Z <-• (U AW))]
app2 ,3(V, Y, W) : Y

The updated event is processed by looking in the dependency arc table for all arcs
which have a body literal which is a variant of app(X, Y, Z) : Y and adding these
arcs to the priority queue to be reprocessed. We obtain the new priority queue

a r c (a p p 2 (X , Y, Z) : Y => [Y A {X <-• (U A V)) A {Z <-• (U AW))]
app2 ,3(V, Y, W) :Y)

This arc is reprocessed, and gives rise to the answer Y A (X <-> Z). Taking the
least upper bound of this with the old answer, the result is identical to the old
answer, hence no updated event is added to the priority queue. As there are no
events on the priority queue, the analysis terminates with the desired answer and
dependency arc table. •

2.4 Correctness

The generic algorithm provides a simple generic description of how top-down goal-
directed analysis is performed. It is somewhat less abstract than the semantic
equations, since we need to capture the use of dependency information during
analysis. The algorithm captures the behavior of several implemented algorithms

while at the same time is suitable for incremental analysis. Different top-down goal-
directed analysis algorithms correspond to different event-processing strategies. In
practice these algorithms also incorporate other optimizations. An example event-
processing strategy would be to always perform new call events first, to process
nonrecursive rules before recursive rules, and to finish processing a rule before
start ing another. This strategy would produce an algorithm which is quite close
to the one used in PLAI or GAIA (the differences between the proposed algorithm
and tha t used in PLAI are presented in more detail in Section 6).

In essence, the algorithm defines a set of recursive equations whose least fixed
point is computed using chaotic iteration [Cousot and Cousot 1977]. We note
tha t even though the order in which events are processed is not fixed, the events
themselves encode a left-to-right traversal of the rules, ensuring a unique result.
For the least fixed point to be well-defined we require tha t the abstract operations
are monotonic and tha t initiaLguess returns a value below the least fixed point.
Under these s tandard assumptions we have

THEOREM I . For a program P and calling patterns S, the generic analysis algo
rithm returns an answer table and dependency arc table which represents the least
program analysis graph of P and S.

The dependency arc table does not quite capture the annotations on rules in the
analysis graph, since program points before constraint literals and the last program
point do not correspond to stored arcs. This information can easily be recomputed
from the dependency arc table, or indeed the algorithm can be simply modified to
save it as it executes.

The corollary of the above theorem is tha t the priority strategy does not involve
correctness of the analysis. This corollary will be vital when arguing correctness of
the incremental algorithms in the following sections.

COROLLARY I . The result of the generic analysis algorithm does not depend on
the strategy used to prioritize events.

3. INCREMENTAL ADDITION

If new rules are added to a program which has already been analyzed, we have to
compute the success pat terns for each new rule, use this to update the answer table
information for the atoms defined by the newly added rules, and then propagate the
effect of these changes. Note tha t this propagation is not limited to the new rules,
but rather a global fixed point has to be reached in order to ensure correctness of the
analysis results. Existing analysis engines for (constraint) logic programming are
unable to incrementally compute this new fixed point, and the only safe possibility
is to s tar t analysis from scratch. However, the generic algorithm we propose can
do this rather simply. Computat ion of the success pat terns for each rule is simply
done by adding a set of arcs to the event queue before calling again mainJoop.
Propagation of the effects corresponds to processing, in the usual way, the updated
events for entries in the answer table which are modified due to the newly added
rules. When execution of mainJoop ends, a new global fixed point has been reached.

The new routine for analysis of programs in which rules are added incrementally
is given in Figure 3. The routine takes as input the set of new rules R. If these

incremental_addition(i?)
foreach rule Ak :- Bki,..., Bkrlk £ R

foreach entry A : CP i—> AP in the answer table
CPo := Aextend(CP, vars(Ak :- Bk>1,..., Bk>nk))
GP\ := Arestrict(CP0, vars(Bk>1))
add_event(arc(/tfc : CP => [CPo] Bk>1 : CP!))

main_loop()

Fig. 3. Incremental addition algorithm.

match an a tom with a calling pa t tern of interest, then requests to process the
rule are placed on the priority queue. Subsequent processing is exactly as for the
nonincremental case.

Example 2. As an example, we begin with the program for naive reversal of a
list, r ev , already analyzed for the calling pa t te rn r e v (X , Y) : true but without
a definition of the append, app, predicate. The initial program is

r e v i U , Y) : - X = [] M , Y = [] 1 > 2 .
r e v 2 (X , Y) : - X = [U|V] 2 , i , r ev 2 j 2 (V , W) , T = [U]2 ,3, app2 i4(W, T, Y) .

The answer table and dependency arc tables are (S t a t e 1)

answer table: r e v (X , Y) : true i—> X A Y
app(X, Y, Z) : X i—> false

dependency arc table:
r e v 2 (X , Y) : true => [X <-• (U A V)} r e v 2 j 2 (V , W) : true
r e v 2 (X , Y) : true ^ [{X <-• (U A V)) A V A W A (T <-• U)\ app2 i 4(W, T, Y) : W

We now add the rules for app one at a time. The first rule to be added is

app 3 (X, Y, Z) : - X = [] 3 , i , Y = Z3>2.

The incremental analysis begins by looking for entries referring to app in the answer
table. It finds the entry app(X, Y,Z):X so the arc

app 3 (X,Y,Z) :X=>[X] X = [] 3 > 1 : X

is put in the priority queue. After processing this rule, the new answer X A (Y ^ Z)
for app(X,Y,Z) : X is obtained. Taking the least upper bound of this with the
current answer we obtain X A (Y ^ Z), and the answer table entry is updated
(causing an updated(app(I.,Y,Z) : X) event). Examining the dependency arc table,
the algorithm recognizes tha t the answer from rule 2 must now be recomputed. This
gives rise to the new answer (X ^ (U A V)) A V A W A (U ^ Y) which restricted
to {X, Y} gives X ^ Y. Taking the least upper bound of this with the current
answer XAY gives X ^ Y. The memo table entry for r e v (X , Y) : true is updated
appropriately, and an updated event is placed on the queue. Again the answer to
rule 2 must be recomputed. First we obtain a new calling pa t tern app2 j4(X, Y, Z)
: true. This means tha t the dependency arc

r ev 2 (X ,Y) : true => [(X <-• (U A V)) A V A W A (T <-• U)\ app2 i 4(W,T,Y) : W

in the dependency arc table is replaced by

r ev 2 (X ,Y) : true ^ [(X <-• (U A V) A {V <-• W) A (T <-• U)} app2 i 4(W,T,Y) : true

This sets up a new call app(X, Y, Z) : true. The current answer for the old call
app(X, Y, Z) : X can be used as an initial guess to the new, more general, call.
The algorithm examines rule 3 for the new calling pat tern. It obtains the same
answer I A (7 « Z) .

This leads to a new answer for r e v 2 (X , Y), {X <-• {UAV))A{V <-• W)AWA{T <-•
[/) A (T <-> y) , which restricted to {X, Y} gives X <-> Y. This does not change
the current answer, so the main loop of the analysis is finished. The reachability
analysis removes the entry app(X, Y, Z) : I H I A (7 H 2) from the answer
table. The resulting answer and dependency arc table entries are (S t a t e 2)

answer table: r e v (X , Y) : true i—> X <-> Y
app(X, Y, Z) : true i-> X A {Y <-• Z)

dep. arc table:
rev 2 (X,Y) : trwe => [X <-• (£/ A V)] r ev 2 j 2 (V,W) : true
rev 2 (X,Y) : trwe => [X ^ (U AV) A (V '^ W) A (T ^ U)} app2 j 4(W,T,Y) : trwe

If the second rule for app

app 4 (X,Y,Z) : - X = [U|V] 4 , i , Z = [U|W]4 ,2 , app4 i3(V,Y,W) .

is added, the analysis proceeds similarly. The final memo and dependency arc table
entries are (S t a t e 3)

answer table: r e v (X , Y) : true i—> X <-> Y
app(X, Y, Z) : true ^ {X AY) ^ Z

dep. arc table:
(A) r e v 2 (X , Y) : true ^ [X <-• ([/ A V)] rev2 j 2(V,W) : true
(B) rev 2 (X,Y) : t rwe^> [X <-• (£/ A V) A (V <-• W") A (T <-• £/)] app2 j4(W,T,Y):trMe
(C) app 4 (X,Y,Z) : trwe => [X ^ (U A V) A Z <-• ([/ A l f)] app4 i3(V,Y,W) : trwe

D

Correctness of the incremental addition algorithm follows from correctness of
the original generic algorithm. Essentially, execution of the incremental addition
algorithm corresponds to executing the generic algorithm with all rules but with
the new rules having the lowest priority for processing. It therefore follows from
Corollary 1 that :

THEOREM 2. If the rules in a program are analyzed incrementally with the in
cremental addition algorithm, the same answer and dependency arc tables will be
obtained as when all rules are analyzed at once by the generic algorithm.

In a sense, therefore, the cost of performing the analysis incrementally can be no
worse than performing the analysis all at once, as the generic analysis could have
used a priority strategy which has the same cost as the incremental strategy. We
will now formalize this intuition. Our cost measure will be the number of calls to
the underlying parametric functions. This is a fairly simplistic measure, but our
results continue to hold for reasonable measures.

Let Cnoninc(F, R, S) be the worst-case number of calls to the parametric functions
F when analyzing the rules R and call pat terns S for all possible priority strategies
with the generic analysis algorithm.

Let Cadd(F, R, R', S) be the worst-case number of calls to the parametric func
tions F when analyzing the new rules R' for all possible priority strategies with
the incremental addition algorithm after already analyzing the program R for call
patterns S.

THEOREM 3. Let the set of rules R be partitioned into i?i,..., Rn rule sets. For
any call patterns S and parametric functions F,

n j<i

(F,R,S)>Y,Cadd(P,(\jRj),Ri,S).
i=i j=i

The theorem holds because the priority strategies which give the worst-case be
havior for each of the i?i, ..., Rn can be combined to give a priority strategy for
analyzing the program nonincrementally.

We note that our theorems comparing relative complexity of incremental and
nonincremental analysis (Theorems 3, 5, and 8) are rather weak, since they relate
only the worst-case complexity. Unfortunately, it is difficult to provide more in
sightful analytic comparisons; instead we will provide an empirical comparison in
Section 6.

4. INCREMENTAL DELETION

In this section we consider deletion of rules from an already analyzed program and
how to incrementally update the analysis information. The first thing to note is
that, unlike incremental addition, we need not change the analysis results at all.
The current approximation is trivially guaranteed to be correct, because an answer
table entry A : CP i-^ AP is computed by taking the least upper bound of the
contribution of all rules in the definition of A. If some rules with A as head are
deleted, the previously computed answer pattern AP is still clearly correct for the
remaining rules. This approach is obviously inaccurate but simple.

4.1 Refinement

More accuracy can be obtained by applying a strategy similar to narrowing [Cousot
and Cousot 1979]. Narrowing is a generic fixed-point approximation technique in
which analysis proceeds from above the least fixed point and iterates downward
until a fixed point (not necessarily the least fixed point) is reached. We can use
this approach because the current approximations in the answer table are greater
than or equal to those in the answer table of the program analysis graph for the
modified program. Applying the analysis engine as usual except taking the greatest
lower bound (gib), written n, of new answers with the old rather than the least
upper bound is guaranteed to produce a correct, albeit perhaps imprecise, result.
We can let this process be guided from the initial changes using the dependency
graph information. Care must be taken to treat new calling patterns that arise in
this process correctly. Note this narrowing-like strategy is correct in part because
of the existence of a Galois connection between the concrete and abstract domains,
as this means that gib on the abstract domain approximates gib on the underlying
concrete domain.

top_down_delete(D, S)
H := {A\(A :- B) £ D}
T := depend(H)
foreach A : CP € T

delete entry A : CP i—> _ from answer table
delete each arc A_ : CP =>[_]_ : _ from dependency arc table

foreach A: CP € S n T
add-event(newcall(A : CP))

main_loop()

Fig. 4. Top-down incremental deletion algorithm.

Example 3. Consider the program in Example 2 after both additions. The cur
rent answer table and dependency graph entries are given by State 3. Deleting
rule 4 results in the following process.

First we delete all dependency arcs which correspond to deleted rules. In this
case we remove the arc app4(X, Y, Z) : true =>• [_] app4i(V, Y, W) : true. In
general we may subsequently delete other dependency arcs which are no longer
required.

We recompute the answer information for all (remaining) rules for app(X, Y, Z)
for all calling patterns of interest using the current answer information. We obtain
app(X, Y, Z) : true H I A J Y H Z) .

Because this information has changed we now need to consider recomputing an
swer information for any calling patterns that depend on app(X, Y, Z) : true, in
this case rev(X, Y) : true. Recomputing using rules 1 and 2 obtains the same an
swer information X <-> Y. The result is State 2 (with the useless entry for app(X,
Y, Z):X removed).

Deleting rule 3 subsequently leads back to State 1 as expected. In contrast,
removing rule 3 from the program consisting of rules 1 to 4 does not result in re
covering State 1 as might be expected. This highlights the possible inaccuracy of
the narrowing method. In this case rule 4 prevents more accurate answer informa
tion from being acquired. •

The disadvantage of this method is its inaccuracy. Starting the analysis from
scratch will often give a more accurate result. We now give two algorithms which
are incremental yet are as accurate as the nonincremental analysis.

4.2 "Top-Down" Deletion Algorithm

The first accurate method we explore for incremental analysis of programs after
deletion is to remove all information in the answer and dependency arc tables which
depends on the rules which have been deleted and then to restart the analysis. Not
only will removal of rules change the answers in the answer table, it will also mean
that subsequent calling patterns may change. Thus we will also remove entries in
the dependency arc table for those rules which are going to be reanalyzed.

Information in the answer table and dependency arc table allows us to find these
no longer valid entries. Let D be the set of deleted rules and H be the set of atoms
which occur as the head of a deleted rule, i.e., H is {A|(A : - B) G D}. We let
depend(H) denote the set of calling patterns whose answers depend on some atom

in H. More precisely, depend(H) is the smallest superset of

{(A : CP)\(A : CP ^ AP) e answer table and A £ H}

such tha t if A : CP is in depend(H) and there is an dependency arc of the form
B_ : CP0 => [.]A'_ : CP' such tha t A' : CP' is a renaming of A : CP then B : CP0 is
also in depend(H). After entries for these dependent calling pat terns which are no
longer valid are deleted, the usual generic analysis is performed. The routine for
top-down rule deletion is given in Figure 4. It is called with the set of deleted rules
D and a set of initial calling pat terns S.

Example 4. Consider the program

qi : - p i , i (X, Y) , n , 2 (X , Y, Z) , s l j 3 (Y , Z) .
p 2 (X , Y) : - X = a 2 , i , Y = b 2 j 2 .
p 3 (X , Y) : - X = Y3 , i .
r 4 (X , Y, Z) : - X = Z4 , i .
r 5 (X , Y, Z) : - Y = Z s , i .
s 6 (Y , Z) : - Y = c 6 , i .

After program analysis we obtain (S ta te 5)

answer table: q : true i—> true
p(X, Y) : true^X ^ Y
r (X , Y, Z) : X ^Y^(X ^Y)A(Y ^ Z)
s (Y, Z) :Y ^ Z ^ Y AZ

dependency arc (D) qi : true =>• [trwe] p i i (X , Y) : trwe
ta&Ze: (E) qi : true => [X <r+Y]' r i j 2 (X , Y, Z) : X <-• y

(F) q i : trwe => [(X ^ Y) A (Y <-• Z)\ s l j 3 (Y , Z) : y <-• Z

Now consider the deletion of rule r^. H = {r(X, Y, Z)} and depend{H) = {r(X, Y, Z) :
X <-> y , q : t rwe}. Hence, the answer table entries for r and q are deleted and also
all the dependency arcs are deleted since they are all for predicate q which is going
to be reanalyzed. The initial s tate (S ta te 6) when we star t the main loop is

answer table: p(X, Y) : true i—> X <-> Y
s (Y, Z) : y ^ Z ^ Y AZ

dependency arc table: no entries

The only entry in the priority queue is newcall(q : true). Then, the execution
of main loop processes this event by adding the entry q : true i—> false to the
answer table and an arc event for (D). This is selected; arc (D) is added again
to the dependency arc table; and arc (E) is placed on the priority queue. This
is selected; arc (E) is placed back in the dependency arc table, and the event
newcall(r(.1, Y, Z) : X ^ Y) is placed on the queue. This generates an answer
entry r (X , Y, Z) : I « 7 K false and arc r 4 (X , Y, Z) : X <-• Y => [X <-•
y] X = Z : trwe. This in tu rn generates new answer information (X ^ Y) A (Y ^
Z) and the event updated(r(X, Y, Z) : X ^ Y). This is replaced with arc (E),
which is replaced with arc (F), which results in arc (F) being added again to the
dependency graph and new answer info q : true i—> true and an event updated(q :

true) which is removed with no effect. The resulting state is identical to the start ing
s tate (S t a t e 5). •

Example 5. Consider again the r e v and app program in Example 2. After anal
ysis of the entire program we are in S t a t e 3 . Now consider the deletion of rule
3 from the program consisting of rules 1 to 4. T = depend(app (X, Y, Z)) is all
the calling pat terns, so the answer table and dependency arc table are emptied.
Reanalysis is complete start ing from the initial calling pa t te rn rev(X, Y) : true and
results in S t a t e 1 as expected. Note tha t this is the case in Example 3 for which
the refinement method yielded an inaccurate answer. •

Correctness of the incremental top-down deletion algorithm follows from correct
ness of the original generic algorithm. Execution of the top-down deletion algorithm
is identical to tha t of the generic algorithm except tha t information about the an
swers to some call pat terns which do not depend on the deleted rules is already in
the da ta structures.

THEOREM 4. If a program P is first analyzed and then rules R are deleted from
the program and the remaining rules are reanalyzed with the top-down deletion
algorithm, the same answer and dependency arc tables will be obtained as when the
rules P\ R are analyzed by the generic algorithm.

The cost of performing the actual analysis incrementally can be no worse than
performing the analysis all at once. Let Cdei-td(F,R,R',S) be the worst-case
number of calls to the parametric functions F when analyzing the program R
with rules R' deleted for all possible priority strategies with the top-down deletion
algorithm after already analyzing the program R for call pat terns S.

THEOREM 5. Let R and R' be sets of rules such that R' C R. For any call
patterns S and parametric functions F,

Cnoninc(F, R\ R , S) > Cdel-td(F, R, R , S).

4.3 "Bottom-Up" Deletion Algorithm

The last theorem shows tha t the top-down deletion algorithm is never worse than
start ing the analysis from scratch. However, in practice it is unlikely to be tha t
much better, as on average deleting a single rule will mean tha t half of the depen
dency arcs and answers are deleted in the first phase of the algorithm. The reason
is tha t the top-down algorithm is very pessimistic—deleting everything unless it
is sure tha t it will be both correct and useful. For this reason we now consider a
more optimistic algorithm. The algorithm assumes tha t calling pat terns to changed
predicate definitions are still likely to be useful. In the worst case it may spend a
large amount of time reanalyzing calling pat terns tha t end up being useless. But
in the best case we do not need to reexamine large parts of the program above
changes when no actual effect is felt.

The algorithm proceeds by computing new answers for calling pat terns in the
lowest strongly connected component3 (SCC) of the set depend(H) of calling pat-

3 The set of nodes in a graph can be partitioned into strongly connected components S\,..., Sn

n > 0 so that no node in Si can reach a node is Sj,Vj > i. Two nodes rii,ri2 are in the same
strongly connected component Si if and only if both n\ can reach ni and ni can reach n\.

