A new boundary condition solved with B.I.E.M.

Da Riva de la Cavada, Ignacio; Ahedo Galilea, Eduardo; Alarcón Álvarez, Enrique y Anza Aguirrezabala, Juan José (1982). A new boundary condition solved with B.I.E.M.. En: "4th International Conference on Boundary Element Methods", Sept. 1982, Southampton. ISBN 0387118195.


Título: A new boundary condition solved with B.I.E.M.
  • Da Riva de la Cavada, Ignacio
  • Ahedo Galilea, Eduardo
  • Alarcón Álvarez, Enrique
  • Anza Aguirrezabala, Juan José
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 4th International Conference on Boundary Element Methods
Fechas del Evento: Sept. 1982
Lugar del Evento: Southampton
Título del Libro: Boundary element methods in engineering . proceedings of the fourth international seminar
Fecha: 1982
ISBN: 0387118195
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Vehículos Aeroespaciales [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (7MB) | Vista Previa


Among the classical operators of mathematical physics the Laplacian plays an important role due to the number of different situations that can be modelled by it. Because of this a great effort has been made by mathematicians as well as by engineers to master its properties till the point that nearly everything has been said about them from a qualitative viewpoint. Quantitative results have also been obtained through the use of the new numerical techniques sustained by the computer. Finite element methods and boundary techniques have been successfully applied to engineering problems as can be seen in the technical literature (for instance [ l ] , [2], [3] . Boundary techniques are especially advantageous in those cases in which the main interest is concentrated on what is happening at the boundary. This situation is very usual in potential problems due to the properties of harmonic functions. In this paper we intend to show how a boundary condition different from the classical, but physically sound, is introduced without any violence in the discretization frame of the Boundary Integral Equation Method. The idea will be developed in the context of heat conduction in axisymmetric problems but it is hoped that its extension to other situations is straightforward. After the presentation of the method several examples will show the capabilities of modelling a physical problem.

Más información

ID de Registro: 13778
Identificador DC: http://oa.upm.es/13778/
Identificador OAI: oai:oa.upm.es:13778
Depositado por: Biblioteca ETSI Aeronauticos
Depositado el: 25 Oct 2012 11:43
Ultima Modificación: 21 Abr 2016 13:08
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM