Ensemble transcript interaction networks: A case study on Alzheimer's disease

Armañanzas Arnedillo, Ruben; Larrañaga Múgica, Pedro y Bielza Lozoya, Maria Concepcion (2012). Ensemble transcript interaction networks: A case study on Alzheimer's disease. "Computer Methods And Programs in Biomedicine", v. 108 (n. 1); pp. 442-450. ISSN 0169-2607.

Descripción

Título: Ensemble transcript interaction networks: A case study on Alzheimer's disease
Autor/es:
  • Armañanzas Arnedillo, Ruben
  • Larrañaga Múgica, Pedro
  • Bielza Lozoya, Maria Concepcion
Tipo de Documento: Artículo
Título de Revista/Publicación: Computer Methods And Programs in Biomedicine
Fecha: 2012
Volumen: 108
Materias:
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Otro
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
Pdf - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (763kB) | Vista Previa

Localizaciones alternativas

URL Oficial: http://dx.doi.org/10.1016/j.cmpb.2011.11.011

Resumen

Systems biology techniques are a topic of recent interest within the neurological field. Computational intelligence (CI) addresses this holistic perspective by means of consensus or ensemble techniques ultimately capable of uncovering new and relevant findings. In this paper, we propose the application of a CI approach based on ensemble Bayesian network classifiers and multivariate feature subset selection to induce probabilistic dependences that could match or unveil biological relationships. The research focuses on the analysis of high-throughput Alzheimer's disease (AD) transcript profiling. The analysis is conducted from two perspectives. First, we compare the expression profiles of hippocampus subregion entorhinal cortex (EC) samples of AD patients and controls. Second, we use the ensemble approach to study four types of samples: EC and dentate gyrus (DG) samples from both patients and controls. Results disclose transcript interaction networks with remarkable structures and genes not directly related to AD by previous studies. The ensemble is able to identify a variety of transcripts that play key roles in other neurological pathologies. Classical statistical assessment by means of non-parametric tests confirms the relevance of the majority of the transcripts. The ensemble approach pinpoints key metabolic mechanisms that could lead to new findings in the pathogenesis and development of AD

Más información

ID de Registro: 13973
Identificador DC: http://oa.upm.es/13973/
Identificador OAI: oai:oa.upm.es:13973
Depositado por: Memoria Investigacion
Depositado el: 21 Dic 2012 10:45
Ultima Modificación: 21 Abr 2016 13:25
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM