Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers

Armañanzas Arnedillo, Ruben; Larrañaga Múgica, Pedro y Inza Cano, Iñaki (2008). Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers. "Computer Methods And Programs in Biomedicine", v. 91 (n. 2); pp. 110-121. ISSN 0169-2607. https://doi.org/10.1016/j.cmpb.2008.02.010.

Descripción

Título: Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers
Autor/es:
  • Armañanzas Arnedillo, Ruben
  • Larrañaga Múgica, Pedro
  • Inza Cano, Iñaki
Tipo de Documento: Artículo
Título de Revista/Publicación: Computer Methods And Programs in Biomedicine
Fecha: Agosto 2008
Volumen: 91
Materias:
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Otro
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

The main purpose of a gene interaction network is to map the relationships of the genes that are out of sight when a genomic study is tackled. DNA microarrays allow the measure of gene expression of thousands of genes at the same time. These data constitute the numeric seed for the induction of the gene networks. In this paper, we propose a new approach to build gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling. The interactions induced by the Bayesian classifiers are based both on the expression levels and on the phenotype information of the supervised variable. Feature selection and bootstrap resampling add reliability and robustness to the overall process removing the false positive findings. The consensus among all the induced models produces a hierarchy of dependences and, thus, of variables. Biologists can define the depth level of the model hierarchy so the set of interactions and genes involved can vary from a sparse to a dense set. Experimental results show how these networks perform well on classification tasks. The biological validation matches previous biological findings and opens new hypothesis for future studies

Más información

ID de Registro: 13981
Identificador DC: http://oa.upm.es/13981/
Identificador OAI: oai:oa.upm.es:13981
Identificador DOI: 10.1016/j.cmpb.2008.02.010
Depositado por: Memoria Investigacion
Depositado el: 21 Dic 2012 10:27
Ultima Modificación: 21 Abr 2016 13:26
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM