Identificación y reconocimiento de matrículas de automóviles con MATLAB

Ceballos Jiménez, Samuel Enrique (2012). Identificación y reconocimiento de matrículas de automóviles con MATLAB. Proyecto Fin de Carrera / Trabajo Fin de Grado, E.U.I.T. Telecomunicación (UPM) [antigua denominación], Madrid.

Descripción

Título: Identificación y reconocimiento de matrículas de automóviles con MATLAB
Autor/es:
  • Ceballos Jiménez, Samuel Enrique
Director/es:
  • Martín Marcos, Alfonso Luis
Tipo de Documento: Proyecto Fin de Carrera/Grado
Fecha: 26 Septiembre 2012
Materias:
Escuela: E.U.I.T. Telecomunicación (UPM) [antigua denominación]
Departamento: Ingeniería Audiovisual y Comunicaciones [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (3MB) | Vista Previa
[img] Archivo comprimido ZIP
Descargar (866kB)

Resumen

Este Proyecto Fin de Carrera trata sobre el reconocimiento e identificación de caracteres de matrículas de automóviles. Este tipo de sistemas de reconocimiento también se los conoce mundialmente como sistemas ANPR ("Automatic Number Plate Recognition") o LPR ("License Plate Recognition"). La gran cantidad de vehículos y logística que se mueve cada segundo por todo el planeta, hace necesaria su registro para su tratamiento y control. Por ello, es necesario implementar un sistema que pueda identificar correctamente estos recursos, para su posterior procesado, construyendo así una herramienta útil, ágil y dinámica. El presente trabajo ha sido estructurado en varias partes. La primera de ellas nos muestra los objetivos y las motivaciones que se persiguen con la realización de este proyecto. En la segunda, se abordan y desarrollan todos los diferentes procesos teóricos y técnicos, así como matemáticos, que forman un sistema ANPR común, con el fin de implementar una aplicación práctica que pueda demostrar la utilidad de estos en cualquier situación. En la tercera, se desarrolla esa parte práctica en la que se apoya la base teórica del trabajo. En ésta se describen y desarrollan los diversos algoritmos, creados con el fin de estudiar y comprobar todo lo planteado hasta ahora, así como observar su comportamiento. Se implementan varios procesos característicos del reconocimiento de caracteres y patrones, como la detección de áreas o patrones, rotado y transformación de imágenes, procesos de detección de bordes, segmentación de caracteres y patrones, umbralización y normalización, extracción de características y patrones, redes neuronales, y finalmente el reconocimiento óptico de caracteres o comúnmente conocido como OCR. La última parte refleja los resultados obtenidos a partir del sistema de reconocimiento de caracteres implementado para el trabajo y se exponen las conclusiones extraídas a partir de éste. Finalmente se plantean las líneas futuras de mejora, desarrollo e investigación, para poder realizar un sistema más eficiente y global. This Thesis deals about license plate characters recognition and identification. These kinds of systems are also known worldwide as ANPR systems ("Automatic Number Plate Recognition") or LPR ("License Plate Recognition"). The great number of vehicles and logistics moving every second all over the world, requires a registration for treatment and control. Thereby, it’s therefore necessary to implement a system that can identify correctly these resources, for further processing, thus building a useful, flexible and dynamic tool. This work has been structured into several parts. The first one shows the objectives and motivations attained by the completion of this project. In the second part, it’s developed all the different theoretical and technical processes, forming a common ANPR system in order to implement a practical application that can demonstrate the usefulness of these ones on any situation. In the third, the practical part is developed, which is based on the theoretical work. In this one are described and developed various algorithms, created to study and verify all the questions until now suggested, and complain the behavior of these systems. Several recognition of characters and patterns characteristic processes are implemented, such as areas or patterns detection, image rotation and transformation, edge detection processes, patterns and character segmentation, thresholding and normalization, features and patterns extraction, neural networks, and finally the optical character recognition or commonly known like OCR. The last part shows the results obtained from the character recognition system implemented for this thesis and the outlines conclusions drawn from it. Finally, future lines of improvement, research and development are proposed, in order to make a more efficient and comprehensive system.

Más información

ID de Registro: 14053
Identificador DC: http://oa.upm.es/14053/
Identificador OAI: oai:oa.upm.es:14053
Depositado por: Biblioteca Universitaria Campus Sur
Depositado el: 09 Dic 2012 13:29
Ultima Modificación: 21 Abr 2016 13:32
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM