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The Set-Sharing domain has been widely used to infer at compile-time interest­
ing properties of logic programs such as occurs-check reduction, automatic paral-
lelization, and finite-tree analysis. However, performing abstract unification in this 
domain requires a closure operation that increases the number of sharing groups 
exponentially. Much attention has been given in the literature to mitigating this 
key inefficiency in this otherwise very useful domain. In this paper we present a 
novel approach to Set-Sharing: we define a new representation that leverages the 
complement (or negative) sharing relationships of the original sharing set, without 
loss of accuracy. Intuitively, given an abstract state shy over the finite set of vari­
ables of interest V, its negative representation is p(V) \ shy. Using this encoding 
during analysis dramatically reduces the number of elements that need to be rep­
resented in the abstract states and during abstract unification as the cardinality of 
the original set grows toward 2^. To further compress the number of elements, 
we express the set-sharing relationships through a set of ternary strings that com­
pacts the representation by eliminating redundancies among the sharing sets. Our 
experimental evaluation shows that our approach can compress the number of rela­
tionships, reducing significantly the memory usage and running time of all abstract 
operations, including abstract unification. 

1 Introduction 

In abstract interpretation [12] of logic programs sharing analysis has received con­
siderable attention. Two or more variables in a logic program are said to share if 
in some execution of the program they are bound to terms that contain a common 
variable. A variable in a logic program is said to be ground if it is bound to a term 
that does not contain free variables in all possible executions of the program. Set-
Sharing is an important type of combined sharing and groundness analysis. It was 



originally introduced by Jacobs and Langen [19, 21] and its abstract values are sets 
of sets of variables that keep track in a compact way of the sharing patterns among 
variables. 

Example 1.1 (Set-Sharing abstraction). Let V = {Xi,X2,Xs,X4} be a set of 
variables. The abstraction in Set-Sharing of a substitution such as 6 = {X\ i—> 
f{Ui, U2, Vu V2, Wx), X2 ^ giVu V2, W{),XZ ^ g(Wh W{),XA ^ a} will be 
{{Xi}, {Xi,X2}, {X\, X2, Xs}}. Sharing group {X\} in the abstraction repre­
sents the occurrence of run-time variables U\ and U2 in the concrete substitution, 
{Xi,X2} represents V\ and V2, and {Xi,X2,Xs\ represents W\. Note that X4 
does not appear in the sharing groups because X4 is ground. Note also that the 
number of (occurrences of) shared run-time variables is abstracted away. 

Set-Sharing has been used to infer several interesting properties and perform 
optimization and verification of programs at compile-time, most notably but not 
limited to: occurs-check reduction (e.g., [31]), automatic parallelization (e.g., [29, 
28, 7]), and finite-tree analysis (e.g., [2]). The accuracy of Set-Sharing has been 
improved by extending it with other kinds of information, the most relevant be­
ing freeness and linearity information [27, 19, 28, 10, 17], and also information 
about term structure [28, 20, 4, 26]. Sharing in combination with other abstract 
domains has also been studied [9, 15, 11]. The significance of Set-Sharing is that 
it keeps track of sharing among sets of variables more accurately than other ab­
stract domains such as e.g. Pair-Sharing [31] due to better groundness propagation 
and other factors that are relevant in some of its applications [6]. In addition, 
Set-Sharing has attracted much attention [8, 11, 3, 6] because its algebraic prop­
erties allow elegant encodings into other efficient implementations (e.g., Reduced 
Ordered Binary Decision Diagrams, ROBDDs [5]). In [29, 28], the first com­
paratively efficient algorithms were presented for performing the basic operations 
needed for implementing set sharing-based analyses. 

However, Set-Sharing has a key computational disadvantage: the abstract uni­
fication {amgu, for short) implies potentially exponential growth in the number of 
sharing groups due to the up-closure (also called star-union) operation which is 
the heart of that operation. Considerable attention has been given in the literature 
to reducing the impact of the complexity of this operation. In [32], Zaffanella 
et al. extended the Set-Sharing domain for inferring pair-sharing from a set of 
sets of variables to a pair of sets of sets of variables in order to support widen­
ing. The key concept is that the set of sets in the first component (called clique) 
is reinterpreted as representing all sharing groups that are contained within it. Al­
though significant efficiency gains are achieved, this approach loses precision with 
respect to the original Set-Sharing. A similar approach is followed in [30] but for 



inferring set-sharing in a top-down framework. Other relevant work was presented 
in [23] in which the up-closure operation was delayed and full sharing information 
was recovered lazily. However, this interesting approach shares some of the disad­
vantages of Zaffanella's widening. Therefore, the authors refined the idea in [22] 
reformulating the amgu in terms of the closure under union operation, collapsing 
those closures to reduce the total number of closures and applying them to smaller 
descriptions without loss of accuracy. In [11] the authors show that Jacobs and 
Langen's sharing domain is isomorphic to the dual negative of Pos [1], denoted by 
coPos. This insight improved the understanding of sharing analysis, and led to an 
elegant expression of the combination with groundness dependency analysis based 
on the reduced product of Sharing and Pos. In addition, this work pointed out 
the possible implementation of coPos through ROBDDs leading to more efficient 
implementations of Set-Sharing analyses, although this point was not investigated 
further therein. 

In this paper we introduce a novel approach to Set-Sharing: we define a new 
representation that leverages the complement (or negative) sharing relationships 
of the original sharing set, without loss of accuracy. Intuitively, given an abstract 
state shy over the finite set of variables of interest V, its negative representation is 
p(V) \ shy. Using this encoding during analysis dramatically reduces the number 
of elements that need to be represented in the abstract states and during abstract 
unification as the cardinality of the original set grows toward 2^. To further com­
press the number of elements, we express the set-sharing relationships through a 
set of ternary strings that compacts the representation by eliminating redundan­
cies among the sharing sets. It is important to notice that our work is not based 
on [11]. Although they define the dual negated positive Boolean functions, coPos 
does not represent the entire complement of the positive set. Moreover, they do not 
use coPos as a means of compressing relationships but as a way of representing 
Sharing through Boolean functions. We also represent Sharing through Boolean 
functions, but that is where the similarity ends. 

In the remainder of the paper we first describe the Jacobs and Langen's Set-
Sharing domain, bSH, adapted for handling binary strings (Section 2) and we 
extend it in Section 3 to tSH, a more compact representation using a ternary en­
coding. In Section 4, we use tSH for encoding the complement (or negative) of 
the original Set-Sharing, tNSH. Finally, we report results from an experimental 
evaluation of these representations in Section 5 and conclude in Section 6. 



2 Set-Sharing Encoded by Binary Strings 

The presentation here follows that of [32, 11], since the notation used and the 
abstract unification operation obtained are rather intuitive, but adapted for handling 
binary strings rather than sets of sets of variables. Therefore, unless otherwise 
stated, here and in the rest of paper we will represent the set-sharing domain using 
a set of strings rather than a set of sets of variables. 

Example 2.1 (Binary encoding of sharing relationships). Let V = {X\, X2, X3, X4 } 
be the set of variables of interest and let sh = {{Xi}, {X\, X2}, {X\, X2, X3}} 
be a sharing set. Assume the following order among variables: X\ -< X2 -< X3 -< 
X4. Then, we can encode each sharing group into a binary string using the algo­
rithm described in Figure 1. In this example, the result of mapping sh into a set of 
binary strings is bsh = {1000,1100,1110}. 

BinaryEncoding(sft,, V) 
bsh ^ 0 
foreach sg € sh 

foreach i-th variable of V 
if the i-th variable of V appears in sg then 

s[i] ^ 1 
else 

s[i] <- 0 
bsh <— bsh U {s} 

return bsh 

Figure 1: Simple algorithm for encoding binary sharing relationships 

Definition 2.1 (Binary sharing domain, bSH). Let alphabet E = {0,1}, V be a 
fixed and finite set of variables of interest in arbitrary order, and E1 the finite set of 
all strings over E with length I, 0 < I < \V\. Let bSH1 = p°(El) be the proper 
power set (i.e., p(Ez) \ {0} ) that contains all possible combinations over E with 
length I. Then, the binary sharing domain is defined as bSH = \J bSH1. | 

0<K|V| 

2.1 Notation 

Let T and V be sets of ranked (i.e., with a given arity) functors of interest; e.g., 
the function symbols and the predicate symbols of a program. We will use Term 



to denote the set of terms constructed from V and T U V. Although somehow 
unorthodox, this will allow us to simply write g € Term whether g is a term 
or a predicate atom, since all our operations apply equally well to both classes 
of syntactic objects. We will denote by i the binary representation of the set of 
variables of t € Term according to a particular order among variables. Since t 
will be always used through a bitwise operation with some string of length I, the 
length of t must be I. If not, t is adjusted with O's in those positions associated with 
variables represented in the string but not in t. 

2.2 Abstract Operations 

Definition 2.2 (Binary relevant sharing rel(bsh, t) and irrelevant sharing irrel(bsh, £)). 
Given t € Term, the set of binary strings in bsh € bSH1 of length I that are rele­
vant with respect to t is obtained by a function rel (bsh, t) : bSHlxTerm —>• bSH1 

defined as: 

rel{bsh,t) = {s \ s e bsh, (s /\ i) / 01} 

where /\ represents the bitwise AND operation and 0l is the all-zeros string of 
length I. Consequently, the set of binary strings in bsh € bSH1 that are irrelevant 
with respect to t is a function irrel(bsh,t) : bSH1 x Term —> bSH1 where 
irrel(bsh, t) is the complement ofrel(bsh, t), i.e., bsh \ rel(bsh, t). • 

Definition 2.3 (Binary cross-union, \$). Given bsh\, bsh2 € bSH1, their cross-
union is a function \& : bSH1 x bSH1 —> bSH1 defined as 

bsh\ \$bsh2 = {s \ s = s\\/ S2,s\ € bsh\, S2 € fes/^} 

where V represents the bitwise OR operation. I 

Definition 2.4 (Binary up-closure, (.)*). Let I be the length of strings in bsh € 
bSH1, then the up-closure of bsh, denoted bsh* is a function (.)* : bSH1 —> bSH1 

that represents the smallest superset of bsh such that s\ \f S2 € bsh* whenever 
s\,S2 € bsh*: 

bsh* = {s | 3n > 1 3h,.. .,tn£ bsh, s = t\ \J ... \/tn} 

Definition 2.5 (Binary abstract unification, amgu). The abstract unification is a 
function amgu : V x Term x bSH1 —>• bSH1 defined as 

amgu(x,t,bsh) = irrel(bsh,x = t) U (rel(bsh,x)\$rel(bsh,t))* 



Example 2.2 (Binary abstract unification). Let V = {Xi, X2, X3, X4} be the set 
of variables of interest and let sh = {{Xi}, {X2}, {X3}, { X J } be a sharing set. 
Assume the following order among variables: X\ -< X2 -< X3 -< X4. Then, 
we can easily encode each sharing group sg € sh into a binary string s such that 
s[i] = 1, (1 < i < \sg\) if and only if the i-th variable of V appears in sg. In this 
example, sh is encoded as the following set of binary strings bsh = {1000, 0100,-
0010,0001}. Consider the analysis of Xx = f(X2,X3): 

A = rel{bsh,X1) = {1000} 
B=rel(bsh,f(X2,X3)) = {0100,0010} 
A®B = {1100,1010} 
(A&B)* = {1100,1010,1110} 
C = irrel(bsh, Xx = f(X2,X3)) = {0001} 
amgu(X1,f(X2,X3),bsh) = C U (A&B)* = {0001,1100,1010,1110} 

The design of the analysis must be completed by defining the following ab­
stract operations that are required by an analysis engine: init (initial abstract state), 
equivalence (between two abstract substitutions), join (defined as the union), and 
project. 

Definition 2.6 (Binary initial state, initbsn)- The initial state initbSH '• V —> 
bSH describes an initial substitution given a set of variables. Assume that an 
initial substitution sh € SH is given by initsn '• V —> SH, defined in [19]. Then, 
the binary initial state can be defined using the algorithm shown in Fig. 1 as: 

initbSH(V) = BinaryEncoding(wMts#(V), V) 

Definition 2.7 (Binary equivalence, =). Given bsh\,bsh2 € bSH, they are 
equivalent (i.e., bsh\ = bsh2) if and only if 

Vsi € bsh\,\/s2 € bsh2,S\ = S2 

Definition 2.8 (Binary join, U). Given bsh\, bsh2 € bSH, the join function U : 
bSH x bSH —>• p{bSH) is defined as their union: 

bsh\ U bsh2 = bsh\ U bsh2 



Definition 2.9 (Binary projection, bsh\t). The binary projection is a function 
bsh\t\ bSH1 x Term —>• bSHk (k < I) that removes the i-th positions from all 
strings (of length I) in bsh € bSH1, if and only if the i-th positions oft (denoted 
by i[i]) is 0, and it is defined as 

bsh\t = {s' | s € bsh, s' = TT(S, t)} 

where TT(S, t) is the binary string projection defined as 

{ e, if s = e, the empty string 

ir(s', t), if s = s'cii and i[i] = 0 
ir(s', t)di, if s = s'di and i[i] = 1 

and s'di is the concatenation of character a to string s' at position i. 

3 Ternary Set-Sharing 

In this section, we introduce a more efficient representation for the Set-Sharing 
domain defined in Sec. 2 to accommodate a larger number of variables for analysis. 
We extend the binary string encoding discussed above to the ternary alphabet £* = 
{0,1, *}, where the * symbol denotes both 0 and 1 bit values. This representation 
effectively compresses the number of elements in the set into fewer strings without 
changing what is represented (i.e., without loss of accuracy). To handle the ternary 
alphabet, we redefine the binary operations covered in Sec. 2. 

Definition 3.1 (Ternary Sharing Domain, tSH). Let alphabet £* = {0,1, *}, V 
be a fixed and finite set of variables of interest in an arbitrary order as in Def 2.1, 
and T,[ the finite set of all strings over E * with length I, 0 < I < \ V \. Then, tSH1 = 
p°(E^) and hence, the ternary sharing domain is defined as tSH = (J tSH1. | 

0<K|V| 

Prior to defining how to transform the binary string representation into the 
corresponding ternary string representation, we introduce two core definitions, 
Def. 3.2 and Def. 3.3, for comparing ternary strings. These operations are essential 
for the conversion and set operations. In addition, they are used to eliminate redun­
dant strings within a set and to check for equivalence of two ternary sets containing 
different strings. 

Definition 3.2 (Match, M). Given two ternary strings, x, y € E^, of length I, 
match is a function M : E^ x E^ —> B, such that Mi 1 < i < I, 

xMy = { t m e ' l f ^ = V^ V ^ = *) V (y[i] = *) 1 false, otherwise 



• 
Definition 3.3 (Subsumed_By <Kand SubsumedJn §). Given two ternary strings 
S\,S2 € Si , ? : Si x Si —> £> is a function such that Si ^S2 if and only if every 
string matched by S\ is also matched by S2. More formally, S\ ^S2 ^=> Vs € 
tSH1, if s\Ms then S2~Ms. For convenience, we augment this definition to 
deal with sets of strings. Given a ternary string s € Si and a ternary sharing set, 
tsh € iStf1, ? : Si x £S"i^ -^ # is a function such that s <gtsh if and only if 
there exists some element s' € tsh such that s <£s'. • 

Figure 2 gives the pseudo code for an algorithm which converts a set of binary 
strings into a set of ternary strings. The function Convert evaluates each string 
of the input and attempts to introduce * symbols using PatternGenerate, while 
eliminating redundant strings using ManagedGrowth. 

PatternGenerate evaluates the input string bit-by-bit to determine where the 
* symbol can be introduced. The number of * symbols introduced depends on the 
sharing set represented and k, the desired minimum number of specified bits, where 
0 < k < I (the string length). For a given set of strings of length I, parameter k 
controls the compression of the set. For k = I (all bits specified), there is no 
compression and tsh = bsh. For a non-empty bsh, k = 1 introduces the maximum 
number of * symbols. For now, we will assume that k = 1, and some experimental 
results in Section 5 will show the best overall k value for a given I. The Specified 
function returns the number of specified bits (0 or 1) in x. 

ManagedGrowth checks if the input string y subsumes other strings from 
tsh. If no redundant string exists, then y is appended to tsh only if y itself is 
not redundant to an existing string in tsh. Otherwise, y replaces all the redundant 
strings. 

Example 3.1 (Conversion from bSH to tSH). Let V be the set of variables of in­
terest with the same order as Example 2.2. Assume the following sharing set of 
binary strings bsh = {1000, 1001, 0100, 0101, 0010, 0001}. Then, a ternary string 
representation produced by applying Convert is tsh ={100*, 0010, 010*, *001}. 
There can be a certain level of redundancy in the representation, a subject that will 
be discussed further in Section 5. 

The example above begins with Convert(bsh,k = 1). 

1. Since tsh = 0 initially (line 1), the first string 1000 is appended to tsh, so 
tsh = {1000}. 

2. Next, 1001 from bsh is evaluated. In PatternGenerate, with x' at iteration 
i (denoted as x'j), i = 3 and 63 = 1, we test x'3 = 1000 if the ith position of 



0 Cor\vert(bsh, k) 
1 tsh^$ 
2 foreach s € bsh 
3 y <— PatternGenerate(ts/i, s, k) 
4 tsh <— ManagedGrowth(ts/i, y) 
5 return tsh 

10 PatternGenerate(ts/i, x, k) 
11 m <— Specified (a?) 
1 2 i ^ 0 
13 a;' <— a; 
14 Z <— length(x) 
15 while m > k and i < Z 
16 Let bi be the value of x' at position i 
17 if bi = 0 or bi = 1 then 
18 x' <— x' with position i replaced by bi 
19 if a?' | tsh then 
20 a;' <— a;' with position i replaced by * 
21 else 
22 x' <— a;' with position i replaced by bi 
23 m <— Specified^') 
24 i <- i + 1 
25 return a;' 

30 ManagedGrowth(ts/i, y) 
31 5 y = {s \s € tsh,s<£y} 
32 if 5^ = 0 then 
33 if y§tsh then 
34 append y to ts/z, 
35 else 
36 remove Sy from ts/i 
37 append y to ts/z, 
38 return tsh 

Figure 2: A deterministic algorithm for converting a set of binary strings bsh into 
a set of ternary strings tsh, where A; is the desired minimum number of specified 
bits (non-*) to remain. 

x can be replaced with a * (line 15-24). In this case, since x'3 ^tsh (line 19), 
x'3 = 100* is returned (line 25). Next, ManagedGrowth evaluates 100* and 
since it subsumes 1000 (Sy = {1000}), 100* replaces 1000 leaving tsh = 
{100*} (line 38). 

3. The process continues with PatternGenerate({100*},0100) (line 3). In 
PatternGenerate, since x'0§tsh, x[§tsh, x'2%tsh, and x'3%tsh, we re­
set each ith bit to its original value (line 22) and x' = x = 0100 is re­
turned. Next, ManagedGrowth({100*},0100) is called and since 0100 is 
not redundant to any string in tsh, it is appended to tsh resulting in tsh = 
{100*,0100}. 

4. The process continues with PatternGenerate({100*,0100},0101). In Pat­
ternGenerate, when x'3 = 0100 and since x'3%tsh, then x'3 = 010* is 



returned. ManagedGrowth( {100*, 0100}, 010*) is called next and since 
010* subsumes 0100 in tsh, it is replaced leaving tsh ={100*,010*} (line 
38). 

5. The process continues similarly, for the remaining input strings in bsh ob­
taining the final result of tsh = {100*, 0010, 010*, *001}. 

Next, we redefine the binary string operations to account for the * symbol in a 
ternary string. Note that since the ternary representation extends the binary alpha­
bet (i.e., binary is a subset of the ternary alphabet), ternary operations can also 
operate over strictly binary strings. For simplicity, we will overload certain opera­
tors to denote operations involving both binary and ternary strings. 

Definition 3.4 (Ternary-or V and Ternary-and / \ ) . Given two ternary strings, 
x, y € £* of length I, ternary-or and ternary-and are two bitwise-or functions 
defined as V, A : ^ * x ^* ~^ ^* s u c n that z = x\j' y and w = x/\y,Mil <i <l, 
where: 

* if (x[i\ = * Ay[i] = *) 
z[i] = { 0 if(a?[ij = 0Ay[i] = 0) 

1 otherwise w\i\ = < 

( * if(x[i] = * Ay[i] = *) 
1 if(a?[i] = 1 Ay[i\ = 1) 

V (x[i] = 1 Ay[i] = *) 
V (x[i\ = * Ay[i] = 1) 

0 otherwise 

Definition 3.5 (Ternary set intersection, n). Given tsh\, tsh2 € tSH1, n : 
tSH1 x tSH1 -»• tSH1 is defined as 

tshi n tsh2 = {r | r = si /\ s2, slMs2, si € tshl, s2 e tsh2} 

For convenience, we define two binary patterns, 0-mask and 1-mask, in order 
to simplify further operations. The former takes an /-length binary string s and 
returns a set with a single string having a 0 where s[i] = 1 and *'s elsewhere, 
Mi 1 < i < I. The latter takes also an /-length binary string s, but returns a set 
of strings with a 1 where s[i] = 1 and *'s elsewhere, Mil < i <l. For instance, 
0-mask(0110)and 1-mask(0l 10) return {*00*} and {*1**, **1*}, respectively. 

Definition 3.6 (Ternary relevant sharing rel(tsh, t) and irrelevant sharing irrel(tsh, t)). 
Given t € Term with length I and tsh € tSH1 with strings of length I, the 
set of strings in tsh that are relevant with respect to t is obtained by a function 
rel{tsh, t) : tSH1 x Term -»• tSH1 defined as 



rel(tsh,t) = tsh n 1-mask(£) 

In addition, irrel(tsh, t) is defined as 

irrel(tsh,t) = (tsh n 1-mask(£)) n O-mask(i) 

Ternary cross-union, &i, and ternary up-closure, (.)*, operations are as defined 
in Def. 2.3 and in Def. 2.4, respectively, except the binary version of the bitwise 
OR operator is replaced with its ternary counterpart defined in Def. 3.4 in order 
to account for the * symbol. In addition, the ternary abstract unification (amgu) 
is defined exactly as the binary version, Def.2.5, using the corresponding ternary 
definitions. 

Example 3.2 (Ternary abstract unification). Let tsh = {100*, 010*, 0010, *001} 
as in Example 3.1. Consider again the analysis of X\ = f(X2, X3), the result is: 

A = rel{tsh,X1) = {100*} 
B=rel(tsh,f(X2,X3)) = {010*, 0010} 
A®B = {110*, 101*} 
(A&B)* = {110*, 101*, 111*} 
C = irrelitsh, Xx = f(X2, X3)) = {0001} 
amgu(X1,f(X2,X3),tsh) =C U (A&B)* = {0001,110*, 101*, 111*} 

Definition 3.7 (Ternary initial state, inittsu)- The initial state inittsH '• V x 
T+ —> tSH^ describes an initial substitution given a set of variables of interest. 
Assuming the binary initial state operation defined as init^sn '• V —> bSH^, the 
ternary initial state can be defined using the Convert algorithm in Fig. 2 as: 

init(V, k) = Convert(initbSH(V), k) 

Definition 3.8 (Ternary equivalence, =). Given tsh\, tsh2 € tSH1, the sets are 
equivalent if and only 

Vti € tshi,Vsi <Zti,si (gtsh2) A (Vt2 € tsh2,Vs2 ^t2,s2 <§£shi) 

The ternary join is defined as its binary counterpart, i.e., union. Finally, the ternary 
projection, tsh\t, is defined similarly as binary projection, see Def. 2.9. However, 
the projection domain and range is extended to accommodate the * symbol. So, the 



function definition remains the same except that ternary string projection is now 
defined as a function TT(S, t): S^ x Term —>• ££, k < I. For example, let tsh = 
{100*, 010*, 0010, *001} as in Example 3.1. Then, the projection of tsh over the 
term t = f(Xi,X2,X3) is tsh\t = {100, 010, 001}. Note that since all zeros is 
meaningless in a set-sharing representation, it is not included here. 

4 Negative Ternary Set-Sharing 

In this section, we describe a further step using the ternary representation discussed 
in the previous section.* In certain cases, a more compact representation of sharing 
relationships among variables can be captured equivalently by working with the 
complement (or negative) set of the original sharing set. A ternary string t can 
either be in or not in the set tsh € tSH. This mutual exclusivity together with the 
finiteness of V allows for checking t's membership in tsh by asking if t is in tsh, 
or, equivalently, if t is not in its complement, tsh. The same reasoning is applicable 
to binary strings (i.e., bSH). Given a set of /-bit binary strings, its complement or 
negative set contains all the /-bit ternary strings not in the original set. Therefore, 
if the cardinality of a set is greater than half of the maximum size (i.e., 2M-1), 
then the size of its complement will not be greater than 2lvl_1. It is this size 
differential that we exploit. In Set-Sharing analysis, as we consider programs with 
larger numbers of variables of interest, the potential number of sharing groups 
grows exponentially, toward 2^, whereas the number of sharing groups not in the 
sharing set decreases toward 0. 

The idea of a negative set representation and its associated algorithms extends 
the work by Esponda et al. in [13, 14]. In that work, a negative set is generated 
from the original set in a similar manner to the conversion algorithms shown in 
Figs. 2 and 3. However, they produce a negative set with unspecified bits in ran­
dom positions and with less emphasis on managing the growth of the resulting set. 
The technique was originally introduced as a means of generating Boolean sat­
isfiability (SAT) formulas where, by leveraging the difficulty of finding solutions 
to hard SAT instances, the contents of the original set are obscured without using 
encryption [13]. In addition, these hard-to-reverse negative sets are still able to 
answer membership queries efficiently while remaining intractable to reverse (i.e., 
to obtain the contents of the original set). In this paper, we are not interested in 
this security property, however, and use the negative approach simply to address 
the efficiency issues faced by the traditional Set-Sharing domain. 

*Note that we could have also used the binary representation described in Sec. 2 but we chose the 
ternary encoding in order to achieve more compactness. 
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The conversion to the negative set can be accomplished using the two algo­
rithms shown in Figure 3. NegConvert uses the Delete operation to remove input 
strings of the set sh from U, the set of all /-bit strings U = {*1}, and then, the In­
sert operation to return U\sh which represents all strings not in the original input. 
Alternatively, NegConvertMissing uses the Insert operation directly to append 
each string missing from the input set to an empty set resulting in a representation 
of all strings not in the original input. Although as shown in Table 1 both algo­
rithms have similar complexities, depending on the size of the original input it may 
be more efficient to find all the strings missing from the input and transform them 
with NegConvertMissing, rather than applying NegConvert to the input directly. 
Note that the resulting negative set will use the same ternary alphabet described in 
Def 3.1. For clarity, we will denote it by tNSH such that tNSH = tSH. 

For simplicity, we describe only NegConvert since NegConvertMissing uses 
the same machinery. Assume a transformation from bsh to tnsh calling NegCon­
vert with k = 1. We begin with tnsh = U = {* * **} (line 1), then incrementally 
Delete each element of bsh from tnsh (line 2-3). Delete removes all strings 
matched by x from tnsh (line 11-12). If the set of matched strings, Dx, contains 
unspecified bit values (* symbols), then all string combinations not matching x 
must be re-inserted back into tnsh (line 13-17). Each string y' not matching x is 
found by setting the unspecified bit to the opposite bit value found in x[i] (line 16). 
Then, Insert ensures string y' has at least k specified bits (line 22-26). This is done 
by specifying k — m unspecified bits (line 23) and appending each to the result us­
ing ManagedGrowth (line 24-26). If string x already has at least k specified bits, 
then the algorithm attempts to introduce more * symbols using PatternGenerate 
(line 28) and appends it while removing any redundancy in the resulting set using 
ManagedGrowth (line 29). 

Example 4.1 (Conversion from bSH to tNSH). Consider the same sharing set as 
in Example 3.1: bsh = {1000, 1001, 0100, 0010, 0101, 0001}. A negative ternary 
string representation is generated by applying the NegConvert algorithm to obtain 
{0000, 11**, 1*1*, *11*, **11}. Since a string of all 0's is meaningless in a set-
sharing representation, it is removed from the set. Thus, tnsh = {11**, 1*1*, 
*11*,**11}. 

1. The first string 1000 is deleted from U = {* * **}. So, Dx = {* * **} 
(line 11) and tnsh' = 0 (line 12). For each ith bit of x, a new y£jyt x is 
evaluated for insertion into the result set. So, Insert (0, y'0 = 0***, k = 1) is 
called (line 17). Since Specified(y') > k and tnsh' = 0, the result returned 
is tnsh' ={o***} (line 27-30). For all other unspecified positions (line 14) 
of y, a new string is created with a bit value opposite to x^s value, (&»). So, 
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NegConvert(s/i, k) 
tnsh <— U 
foreach t € sh 

tnsh <— Delete(tns/i, t, A;) 
return tnsh 

0 
1 
2 
3 
4 
5 

NegConvertMissing(6s/i, A;) 
tns/z, <— 0 
6ns/i <—U\ bsh 
foreach £ e 6ns/i 

insft, <— \r\sert(tnsh, t, k) 
return tnsh 

10 De\eie(tnsh,x,k) 
11 Dx <- Vt € tns/i, a;Mi 
12 tns/z,' <— tns/z, with £)x removed 
13 foreach y G Dx 

14 foreach unspecified bit position qi of y 
15 if bi (the it/l bit of a;) is specified, then 
16 y' <— y with position ^ replaced by fej 
17 tnsh'^ \nseri(tnsh', y', k) 
18 return ins/z/ 
20 \nseri(tnsh,x,k) 
21 m <— Specified(a;) 
22 if m < k then 
23 P <— select (k — m) unspecified bit positions in x 
24 Vp <— every possible bit assignment of length |P | 
25 foreach v € Vp 
26 y <— a; with positions P replaced by t> 
27 insft/ <— ManagedGrowth(tns/i, y) 
28 else 
29 y <— PatternGenerate(tns/i, a;, k) 
30 insft/ <— ManagedGrowth(tns/i, y) 
31 return ins/z/ 

Figure 3: NegConvert, NegConvertMissing, Delete and Insert algorithms used 
to transform positive to negative representation; k is the desired number of speci­
fied bits (non-*'s) to remain. 

— *i» I *i» *i» /-* — 1) is called next and y[ is appended to 
tnsh'. The process continues with y'2 and yg resulting in tnsh = {0***, 

l/i Insert ({0***} 
;ns/z/. The pro 

2. Next, 1001 from bsh is deleted (line 2) resulting in An ={***!} ancj ^ns/^' = 

{0***, *1** , **1*} (line 11,12). Then, Insert ({0***, *1** , **1*}, y' = 
0**1, k = 1) is called. Since 0**1 ^ktnsh', then tnsh' remains unchanged. 



The process continues with y[ =* 1* 1, y'2 =** 11 being subsumed by tnsh'; 
so the result returned is tnsh = {0***, *1** , * * i * | 

3. Next, 0100 is deleted resulting in tnsh = {00**, 0**1, 11**, *1*1, **1*}. 

4. Next, 0010 is deleted resulting in tnsh = {000*, 0**1, 11**, 1*1*, *11*, 
*1*1,**11}. 

5. Next, 0101 is deleted resulting in tnsh = {000*, 00*1, 11**, 1*1*, *11*, 
**11}. 

6. Finally, 0001 is deleted resulting in tnsh = {0000, 11**, 1*1*, * 11*, **11}. 

7. Removing the string with all 0s, we get the final tnsh = {11**, 1*1*, *11*, 
**i i j t 

An alternative conversion algorithm uses NegConvertMissing. First the miss­
ing strings must be calculated from the given set. For Example 4.1, the miss­
ing strings are {0011, 0110, 0111, 1010, 1011, 1100, 1101, 1110, 1111}. Neg­
ConvertMissing begins with the first string 0011 and tnsh = 0 resulting in 
tnsh ={0011}. 

1. Then, Insert ({0011}, y' = 0110, k = 1) resulting in tnsh ={0011, 0110}. 

2. Next, Insert ({0011, 0110}, y' = 0111, k = 1) resulting in tnsh ={011*, 
0*11}. 

3. Next, Insert ({011*, 0*11}, y' = 1010, k = 1) resulting in tnsh ={011*, 
0*11, 1010}. 

4. Next, Insert ({011*, 0*11, 1010}, y' = 1011, k = 1) resulting in tnsh ={011*, 
0*11, 101*, *011}. 

5. Next, Insert ({011*, 0*11, 101*, *011}, y' = 1100, k = 1) resulting in 
tnsh ={011*, 0*11, 101*, 1100, *011}. 

6. Next, Insert ({011*, 0*11, 101*, 1100, *011}, y' = 1101, A: = 1) resulting 
intnsh={0U*, 0*11, 101*, 110*, *011}. 

7. Next, Insert ({011*, 0*11, 101*, 110*, *011}, y' = 1110, k = 1) resulting 
mtnsh={0ll*, 0*11, 101*, 110*, *011, *110}. 

fNotice that tnsh = U\ (bsh U {0000}). 



Transformation 
bSH -»• tSH 
bSH/tSH -»• tNSH 
tNSH -»• iStf 
6Stf -»• iiVStf 

Time Complexity 
0(\bsh\al) 
0( \bsh \a(a2d + 1)) 
<9( tns/i|a(a2d + 1)) 
0(/3 + |&nsfc|(a2d + l)) 

Size Complexity 
0(\bsh\) 
0(\tnsh\(l - m)2d) 
0(\tsh\(l - m)2d) 
0(|&nsfc|2d) 

Table 1: Summary of conversions: /-length strings; a = \ Result] • I; if m < k 
then 5 = k — m else 5 = 0, where m = minimum specified bits in entire set, k = 
number of specified bits desired; bnsh = U\ bsh; [3 = 0{2l) time to find bnsh. 

8. Finally, Insert ({Oil*, 0*11, 101*, 110*, *011, *110}, y' = 1111, k = 1) 
resulting in tnsh ={11**, 1*1*, *11*, **11}. 

Notice that NegConvertMissing returns the same result for Example 4.1, and, 
in general, an equivalent negative representation. 

Table 1 illustrates the different transformation functions and their complexities 
for a given input. Transformation bSH —>• tSH can be performed by the Con­
vert algorithm described in Fig. 2. Transformations bSH/tSH —>• tNSH and 
bSH —>• tNSH are done by NegConvert and NegConvertMissing, respectively. 
Both transformations show that we can convert a positive representation into neg­
ative with corresponding difference in time and memory complexity. Depending 
on the size of the original input we may prefer one transformation over another. If 
the input size is relatively small, less than 50% of the maximum size, then Neg­
Convert is often more efficient than NegConvertMissing. Otherwise, we may 
prefer to insert those strings missing in the input set. In our implementation, we 
continuously track the size of the relationships to choose the most efficient trans­
formation. Finally, transformation tNSH —> tSH is performed by NegConvert 
allowing comming back to the positive from a negative representation. 

Consider now the same set of variables and order among them as in Exam­
ple 4.1 but with a slightly different set of sharing groups encoded as bsh = {1000, 
1100, 1110} or tsh = {1*00, 1110}. Then, a negative ternary string representa­
tion produced by NegConvert is tnsh ={00**, 01**, 0*1*, 0**1, 1**1, *01*}. 
This example shows that the number of elements, or size, of the negative result, 
\tnsh\ = 6 > \bsh\ = 3 and \tsh\ = 2. However, in Example 4.1 when 
\bsh\ = 6, \tnsh\ = 4 < \bsh\. This is because when \bsh\ is less than 2lvl_1, i.e., 
\bsh\ = 3 < 23, then its complement set must represent (2lvl — \bsh\) = 13 ele­
ments. Depending on the strings in the positive set, the size of the negative result 
may indeed be greater. This is a good illustration of how selecting the appropriate 
set-sharing representation will affect the size of the converted result. Thus, the size 



of the original sharing set at specific program points will be used by the analysis 
to produce the most compact working set. The negative sharing set representation 
allows us to represent more variables of interest enabling larger problem instances 
to be evaluated. 

We now define certain operations on the negative representation in order to per­
form abstract unification and the other abstract operations required by our engine 
to use the negative representation. 

Definition 4.1 (Negative intersection, n). Given two negative sets with same 
length strings, tnshi and tnsh2, the Negative Intersection returns a negative set 
representing the set intersection of tnshi n tnsh2, and is defined in [14] as: 

tnshi P\tnsh2 = {x\x € tnshi} U {y\y € insfe}-

Definition 4.2 (Negative relevant sharing r el {tnsh, t) and irrelevant sharing 
irrel{tnsh, t)) Given t € Term and tnsh € tNSH1 with strings of length I, the 
set of strings in tnsh that are negative relevant with respect to t is obtained by a 
function rel(tnsh, t) : tNSH1 x Term —> tNSH1 defined as: 

rel{tnsh,t) = tnsh n O-mask(t), 

n addition, irrel{tnsh, t) is defined as: 

irrel{tnsh,t) =tnshP\ l -mask(t) . 

Because the negative representation is the complement, it is not only more 
compact for large positive set-sharing instances, but also, and perhaps more im­
portantly, it enables us to use inverse operations that are more memory- and com­
putationally efficient than in the positive representation. However, the negative 
representation does have its limitations. Certain operations that are straightforward 
in the positive representation are WT-Hard in the negative representation [13, 14]. 
A key observation given in [13] is that there is a mapping from Boolean formulae to 
the negative set-sharing domain such that finding which strings are not represented 
is equivalent to finding satisfying assignments to the corresponding Boolean for­
mula. This is known to be an WT-Hard problem. As mentioned before, this fact 
is exploited in [13] for privacy enhancing applications. The mapping is defined as 
follows. 

Let tnsh = {11**, 1*1*, *11*, **11} be the same sharing set as in Exam­
ple 4.1. Its equivalent Boolean formula <fi = not [(xi and xi) or (xi and X3) or 



(x2 and xs) or (xs and X4)] is denned over the set of variables {x\,X2,xs,X4}. 
The formula <fi is mapped into a negative set-sharing instance where each clause 
corresponds to a string and each variable in the clause is represented as a 0 if it ap­
pears negated, as a 1 if it appears un-negated, and as a * if it does not appear in the 
clause. By applying DeMorgan's law, we can convert <fi to an equivalent formula in 
conjunctive normal form. Then, it is easy to see that a satisfying assignment of the 
formula such as {x\ = true, X2 = false, X3 = false, X4 = true} corresponding 
to the string 1001 is not represented in the negative set-sharing instance. 

Theorem 1 A polynomial time algorithm for computing negative cross-union, igl, 
implies V=MV. 

To show that negative cross-union, jg, is WP-Complete we first restate the 
definition of Non-Empty Self Recognition (NESR) shown to be WP-Complete 
in [13]. Then, we use NESR to show that there is no polynomial time algorithm 
for computing negative cross-union unless V = NV. 

(Non-Empty Self Recognition, NESR). 
INPUT: A negative set tnsh of length I strings over the alphabet {0,1, *}. 
QUESTION: Does tnsh represent an empty positive set bsh? In other words, does 
there exists a string in {0, l}1 not matched in tnsh? 

The following is a proof for Theorem 1: 

Proof 1 Given a negative set tnsh of length I, assume a polynomial time algo­
rithm A4 that takes as input negative sets tnsh\ and tnsh2 and outputs tnsh' = 
tnsh\^tnsh2, where tnsh' represents the result of the positive cross-union of the 
two positive sets represented by tnshi andtnsh2-

We construct a polynomial time algorithm for NESR: given any instance of 
NESR with input tnsh. First, generate a positive set sh with two strings s\ 
and S2 of length I each having alternating 1 's and 0 's, e.g., if I = 4, then sh = 
{0101,1010}. Convert sh to its negative set representation, nsh, using a poly­
nomial time algorithm, i.e., letting k = log2(l) or the Prefix algorithm, see [13J. 
Verify that s\ and S2 appear in tnsh: if either one is missing from tnsh, then 
answer "No " (tnsh is not empty, at a minimum it represents the missing string). 
Otherwise, both s\ and S2 appear in tnsh, but there may be some other string(s) 
missing from tnsh (tnsh is not empty). Let A4 compute tnsh' = tnsh &l nsh. 
Now, check if both s\ and S2 appear in tnsh': if both are missing from tnsh', then 
answer "Yes" (tnsh is empty); otherwise, answer "No". 

Note that if tnsh represented an empty positive set, then its negative cross-
union with another set nsh will yield a representation of the same set nsh. In 



other words, iftnsh is empty and since si and s2 were missing from nsh, then 
si and s2 will also be missing from the result tnsh'. On the other hand, iftnsh 
is not empty (represents some string(s), other than si and s2, in the positive), 
then negative cross-union (ternary OR operation) with one of the two strings will 
produce a different string to s\ or S2 resulting in either s\ or S2 appearing in tnsh'. 
Thus, A4 can be used to solve NESR efficiently. Since NESR is NT'-Complete, 
then V=MV. 

Due to the interdependent nature of the relationship between the elements of a 
negative set, it is unclear how a precise negative cross-union can be accomplished 
without going through a positive representation. Therefore, we accomplish the 
negative cross-union by first identifying the represented positive strings and then 
applying cross-union accordingly. 

Rather than iterating through all possible strings in U and performing cross-
union on strings not in tnsh, we achieve a more efficient negative cross-union, jg, 
by converting tnsh to tsh first, i.e., using NegConvert from Table 1 and perform­
ing ternary cross-union on strings t € tsh. In this way, the ternary representation 
continues to provide a compressed representation of the sharing set. Note that the 
negative up-closure operation, *, suffers the same drawback as cross-union. There­
fore, we handle it in the same way as the negative cross-union. 

Definition 4.3 (Negative union, D). Given two negative sets with same length 
strings, tnsh\ and tnsh2, the Negative Union returns a negative set representing 
the set union oitnshi D tnsh2, and is defined in [14] as: 

tnsh\ Utnsh2 = {z\(xMy) => z = x f\y,x € tnsh\,y € ins /^} , 

where /\ is the ternary AND operator. 

• 

Definition 4.4 (Negative abstract unification, amgu). The negative abstract uni­
fication is a function amgu : V x Term x tNSH1 —>• tNSH1 defined as 

amgu(x, t, tnsh) = irrel(tnsh, x = t) D (rel(tnsh, x) \$ rel(tnsh, t))*, 

Example 4.2 (Negative abstract unification). Let tnsh = {11**, 1*1*, *11*, 
** 11} be the same sharing set as in Example 4.1. Consider the analysis of X\ = 

f(x2,x3y. 



A = rel(tnsh,Xi) = {11 * *, 1 * 1*, *11*, * * 11, 0 * **} 
B = rel(tnsh,f(X2,Xs)) = {11 * *, 1 * 1*, *11*, * * 11, *00*} 
A®B = {00**,01**,0*0*,*00*} 
(AyBf = {01**, 0 * 1 * , 100*} 
C = irrel(tnsh, X\ = f(X2, X3)) = {11 * *, 1 * 1*, *11*, * * 11, 1 * **, 

*1 * *, * * 1*} 
= {1 * **, *1 * *, * * 1*} 

mngu(X1J(X2,X3),tnsh) = CU(A^Bf = {01 * *, 0 * 1*,0 * *0,100*} 

Definition 4.5 (Negative initial state, init). The negative initial state init : V x 
J + —> tNSH^ describes an initial substitution given a set of variables of interest. 
Assuming as in Def 3.7 the binary initial state operation initbSH '• V —> bSH^, 
the negative initial state can be defined using either NegConvert or NegConvert-
Missing described in Fig. 3 and denoted both by Convert as follows: 

init{V,k) = Converl(initbSH(V),k) 

Definition 4.6 (Negative set equivalence, =). Given tnshi,tnsh,2 € tNSH1 

they are equivalent if and only if 

Vti € tnshi,Vsi §ti,si^tnsh2) A (Vt2 € tnsh2, Vs2 <St2,S2§tnshi) 

Definition 4.7 (Negative join, LJ). Given tnshi, tns\i2 € tNSH1, the negative 
join function D : tNSH1 x tNSH1 - • p°(tNSHl) is defined as the negative set 
union of the two sets, i.e., 

tnshi 0 tnsh2 

Definition 4.8 (Negative project, ir). Given a negative set tnsh and the desired 
bit positions to project T, Negative Project is defined in [14] as 

Tr(tnsh) = {x\(xMw)A(\fw € Ur,Vz € U?, 3y € tnsh(y[T]Mw Ay[Y]Mz))} 

e.g., the resulting negative set will contains strings that has a bit value projected in 
column(s) specified by T if and only if all possible binary combination of all strings 
created with the projected column(s) appear in the negative set. For example, given 
tnsh = {000,0U, 10*, ll*},the7fT=i )2(tns/i) = {10, 11}. 



Definition 4.9 (Negative projection, tnsh\t). The negative projection is a func­
tion tnsh\t: tNSH1 x Term —> tNSHk (k < I) that selects elements oitnsh 
projected onto the binary representation of t € Term and is defined as 

tnsh\t = W(tnsh, Tt) 

where Tt is equal to all ith-bit positions of i and i[i] = 1. • 

Example 4.3 (Negative projection). Let ins/z, = {11**, 1*1*, *11*, **11} be the 
same sharing set as in Example 4.1. The negative projection oitnsh over the term 
t = f(Xi,X2,X3) is tnsh\t = {11*, 1*1, *11}. String **1 is not in the result 
because it represents the following strings when fully specified {001, Oil, 101, 
111} and not all these strings are in the complement, e.g., 001 is in the positive 
result of the same projection over bsh. 

5 Experimental Results 

We developed a proof-of-concept implementation, which is currently being opti­
mized, in order to measure experimentally the relative efficiency in terms of run­
ning time and memory usage obtained with the two new representations described 
earlier, tSH and tNSH. The prototype uses Patricia tries [25] to handle effi­
ciently binary and ternary strings, and is connected to a naive bottom-up nxpoint 
analyzer. 

Our first objective is to study the implications of the conversions in the rep­
resentation for analysis. Note that although both tSH and tNSH do not imply 
a loss of precision, the sizes of the resulting representations and their conversion 
times can vary significantly from one to another. An essential issue is to determine 
experimentally the best overall k parameter for the conversion algorithms. Second, 
we study the core abstract operation of the traditional set-sharing, amgu, under 
two different metrics. One is the running time to perform the abstract unification. 
The other metric expresses the memory usage through the size of the representation 
in terms of number of strings during key steps in the unification. All experiments 
have been conducted on an Intel^ Core™ Duo CPU T2350 at 1.86GHz with 1GB 
of RAM running Ubuntu 7.04, and were performed with 12-bit strings since we 
consider this value large enough to show all the relevant features of our approach. 
In general, within some upper bound, the more variables considered the better the 
expected efficiency. 

The first experiment determines the best k value suitable for the conversion al­
gorithms, shown in Figs. 2 and 3. We proceed by submitting a set of 12-bit strings 
in random order using different k values. We evaluate size for the smallest output 
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Figure 4: Level of compression after conversions from bSH to tSH and tNSH 
fork= 1,4, 7, and 10. 

(see Fig. 4) for a given k value. As expected, bSH (x = y line) results in no 
compression; tSH slowly increases with increasing input size, remaining below 
bSH (for k = 7 and k = 10) due to the compression provided by the * symbol and 
by having little redundancy; tNSH, the complement set, starts larger than bSH 
but quickly tapers off as the input size increases past 50% of \U\. Since the k pa­
rameter helps determine the minimum number of specified bits in the set, there is a 
direct relationship between the k parameter and the size of the output due to com­
pression by the * symbol. A smaller k value, i.e., k = 1, introduces the maximum 
number of * symbols in the set. However, for a given input, a small k value does 
not necessarily result in the best compression factor (see k = 1 of Fig. 4). This 
result may be counter-intuitive, but it is due to the potentially larger number of 
unmatched strings that must be re-inserted back into the set determined by all the 
strings that must be represented by the converted result, see line 13-17 of Fig. 3. In 
addition, a small k value may result in a set with more ternary strings than the num­
ber of binary strings represented. This occurs when multiple ternary strings, none 
of which subsumes any other, represent the same binary string. This redundancy in 
the ternary representation is not prevented by ManagedGrowth, and is apparent in 
Fig. 4 when \tSH\ and \tNSH\ exceed the maximum size of binary sharing rela­
tionships (i.e., 4096). One way to reduce the number of redundant strings is to sort 


