A Generic, Context Sensitive Analysis Framework for Object Oriented Programs

Jorge Navas\(^1\), Mario Méndez-Lojo\(^1\), and Manuel V. Hermenegildo\(^{1,2}\)

\(^1\) University of New Mexico (USA)
\(^2\) Technical University of Madrid (Spain)

Abstract. Abstract interpreters rely on the existence of a fixpoint algorithm that calculates a least upper bound approximation of the semantics of the program. Usually, that algorithm is described in terms of the particular language in study and therefore it is not directly applicable to programs written in a different source language. In this paper we introduce a generic, block-based, and uniform representation of the program control flow graph and a language-independent fixpoint algorithm that can be applied to a variety of languages and, in particular, Java. Two major characteristics of our approach are accuracy (obtained through a top-down, context sensitive approach) and reasonable efficiency (achieved by means of memoization and dependency tracking techniques). We have also implemented the proposed framework and show some initial experimental results for standard benchmarks, which further support the feasibility of the solution adopted.

Keywords: Fixpoint algorithms; context sensitivity; static analysis; Java bytecode; abstract interpretation.

1 Introduction

Analysis of the Java language (either in its source version or its compiled bytecode [17]) using the framework of abstract interpretation [7] has been the subject of significant research in the last decade (see, e.g., [18] and its references). Most of this research concentrates on finding new abstract domains that better approximate a particular concrete property of the program analyzed in order to optimize compilation (e.g., [4, 25]) or statically verify certain properties about the run-time behavior of the code (e.g., [12, 15]). In contrast to this concentration and progress on the development of new, refined domains there has been comparatively little work on the underlying fixpoint algorithms. In fact, many existing abstract interpretation-based analyses use relatively inefficient fixpoint algorithms. In other cases, the fixpoint algorithms are specific to a particular source language or analysis and cannot easily be reused in other contexts.

The proposed framework is generic both in terms of the source language and the abstract domain. Analysis is a two-step process that starts with a program transformation; this phase is language dependent and results in a control flow graph (CFG)-style representation where the operational semantics is made explicit. For example, a virtual call is replaced by a non-deterministic call to all the
possible implementations it can be resolved to. This encoding allows transforming
different related idioms of a given language (or from several languages) into a
highly uniform representation. We argue that this preliminary (de)compilation
process greatly simplifies the burden of designing new analyses and abstract
operations.

Although we have generality in mind, for concreteness we implemented a
(de)compiler from Java bytecode to our CFG-style representation. This step is
partially based in the Soot [21, 27] tool. This has the advantage of automatically
providing a way of analyzing certain languages that can be compiled to Java
bytecode, like SML [2]. In a similar fashion, we expect the BoogiePL [10] inter-
mediate representation to become more popular and therefore we also target the
addition of an alternative compilation phase for that source will allow analysis
of CIL programs, written in C#, J#, etc. Our ultimate objective is to support
the full Java language but the current implementation has some limitations: it
does not support dynamic loading of classes, threads, and runtime exceptions.
Also, analysis of the JDK libraries is done under a worst-case assumption.

A second, pivotal piece of the framework is an efficient fixpoint algorithm,
introduced in [20]. Herein we improve the description so that it is now decoupled
from any language-specific characteristics. The efficiency of the algorithm relies
on keeping dependencies between different methods during analysis so that only
the really affected parts need to be revisited after a change during the conver-
gence process. The algorithm deals thus efficiently with mutually recursive call
graphs. In addition, recomputation is avoided using memoization. The proposed
algorithm is also parametric with respect to the abstract domain, specifying a
reduced number of basic operations that it must implement. Another character-
istic is that it is context sensitive –abstract calls to a given method that represent
different input patterns are automatically analyzed separately – and follows a
top-down approach, in order to allow modeling properties that depend on the
data flow characteristics of the program. To our knowledge, ours is the first
concise and precise description of a top-down, context sensitive, and parametric
fixpoint algorithm for object oriented programs.

2 Intermediate program representation

We start by describing the first phase of the analysis: the translation of the
Java bytecode into an intermediate representation. In order to concentrate on
the fixpoint algorithm, which is the main objective of the paper, this description
is summarized, focusing on the characteristics of the transformation and illus-
trating it with a relatively complete example. The translation process produces
a structured, decompiled representation of the Java bytecode and is based on
the SOOT framework [27] which has been successfully used in previous analy-
ses [8, 3]. However, instead of analyzing directly the Jimple representation –based
on gotos – it is processed further in order to build a control flow graph (CFG).
The idea is also analogous to the approach of [12, 26] but the graph obtained is
package examples;

public class Vector {
 Element first;

 public void add(int value) {
 Element e = new Element();
 e.value = value;
 Vector v = new Vector();
 v.first = e;
 append(v);
 }

 public void append(Vector v) {
 Element e = first;
 if (e == null)
 first = v.first;
 else {
 while (e.next != null)
 e = e.next;
 e.next = v.first;
 }
 }
}

class SubVector extends Vector {

 public void append(Vector v) {
 //...
 }
}

somewhat different since we do not distinguish between stack and local variables, and all the operands are explicit in the expressions.

Full independence from the language cannot be achieved only through program transformations. Sometimes, the fixpoint algorithm can be optimized if some characteristics related to the CFG are known. In other occasions, the abstract domain needs information about the program that cannot be found in the flow graph. Both demands are solved via metainformation files. We illustrate this point with the example in Figure 1, which shows an alternative version of the JDK Vector class. The original Java source has been included for better understanding of the example, although the input to the framework is always in bytecode format. The descendant SubVector contains an alternative version of the append method. The corresponding CFG is shown in Figure 2; we omitted the constructor (init) blocks for simplicity.

Space reasons prevent us from listing the full description of the metainformation; only hierarchy and method type tables are shown in Figure 2. In the case of the parent-child relations, the purpose is to permit the abstract domain access to the class tree, the more obvious application being class analysis [1]. The second table contains a classification for each method, which can be y (entry) or n (internal) and it is used to optimize the performance of the fixpoint engine (avoiding projection and extension operations, see Section 3). Additionally, this table contains also the method signatures that can be used for the the abstract domain.

An entry method corresponds, in the original program, to the first block [13] of the Java method of the same name and shares its signature, except for an
extra parameter that represents the value returned. The other blocks present in
the Java method are compiled into (components of) internal methods which
share the same set of variables: all the formal parameters and local vari­
ables they reference. Examples of constructions converted into internal blocks
are if, while or for loops, which are the bytecode level all have the form
of labeled sequences of instructions. In the example, we can see how the if
(e==null)...else conditional in the Vector implementation of append is con­
verted into two different blocks, one for each branch, which actually share the
same name Vector$append#1#2 (Figure 2). In this case, the internal method
is composed of two blocks which are indistinguishable from the caller’s point
of view, thus causing invocations to the method to be non-deterministic (i.e.
causing the execution of one block or another). Entry blocks are marked in
grey, internal in white; dotted arrows denote non-deterministic flows while the
continuous ones symbolize deterministic calls.

Another flow transformation (extra blocks) tries to expose the internal struc­
ture of the more complex bytecode instructions, which sometimes encode so­
plicated operations. That is the case of a virtual invocation, that triggers a
lookup in the hierarchy of the instance in order to figure out which particular
implementation should be executed. Instead of delegating the treatment of such
complexities to the framework, we make these aspects of the operational seman­
tics explicit in the intermediate representation using program transformations
as in [12]. Coming back to the example in Figure 1, note that the call to append
within add is polymorphic: it might execute the implementation in Vector or
the one in SubVector. We make this semantics explicit by inspecting the appli­
cation hierarchy and replacing the virtual invocation with a set of resolved calls,
one for each possible implementation. The method acting as a “hub” is called
an extra block; in the example we have one, Vector$dyn*append, marked in
black. It behaves in a very similar way to the conditional discussed previously,
since the program flow might go through two alternative paths (blocks), one
for each implementation of append. Each branch contains a guard (tot, see the
first statement in each of the Vector$dyn*append blocks) listing the acceptable
types for the callee.

We believe that the approach adopted for virtual invocations is far more
flexible than previous solutions (e.g., [22] or even [20]), in which the semantics
of a virtual invocation contains the lookup in the hierarchy, thus complicating
its formalization and tying the fixpoint description to the Java language. In our
framework, all the calls are resolved a priori in the compilation phase and in
that sense the fixpoint engine sees no difference between, for example, a virtual
call in Java or a function invocation in SML. Checked exceptions [17] are treated
by the compiler in a similar way, so analysis is not even aware of their existence.

Finally, the statements themselves correspond to the three-address represen­
tation output by Soot: stack and local elements have been converted into
named variables and all the expressions are typed. It is interesting how, in an
analogous way to the block case, we introduced extra statements to further sim­
plify analysis. For example, the tot (type of this) builtin filters the execution
of subsequent statements when the class of the instance is not listed in the set
of possibilities; guard statements have a similar goal in blocks that come from
conditional constructions. In Figure 2 the eq call at the beginning of the left­
most Vector$append#1#2 block refers to the condition for executing the first
branch, while the ne call contains its negated version, for the second alternative.
Also, those methods that are entry but not extra contain assignments to shadow
variables that simulate the call-by-reference semantics [20].

3 The Top-Down Analysis Algorithm

We now describe our top-down analysis algorithm, which calculates the least
fixed point given a control flow graph and an initial abstract state. Intermediate
results are stored in a memo table, which contains the results of computations
already performed and is typically used to avoid needless recomputation. In our
context it is used to store results obtained from an earlier round of iteration and
also to track whether a certain entry represents final, stable results for the
block, or intermediate approximations obtained half way during the convergence
of fixpoint computations. An entry in the memo table has the following fields:
block name, its projected call state (λ), its status, its projected exit state (λ')
and a unique identifier. Along with the memo table we assume operations which
allow to query the status of an entry, retrieve the projected exit state, and add
or update an entry.

The pseudocode for the fixpoint algorithm is shown in Figs. 3 and 4. Builtins
are treated directly by each domain; the same happens for external invocations
since we are making, in the current implementation, a worst-case assumption in
which any reference to an external method returns the top-most element in the
domain for all the variables involved in the call.

3 It is straightforward to modify the algorithm to include widening, we omit it for
simplicity.
topDownAnalyze(CFG, method, dom, in, mt, set)
 mflag:=classify(CFG, method)
 case mflag of
 not recursive:
 return analyzeNonRecMethod(CFG, method, dom, in, mt, set)
 recursive:
 return analyzeNonRecMethod(CFG, method, dom, in, mt, set)
 builtins:
 return dom.analyzeBuiltins(method,in,mt)
 external:
 return dom.analyzeExternal(method,in,mt)
 end

analyzeNonRecMethod(CFG, method, dom, in, mt, set)
 name:=getName(method)
 actPars:=getActualParams(method)
 λ:=dom.project(name, actPars)
 if mt.isComplete(name, λ) then
 λ' := mt.getOutput(name, λ)
 else
 (λ', mt, set):=
 analyzeNonRecBlocks(CFG, name, dom, actPars, λ, complete, mt, set)
 end
 out:=dom.extend(in,actPars, λ')
 return (out, mt, set)

analyzeNonRecBlocks(CFG, name, dom, actPars, λ, st, mt, set)
 λ:=λ(/{res, r0,..., rm}]
 blocks:=getNonRecBlocks(name)
 recursive:
 foreach block ∈ blocks
 body:=getBody(block)
 (β', mt, set):=analyzeBody(CFG, β, dom, body, mt, set)
 λ':=dom.project(β', {res, r0,..., rm})
 λ:=λ ∪ λ'
 end
 λ:=λ ∪ {actPars0,..., actParsm}
 mt.insert((name, λ, λ', st))
 return (λ', mt, set)

analyzeBody(CFG, β, body, dom, out, set)
 in:=β
 foreach stmt ∈ body
 (out, mt, set):=
 topDownAnalyze(CFG, stmt, dom, in, mt, set)
 in:=out
 end
 β:=out
 return (β', mt, set)

Fig. 3. The top-down fixpoint algorithm

Invocations of non-recursive methods are handled by analyzeNonRecMethod. It first checks if there is an entry in the memo table for the name of the invoked method and its λ. In that case, we reuse the previously computed value for λ’. Otherwise, the variables of its λ are renamed to the set of variables \{res, r0,..., rm\} (we will assume a standard naming for the formal parameters of the form res, r0,..., rm) and an exit state is calculated for each block the method is built of. The results are then merged through the lub operation, renamed back to the scope of the callee, and inserted as an entry in the memo table characterized as complete. Finally, λ’ is reconciled with the calling state through the extend [20] operation, yielding the exit state.

When a method is recursive, the analyzeRecMethod procedure in Fig 4 repeats analysis until a fixpoint is reached for the abstract execution tree, i.e., until it remains the same before and after one round of iteration. In order to do this, we keep track of a flag to signal the termination of the fixpoint computation. The procedure starts the analysis in the non-recursive blocks of the invoked method, thus accelerating convergence since the initial λ’ is different from ⊥. An entry in the memo table is inserted with that tentative abstract state and characterized as fixpoint. The remaining, recursive blocks are analyzed within analyzeRecBlocks, which repeats their analysis until the value of λ’ does not change between two consecutive iterations.

This basic scheme requires two extra features in order to work also for mutually recursive calls. One is the addition of new possible values for the status field in memo table entries. If the fixpoint has not been reached yet for a entry (m1, λ), we saw that it is labeled as fixpoint; if it has been reached, but by using a possibly incomplete value of λ’ of some other method m2 (i.e., a value that does not
analyzeRecMethod(CFG, method, dom, in, mt, set)

name := getName(method)
aePar := getActualParams(method)
λ := dom.project(in, actPar)

if mt.isComplete((name, λ)) then
 λ := mt.getOutput((name, λ))
elseif mt.isFixpoint((name, λ)) then
 λ := mt.getOutput((name, λ))
 set := set ∪ {getUniqueID(name)}
elseif mt.isApproximate((name, λ)) then
 mt.update((name, λ), fixpoint)
 (λ', mt, set) := analyzeRecBlocks(CFG, method, dom, λ, mt, set)
else
 (λ', mt, set) := analyzeNonRecBlocks(CFG, name, dom, actPar, λ, fixpoint, rat, set)
 set := set ∪ {getUniqueID(name)}
 (λ', rat, set) := analyzeRecBlocks(CFG, method, dom, λ, mt, set)
end

out := dom.extend(in, actPar, A)
return (out, rat, set)

updateDeps(method, mt, set, method, set)

id := getUniqueID(method)

if set(method \ \{id\}) = 0 then
 status := complete
 foreach id' such that id' depends on id
 remove dependence between id' and id
 end
 set(method) := set(method) ∪ setbody
end

repeat
 foreach block ∈ blocks
 λ := λ̃
 endforeach

 body := getBody(block)
 (β, mt, setbody) := analyzBody(CFG, β, dom, body, mt, 0)
 λ := dom.project(β, actPar)
 λ̃ := λ̃ ∪ {getUniqueID(name)}
 if λ̃ ↞ γ ≠ λ̃ then
 fixpoint := false
 mt.update((N, λ), λ̃)
 end
 set(method) := set(method) ∪ setbody
end

until (fixpoint = true)

return (λ, mt, set)

Fig. 4. The top-down fixpoint algorithm (continuation)

correspond yet to a fixpoint), we tag that entry as approximate. The second
required artifact is a table with dependencies between methods. Note that the
fixpoint computation can involve two or more mutually recursive methods, which
will indefinitely wait for the other to be complete before reaching that status.
This deadlock scenario can be avoided by pausing analysis in method mi if it
depends on a call to a method m which is already in fixpoint state; we will use
the current approximation λ for m1 and wait until it reaches complete status
and notifies (via updateDeps) all the methods depending on it.

Computation of that fixpoint can be sometimes computationally expensive
or even prohibitive, so in order to speed it up we use a combination of tech­
niques. The first is memoization [11] since the memo table acts as a cache for
already computed tuples. Efficiency of the computation can be further improved
by keeping track of the dependencies between methods. In the above scenario,
during subsequent iterations for m1, the subtree for m2 is explored every time
and its entry in the memo table labeled as approximate. After the last round
of iteration for m1, its entry in the memo table will be tagged as complete but
the row for m2 remains as approximate. The subtree for m2 has to undergo an
unnecessary exploration, since it has already used the complete value of the exit
state of m. In order to avoid this redundant work, after each fixpoint iteration all those methods depending only on another m that just changed its status to complete are automatically tagged with the same status.

Another major feature of our algorithm is its accuracy. Although precision remains in general a domain-related issue, our solution possesses inherent characteristics that help yield more precise results. First, the algorithm offers results of the analysis at each program point due to its top-down condition. Second, and more relevant, the algorithm is fully context sensitive: every new encountered abstract state for the set of formal parameters is independently stored in the memo table. Moreover, different caller contexts will use the same entry as long as the state of their actual parameters is identical.

Although not present in the pseudo-code, our current implementation also supports path-sensitivity [9], which allows independent reasoning about different branches. A final, more elaborate optimization uses the metainformation described in Section 2. Since the extend operation is usually computationally expensive and may introduce further imprecision, it is desirable to avoid it whenever possible. For that reason, the analysis can take advantage of some compiler invariants, such as the equal signature shared by all the internal methods contained in the same Java method. Because of having the same number and naming of formal parameters, the extend operation turns out to be unnecessary when the call is invoked from an internal method—the categorization is contained in the metainformation—and targets an internal method.

Example 1. We show how an example of mutual recursion (Vector.append) described in Fig. 2 is handled by the fixpoint algorithm defined in Figs. 3 and 4. For simplicity, the abstract domain used is nullity, capable of approximating which variables are definitely null and which ones definitely point to a non-null location. The objective is not to fully understand each of the entries of the memo table in Fig. 5, which would require a complementary explanation of the domain transfer functions and going through a vast amount of intermediate states, but to illustrate how some interesting dependencies and status change in a very specific subset of those states. The method names have been shortened to fit into the tables.

In step 1 it is assumed that the non-recursive blocks for app_4 and app_2 have already been analyzed. Both entries for these blocks are marked as fixpoint since they correspond to recursive methods whose analyses have not converged to a fixpoint yet. Note that there exist two different entries corresponding to method app_2 which has been analyzed twice with different abstract call patterns: one when called from app and another when called from app_4 yielding $\langle \text{app}_{12}, \lambda_1, \lambda_{11} \rangle$ and $\langle \text{app}_{12}, \lambda_3, \lambda_{31} \rangle$, respectively. In step 2, the analysis corresponding to the entry $\langle \text{app}_{12}, \lambda_3, \lambda_{31} \rangle$ has converged to a fixpoint but using the incomplete value of $\langle \text{app}_{34}, \lambda_2, \lambda_{21} \rangle$. Therefore, the entry is forced to approximate changing its exit state to λ_{32}. In step 3, the analysis for the method app_4 reaches a fixpoint and since it does not depend on other methods, the entry $\langle \text{app}_{34}, \lambda_2, \lambda_{21} \rangle$ is marked as complete and updated to $\langle \text{app}_{34}, \lambda_2, \lambda_{22} \rangle$. After this step, the algorithm notices that $\langle \text{app}_{12}, \lambda_3, \lambda_{32} \rangle$ is approximate and waiting for

8
a complete value of \(\text{app}_3, \lambda_2, \lambda_{22} \) which has been already produced. Thus, the entry \(\langle \text{app}_3, \lambda_2, \lambda_{22} \rangle \) is marked directly as \textit{complete} and no extra iteration is required. This change is illustrated in step 4. Finally, the analysis characterizes also the entry \(\langle \text{app}_2, \lambda_1, \lambda_{12} \rangle \) as \textit{complete} and terminates the semantics computation of \textit{app}.

4 Initial Experimental Results

We have completed a preliminary implementation of our framework and tested it by using a nullity domain. Our experimental results are summarized in Fig. 6; the benchmarks belong to the JOlden suite [6]. The first three columns contain basic metrics about the application: number of classes \(k \), methods \(m \) and bytecodes \(b \). Since those numbers really correspond to the Jimple representation of the code, we also list how many program points \(pp \) are present in the Control Flow Graph analyzed. This metric differs slightly from the number of bytecodes in the sense that extra blocks and builtins make it a little big larger; \(pp \) also provides a better approximation for the size of the program analyzed because the semantics of the Java bytecodes are made explicit, as seen in Section 2. The next two columns strictly correspond to the analysis phase. Since our framework is context sensitive and can thus keep track of different contexts at each program point, at the end of analysis there may be more than one abstract state associated with each program point. Thus, the number of abstract states is typically larger than the number of reachable program points. Column \(ast \) provides the total number of these abstract states inferred by analysis. The level of precision is the ratio \(ast/pp \), presented in column \(st \). In general, such a larger number for \(st \) tends to indicate more precise results.

Running times are listed in columns \(pt \) (time invested in preprocessing the program and produce the corresponding CFG) and \(at \) (analysis); both are given in seconds. We chose to divide the total time because we expect the decompilation process to be fully run only once; posterior executions can use incremental compilation for those files that changed, thus the preprocessing phase is almost negligible in medium and large programs. Although the same approach can be taken for the analysis [23], we do not support incrementality at that level in
5 Related work

Most published analyses based on abstract interpretation for Java or Java byte-
code do not provide much detail regarding the implementation of the fixpoint
algorithm. Also, most of the published research (e.g., [4, 5]) focuses on par-
ticular properties and therefore their solutions (abstract domains) are tied to
them, even when they are explicitly multipurpose, like TVLA [16]. In [22] the
authors mention a choice of several context insensitive and sensitive computa-
tions, but no further information is given. The more recent and quite interesting
Julia framework [26] is intended to be generic and targets bytecode as in our
case. Their fixpoint techniques are based on prioritizing analysis of non-recursive
components over those requiring fixpoint computations and using abstract com-
piation [14]. However, few implementation details are provided. Also, this is a
bottom-up framework, while our objective is to develop a top-down, context sen-
sitive framework. While it is well-known that bottom-up analyses can be adapted
to perform top-down analyses by subjecting the program to a “magic-sets”-style
transformation [24], the resulting analyzers typically lack some of the charac-
teristics that are the objective of our proposal, and, specially, context sensitive
results. Finally, Cibai [19] is another generic static analyzer for the modular
analysis and verification of Java classes. The algorithm presented is top-down,
and only a naive version of it (which is not efficient for mutually recursive call
graphs) is presented.

6 Conclusions

We have presented a novel abstract interpretation framework, which is generic in
terms of the source language and abstract domain in use. The framework is built
upon a decompilation phase that results in a control flow graph (CFG) where
the operational semantics is made explicit, and an analysis phase based upon an efficient, precise fixpoint algorithm which is concisely described in this paper and considered itself an important contribution of our work. This algorithm benefits from acceleration techniques like memoization or dependency tracking, considerably reducing the number of iterations. We also claim that the analysis has the potential to be very accurate because of the top-down, context sensitive approach adopted.

Acknowledgments

The authors are supported by the Prince of Asturias Chair in Information Science and Technology at UNM. This work was also funded in part by the Information Society Technologies program of the European Commission, Future and Emerging Technologies under the IST-15905 MOBIUS project, by the Spanish Ministry of Education under the TIN-2005-09207 MERIT project, and the Madrid Regional Government under the PROMESAS project.

References

