
facultad de informatica

universidad politecnica de niadrid

T h e A N D - P r o l o g C o m p i l e r S y s t e m —
A u t o m a t i c P a r a l l e h z a t i o n Tools for L P

F. Bueno
D. Cabeza

M. Garcfa de la Banda
M. Hermenegildo

T R N u m b e r DIA/CLIP5/93.0

The AND-Prolog Compiler System —
Automatic Parallelization Tools for LP

Technical Repor t Number : DlA/CLIP5/93.0

J u n e 1 9 9 3

Authors

F. Bueno, D. Cabeza, M. Garcia de la Banda and M. Hermenegildo

CLIP is the Computational Logic, Implementation and Parallelism Group.
Universidad Politecnica de Madrid (UPM), Facultad de Informatica,
28660-Boadilla del Monte, Madrid — Spain.
clip@dia.fi.upm.es

Keywords

Compilation techniques, Abstract Interpretation, Program Transformation, Parallelism

Acknowledgements

This work was funded in part by ESPRIT project #6707 "PARFORCE" and by CICYT
project TIC93-0976-CE.

ii

mailto:clip@dia.fi.upm.es

Abstract

This report presents an overview of the current work performed by us in the context
of the efficient parallel implementation of traditional logic programming systems. The
work is based on the &-Prolog System, a system for the automatic parallelization
and execution of logic programming languages within the Independent And-parallelism
model, and the global analysis and parallelization tools which have been developed
for this system. In order to make the report self-contained, we first describe the
"classical" tools of the &-Prolog system. We then explain in detail the work performed
in improving and generalizing the global analysis and parallelization tools. Also, we
describe the objectives which will drive our future work in this area.

MI

Contents

1 Introduct ion 1

2 Logic Programming and And-Paral le l ism 2

2.1 Independent And-Parallelism and &-Prolog 3

2.2 Strict and Non-Strict Independent And-Parallelism 5

2.3 The ^ - P r o l o g Language 5

2.4 The &-Prolog System 6

3 Global Analysis Tools 8

3.1 Abstract Interpretation 9

3.2 Framework 10

3.3 Sharing analyzer 13

3.4 Sharing+Freeness analyzer 14

3.5 Implementation Issues 15

4 Parallelization Tools: Annotators 17

4.1 MEL Algorithm 18

4.2 UDG Algorithm 19

4.3 CDG Algorithm 20

4.4 Local Analysis 20

4.5 Side-effect Analysis 21

5 Improving the Global Analysis Tools 22

5.1 ASub analyzer 22

5.2 Combining Domains 23

6 Improving the Parallelization Tools 25

6.1 Generalising MEL 25

6.2 Extending UDG 27

6.3 Improvements to UDG 28

6.4 Improvements to CDG 30

6.5 A new approach to annotation for Non-Strict lAP: the URLP algorithm . 31

6.6 Towards Extracting Non-Strict lAP Using Sharing+Freeness Information 32

7 Integrated Compi le - t ime System 32

7.1 Information for the Annotation Process 33

7.2 Global and Local Analysis and User Information 34

7.3 Interface Analysis/Annotation: New Abstract Syntax 34

References 36

&-Pro log Tools for Partit ioning 1

1 Introduction

Efficient, practical, high-performance multiprocessors are now a market reality. How­
ever, the amount of software that can exploit the performance potential of these ma­
chines is still very small. This is largely due to the difficulty in mapping the inherent
parallelism in problems onto different multiprocessor organizations. In general, there
are at least two ways in which such a mapping can be performed: it can be done explic­
itly in the program by the user, or it can be automatically uncovered by a "parallelizing"
compiler.

The latter approach seems to be desirable, since it avoids burdening the program­
mer with low-level, machine-dependent details. However, the capabilities of current
parallelizing compilers are relatively limited, specially in the context of conventional
programming languages. The former can be used when the programmer has a clear
understanding of how the parallelism in the problem can be exploited in the target
architecture. However, the task of correctly determining the data dependencies among
those parts and the sequencing and synchronization needed to reflect such dependencies
is proving to be very difficult and error-prone. This was also pointed out by Karp [28]
who states that "the problem with manual parallelization is that much of the work
needed is too hard for people to do. For instance, only compilers can be trusted to do
the dependency analysis needed to parallelize programs on shared-memory systems."

Therefore, the best programming environment would appear to be one in which the
programmer can freely choose between only concentrating on the conventional program­
ming task itself (letting a parallelizing compiler uncover the parallelism in the resulting
program) or, alternatively, performing, in addition, the task of explicitly annotating
parts of the program for parallel execution. In the latter case, the compiler should be
able to aid the user in the dependency analysis and related tasks. Ideally, different
choices should be allowed for different parts of the program.

Declarative languages and, in particular, logic programming languages, require al­
most no explicitation of control (thus making easier the mapping between the statement
of the problem and its coding). In addition, their semantics makes them appropriate
for compile-time analysis and program parallelization. In other words, such programs
preserve more the intrinsic parallelism in the problem, make it easier to extract in an
automatic fashion, and allow the techniques being used to be proved correct.

It is our thesis that through advanced compiler techniques, such as abstract inter­
pretation, automation of parallelization is indeed feasible for languages that have a
declarative foundation. Furthermore, we believe that the development of these tech­
niques will give in addition further insight in our understanding of how to parallelize
other programming paradigms.

Report No. D IA /CLIP5/93 .0 June 1993

2 F. Bueno et al.

?:- crew(peter, P).

OR-P

AND-P

crew (peter, P) :-

navigator(peter) pilot(P)

Figure 1: Or - and And-parallelism in Logic Programs

The aim of this work is to present an overview of the current work performed by us
in the context of the efficient parallel implementation of traditional logic programming
systems. The work is based on the &-Prolog System, a system for the automatic
parallelization and execution of logic programming languages within the Independent
And-parallelism model, and the global analysis and parallelization tools which have
been developed for this system.

In doing this and in order to be self-contained we will start by introducing the subject,
determining the issues which form the core of our research effort. Then we will briefly
present the &-Prolog System and the tools which were already developed before the
beginning of the present project. Later we will explain in detail the work performed
in improving and generalizing the global analysis and parallelization tools. Finally, we
will describe how the integration of all these improved tools is being performed in a
modular framework and the objectives which will drive our future work in this area.

It is important to note that the work presented here will be focussed on the techniques
developed for improving and generalizing the partitioning tools defined for traditional
logic programming languages. Thus, issues of support for constraints and concurrency
will be not addressed here since they are the the core of the work presented in ParForce
deliverable D.WP1.2.1.M1.5.

2 Logic Programming and And-Parallelism

The two main types of parallelism which can be exploited in logic programs are
well known[8]: (I) and-parallelism and (2) or-parallelism. Several models have been
proposed to take advantage of such opportunities (see, for example, [16], [38], [2], [25],
[29], [49], [20], [47], [43], [1] and their references). The following example and Figure 1
serves to illustrate where parallelism is available:

crew(X,Y) :- n a v i g a t o r (X) , p i l o t (Y) .
crew(X,Y) :- mechanic(X), p i l o t (Y) .

June 1993 UPM - Dept. of Computer Science

&-Prolog Tools for Partitioning 3

As can be seen in Figure 1 there are two alternative ways to try to satisfy the goal
? : - c r e w (p e t e r , P) .
corresponding to the two clauses in the definition of c rew/2 . It is possible to have differ­
ent processors proceed simultaneously with such alternatives. The resulting parallelism
is called or-parallelism. Thus, or-parallelism corresponds to the parallel exploration of
branches in the proof tree corresponding to different clauses which match a given goal.
Consider now the execution of one of the alternatives, for example crewi in Figure
1. Now, to satisfy crewi both n a v i g a t o r (p e t e r) and p i l o t (P) need to be satisfied.
Parallelism can also be achieved if these two goals are executed in parallel. This is
called and-parallelism, i.e., and-parallelism refers to the parallel execution of the goals
in the body of a clause.1

Significant research effort has been and is being applied to developing or-parallel ex­
ecution models (see, for example, [46] and its references). The associated performance
studies have shown good performance for non-deterministic programs in a number of
practical implementations [43, 1]. The resulting speedups obtained over s ta te -of - the-
art sequential systems in non-deterministic programs support the thesis defended in
this paper for this class of programs. The &-Prolog approach is complementary to
that of or-parallelism: start with the exploitation of (independent) and-parallelism,
develop compilation (parallelization) and implementation technology, and then extend
the system to exploit o r - and (dependent) and-parallelism. We choose to study (inde­
pendent) and-parallelism first because of its ability to exploit parallelism in determin­
istic programs (informally, those which only make trivial use of backtracking) as well
as non-deterministic programs, its compatibility with full Prolog functionality [25, 21],
its inherent efficiency in resource management, and the relative lack of implementation
technology for this type of parallelism. Together, or-parallelism and and-parallelism
appear to be capable of producing speedups in a large class of programs [40].

2.1 Independent And-Parallelism and &-Prolog

As mentioned before, and-parallelism refers to the concurrent execution of goals in
the bodies of clauses. Let's consider the following program

crew(X,Y) :- navigator(X) & pilot(Y).
crew(X,Y) :- mechanic(X) & pilot(Y).

where "&" denotes and-parallel execution. We refer to the language resulting from
incorporating the "&" to Prolog as "&-Prolog" (see Section 2.3). Assume now that
the query is
? : - crew(Cl ,C2) .
According to the semantics of "&" n a v i g a t o r (CI) and p i l o t (C2) would be executed
in parallel. Note that this presents no problems since the tasks of finding a candidate
navigator and a candidate pilot are independent. However, problems arise in cases

Or, more formally, to the concurrent search for proofs of goals in the current resolvent, see [21].

Report No. DIA/CLIP5/93.0 June 1993

4 F. Bueno et al.

where such independence does not hold. Let's assume that the p i l o t / 1 clause is
defined as " p i l o t (P) : - l i c e n s e (P) , med ica l (P) ." and parallelized as " p i l o t (P) : -
l i c e n s e (P) & med ica l (P) ." Consider the execution of the body of this clause. Now
l i c e n s e (C 2) and medica l (C2) are "dependent," i.e. they share an unbound variable,
C2, and should generate unifiable bindings for it. There are two basic alternatives at
this point: generate all solutions for l i c e n s e (C2) and med ica l (C2) and perform a join
(intersection) operation, or sequence them so that one is the producer of C2 and the
other the consumer, as in Prolog (this is also referred to as the generator-consumer or
"nested loops" approach).

The first solution is generally perceived as impractical due to the need for excessive
storage and the generation of much additional work. Independent And-Parallelism
(IAP) [21, 23, 16, 25] selects the second method above, i.e. given two goals p and q in the
body of a clause, "p & q" is a correct annotation iff p and q are mutually independent.
Independent goals are defined as goals which do not share any variables at run-time. In
other words, goals which are dependent, like l i c e n s e (C2) and med ica l (C2) above since
they share the variable C2, should be sequenced (using " , ") . It should be noted tha t ,
as an alternative to IAP, pipelining values between dependent goals (dependent and -
parallelism) offers the possibility of some additional parallelism in some cases but at the
price of increased complexity —and overhead— in the implementation. Additionally,
it is generally accepted that it only makes sense to run determinate dependent goals in
parallel [3] while IAP allows parallel execution of non-determinate goals. Therefore,
and as mentioned before, our approach is to first prove feasibility for the case of IAP
and later extend the capabilities of the system to support or-parallelism and dependent
and-parallelism.

Given the description of IAP above, we could conclude that running l i c e n s e (C 2)
and medica l (C2) in parallel in the previous example was incorrect because they were
dependent and that a correct annotation for the c r e w / p i l o t / . . . example would be

crew(X,Y) : - n a v i g a t o r (X) & p i l o t (Y) .
p i l o t (P) : - l i c e n s e (P) , m e d i c a l (P) .

In fact, this annotation is appropriate only for the particular query considered. Con­
sider the query c r e w (N , p e t e r) . Now the goals in the body of the p i l o t / 1 clause are
l i c e n s e (p e t e r) , med ica l (p e t e r) which are independent (they share no variables)
and could have been run in parallel. But suppose that the query in the above example
is changed to crew (Loner , Loner) , i.e., it is desired to have a one-person crew. Now
the goals n a v i g a t o r (Loner) and p i l o t (Loner) are dependent and the & in crew/2 is
incorrect for this query!

The conclusion is that goal independence is a function of the run-t ime instantiations
of the variables in the goals being considered, and, therefore, is in general query-
dependent. Efficient annotation requires either a priori knowledge of the binding pat­
terns of the variables in the programs at run-t ime, or checks which can dynamically

June 1993 UPM - Dept. of Computer Science

&-Prolog Tools for Partitioning 5

determine at run-t ime which goals should be executed in parallel. As will be shown,
the latter can be done quite simply within the "&-Profog" language.

2.2 Strict and Non-Strict Independent And-Parallelism

As discussed above, Independent And-Parallelism follows the producer-consumer
approach in implementing and-parallelism. Goals in the body of a clause are run in
parallel iff they are independent at run-t ime. Goals which are not independent at r u n ­
time are called dependent and are executed sequentially in left-to-right order,2 since
we want to preserve Prolog semantics and efficiency.

In the broadest interpretation of IAP, goals are deemed to be independent iff they
cannot affect each other's search space.3 In traditional, i.e. strict IAP [21], this trans­
lates to the requirement that run-time instantiations of these goals do not share any
variables. Define vars(g) to be the set of all variables in g. Two goals g\ and gi are
thus defined to be strictly independent if vars(gi) n vars(g2) = 0.

On the other hand, one can relax this requirement by defining non-strict indepen­
dence [23] as follows. Two goals are non-strictly independent iff

• if they are strictly independent, or

• if their run-t ime instantiations do share variables, but these goals do not "com­
pete" for the bindings of these variables.

Within this context, two goals compete for a variable if they try to bind it, even if this
occurs in a failing branch and the binding is never seen after the goals' success.

2.3 The ^ - P r o l o g Language

The &-Prolog language is a vehicle for expressing and implementing strict and non-
strict Independent And-Parallelism. &-Prolog is essentially Prolog, with the addition
of the parallel conjunction operator "&" (used in place of "," (comma) when goals are
candidates for safe parallel execution) and a set of parallelism-related builtins, which
includes several types of groundness and independence checks, and synchronization
primitives. Combining these primitives with the normal Prolog constructs, such as
"->" (if-then-else), users can conditionally trigger parallel execution of goals. &-
Prolog is capable of expressing both restricted [16] and unrestricted IAP (through the
use of the wa i t primitives [32]). For syntactic convenience, an additional construct
is also provided: the Conditional Graph Expression (CGE). A CGE has the general

2i.e. the leftmost goal is the producer and the other goals are the consumers.
This independence ensures that a particular implementation of IAP can execute them in parallel

while being able to guarantee an important "no-slowdown" property w.r.t. the sequential execution
[23] — namely that the time required for the parallel execution is less or equal to the time for the
sequential execution.

Report No. DIA/CLIP5/93.0 June 1993

6 F. Bueno et al.

form (i_cond => goali k goali & . . . & goal^) where the goali are either normal
Prolog goals or other CGEs and Lcond is a condition which, if satisfied, guarantees
the mutual independence of the goaliS. The operational meaning of the CGE is "check
Lcond; if it succeeds, execute the goali m parallel, otherwise execute them sequentially."
&-Prolog if-then-else expressions and CGEs can be nested in order to create richer
execution graphs. Lcond can in principle be any &-Prolog goal but is in general either
true ("unconditional" parallelism) or a conjunction of checks on the groundness or
independence of variables appearing in the goaliS. An &-Prolog annotation for the
example in the previous section is, for instance

crew(X,Y) :- (indep(X,Y) -> navigator(X) & pilot(Y)
; navigator(X), pilot(Y)).

pilot(P) :- (ground(P) -> license(P) & medical(P)
; license(P), medical(P)).

For example, in the first clause the variables X and Y are checked at run-t ime. If the
terms they are bound to are independent (have no variables in common) they will
execute in parallel, an sequentially otherwise.

2.4 The & - P r o l o g System

Figure 2 shows the conceptual structure of the &-Prolog system. It is a complete
Prolog implementation, offering full compatibility with the DECsystem-20/Quintus
Prolog ("Edinburgh") standard, plus supporting the &-Prolog extensions. The user
interface is the familiar one with an on-line interpreter and compiler. At the system
prompt, and following the objective of supporting both automatic parallelism and user
expressed parallelism, the user can choose to input (consult/compile) "conventional"
Prolog code. In this mode users are unaware (except for the difference in performance)
that they are using anything but a conventional Prolog system. A compiler switch
determines whether or not such code will be parallelized. Alternatively the user can
provide Prolog code which is annotated with &-Prolog constructs. This can be done
for a whole file, a procedure, or a single clause, while the rest of the program can still
be parallelized automatically. The compiler still checks the user supplied annotations
for correctness, and provides the results of global analysis to aid in the dependency
analysis task.

In the compiler, input code is analyzed by four different modules as follows:

• The Annota tor , or "parallelizer," performs local dependency analysis on the
input code. In addition, it can also have information about the possible r u n ­
time substitutions ("variable bindings") at all parts in the program from the
global analyzer and whether or not a predicate has side-effects from the side-
effect analyzer. It uses all this information to annotate the input code for parallel
execution. Its output is an annotated &-Prolog program.

June 1993 UPM - Dept. of Computer Science

&-Pro log Tools for Partit ioning 7

USER

Annotator (local
dep. analysis)

abstract interpreter

t

Side-effect analysisH

PWAM Compiler H

High-level simulator

(SUN) (multiproc.
simul.-plops/cache) \\

SUN (Sequent h
parallel

VisAndOr
visualization tool 1

Figure 2: &-Prolog System Architecture and Performance Analysis Tools

• The Global Analyzer interprets the given program over an abstract domain
(specifically designed to precisely highlight dependence information) and infers in­
formation about the possible run-t ime substitutions at all points of the program.
This information, which is obviously not obtainable from local c lause-at-a- t ime
analysis alone, is used by the annotator, as mentioned before, which would then
generate a potentially more efficient annotation.

• The Side—effect Analyzer annotates each non-builtin predicate and clause of
the given program as pure, or as containing or calling a side-effect. This in­
formation is used by the annotator to introduce semaphores into the clauses, if

Report No. D IA /CLIP5/93 .0 June 1993

8 F. Bueno et al.

necessary, in order to correctly sequence such side-effects. The techniques used
for sequencing side-effects at the &-Prolog level and at the abstract machine level
are presented in [32].

The &-Prolog code (annotated Prolog) produced can be saved for analysis by a high-
level simulator [40] which determines the available parallelism and expected speedup
given the annotations and a set of assumptions about the cost of operations on the tar­
get parallel machine. Alternatively, rather than being used as input for the high-level
simulator, the &-Prolog code (annotated Prolog) is translated into low-level PWAM
(Parallel Warren Abstract Machine) byte code by the PWAM compiler for actual ex­
ecution on the PWAM abstract machine. The PWAM machine is an extension of the
Warren Abstract Machine (WAM) architecture [45] capable of executing logic programs
in parallel as determined by fe-Prolog's annotations.

Having defined &-Prolog, and shown its suitability for expressing independent and -
parallel execution, some issues still remain to be dealt with. In particular, how correct
and efficient annotations can be generated automatically [34], how the peculiar char­
acteristics of practical Prolog programs (for example, those with side-effects) are dealt
with [32] and how much parallelism can be obtained from such automatic annotations.
This will be the issues discussed in the next two sections.

3 Global Analysis Tools

The independence and groundness checks used in conditional expressions in &-Prolog
can take up a considerable amount of execution time and thus form a substantial
overhead to the parallel execution of a program. Thus, the effort should be aimed at
eliminating as many checks as possible by gathering highly accurate information at
compile-time about the groundness and independence of the terms to which program
variables will be bound at run-t ime. This can be achieved through global analysis of
the given program at compile-time using the technique of abstract interpretation.

The technique of abstract interpretation for flow analysis of programs in imperative
languages was first presented in a sound mathematical setting by Cousot and Cousot
[10] in their landmark paper. Later, it was shown by Bruynooghe [4], Jones and Son-
dergaard [27], and Mellish [31] that this technique can be extended to flow analysis
of programs in logic programming languages. In this framework a program analysis
is viewed as a non-standard, abstract semantics defined over a domain of data de­
scriptions. An abstract semantics is constructed by replacing operations in a suitable
concrete semantics with corresponding abstract operations defined on data descriptions.
Program analyses are defined by providing finitely computable abstract interpretations
which preserve interesting aspects of program behaviour.

In the case of logic programming languages, "data" corresponds to substitutions
and atoms. The basic operations on data typically include unification, composition

June 1993 UPM - Dept. of Computer Science

&-Prolog Tools for Partitioning 9

of substitutions and projection of substitutions onto variables of interest. Proving the
safety of an abstract unification function is the major step in proving the safety of
abstractions for logic programs.

Specific algorithms for such global analysis in logic programs have been given by a
number of researchers ([15], [30], [39], [44], [48], . . .) . With few exceptions, these schemes
are geared towards optimizing the sequential execution of logic programs. They focus
on computing information about the arguments of predicates used in the program, such
as the mode and the type of an argument. Also, although variable sharing is dealt with
in these methods as needed in order to preserve the correctness of the approach, it is
not generally regarded as one of the main outputs of the analysis and often computed
in a very conservative way [14]. However, as shown above, variable sharing information
can be of the utmost importance for a compiler which targets execution in a system
which supports Independent And-Parallelism (IAP).

Furthermore, such compiler requires information for all points in the program, rather
than globally for each procedure. Note that this requirement is actually the only
significant departure from conventional abstract interpretation involved in supporting
IAP: as shown in [22], in IAP, the execution of a program in parallel produces the
same answer substitutions as the standard sequential execution model. For this reason
the global analyzers developed for the &-Prolog systems have been integrated in an
abstract interpretation framework capable to provide such information.

The main subject of this section will be to describe such framework and the global
analyzers developed for the &-Prolog System. In doing this, we will start by briefly
describing the standard framework of abstract interpretation as defined in [10] in terms
of Galois insertions. Then we will describe in a bit more detail the particular abstract
framework and fixpoint algorithm in which the analyzers developed for the &-Prolog
system are implemented. Finally we will present those analyzers pointing out the
impact that the information obtained by each of those analyzers have on the accurate
determination of independence.

3.1 Abstract Interpretation

Definit ion 1 Galois insertion
A Galois insertion is a quadruple (E,a,D,j) where:

1- (E, QE) and (D, QD) are complete lattices called concrete and abstract domains
respectively;

2. a : E —^ D and 7 : D —• E are monotonic functions called abstraction and
concretization functions respectively; and

3. a("f(d)) = d and e C# j(a(e)) for every d £ D and e £ E.

In general only one of < a, 7 > need be specified since in principle a "best possible"

Report No. DIA/CLIP5/93.0 June 1993

10 F. Bueno et al.

a can always be determined for a given 7 and vice versa.

The following specifies the notion of approximation which is then lifted from the
primitive domains to function domains:

Definit ion 2 approximation
Let (E, a, -D, 7) be a Galois insertion and let \± : E —> E and \± : D —> D be monotonic
functions. We say that d £ D 7-approximates e £ E, denoted d oc7 e, if e C# j(d)4.
We say that \± 7-approximates fi, denoted \± oc7 fi, if \fd £ D. e £ E. d oc7 e =>•
fi (d) oc7 / i(e).

Concrete semantics are typically defined as least fixed points of an operator on pro­
grams. Typically, the meaning of a program P may be expressed as [P] = Ifp(fp)
where fp : Den —• Den is a monotonic operator on a domain of denotations Den.
A program analysis will typically be defined by introducing an appropriate Galois in­
sertion (Den, a, Den ,7) and constructing an approximation fp : Den^ —> Den^ of
fp so that the least fixed point of fp is finitely computable. This construction often
takes a systematic approach which involves replacing the basic operations in the con­
crete semantic operator fp by corresponding abstract operations in fp (e.g., [12, 37]).
Given that these abstract operations approximate the concrete operations it is gener­
ally straightforward to prove that the derived abstract semantic operator approximates
the concrete semantic operator. The fundamental theorem of abstract interpretation
provides the following result:

T h e o r e m 1
Let (E, a, -D, 7) be a Galois insertion and let \± : E —> E and \± : D —> D be monotonic
functions such that \±^ 7-approximates fi. Then Ifp(fi^) oc7 Ifp(fi).

The "art" of abstract interpretation can be described as involving the following
steps: (1) to choose an appropriate concrete semantics; (2) to identify a suitable notion
of data-description; and (3) to provide good approximations of the basic operations in
the concrete semantics. Once this is done the foundation is laid for deriving, more or
less automatically, a semantics based program analysis. Applying suitable optimiza­
tions to the fixpoint algorithm used in the description domain, an analysis that is also
efficient can be built essentially automatically from it [4, 36]. In the case of logic pro­
grams the main step is to provide a notion of abstract substitutions and an abstract
unification algorithm. Other operations include "projection" and "composition" which
safely project (i.e., on a finite set of variables) and compose descriptions.

3.2 Framework

The input to the abstract interpreter is a set of clauses (the program) and set of
"query forms." As mentioned, one of the main requirements for the abstract interpreters

Or alternatively if a(e) \Z]j d.

June 1993 UPM - Dept. of Computer Science

&-Pro log Tools for Partit ioning 11

Figure 3: Illustration of the abstract interpretation process

developed for the &-Prolog System is to compute the abstract information at all points
of all the clauses that would be used while answering all possible queries which are
concretizations of the given query forms. Thus, it is convenient to give different names
to abstract substitutions depending on the point in a clause to which they correspond.
Consider, for example, the clause h :- pi,...,pn. Let A,- and A,-+i be the abstract
substitutions to the left and right of the subgoal Pi,l < i < n in this clause. See figure
3(b).

Definit ion 3 A,- and A,-+i are, respectively, the abstract call substitution and the ab­
stract success substitution for the subgoal pi. For this same clause, \\ is the abstract
entry substitution (also represented as (3entry) and ^n+i is the abstract exit substitution
(also represented as fiexit)-

Control of the interpretation process can itself proceed in several ways, a particularly
useful and efficient one, able at providing information at all program points, being to
essentially follow a top-down strategy starting from the query forms. Several frame­
works for doing abstract interpretation in logic programs follow along these lines. One
such framework is described in detail for example in [4]. In a similar way to the con­
crete top-down execution, the abstract interpretation process can then be represented
as an abstract AND-OR tree, in which AND-nodes and OR-nodes alternate. A clause
head h is an AND-node whose children are the literals in its body pi,.. .,pn (figure
3(b)). Similarly, if one of these literals p can be unified with clauses whose heads
are hi,..., hm, p is an OR-node whose children are the AND-nodes hi,..., hm (figure
3(a)). In building the abstract AND-OR tree for a given program and a goal, the
abstract interpreter has to repeatedly execute the basic step of computing the success
substitution of a subgoal whose call substitution is given. Given a subgoal p, its call
substitution \caii and clauses C\,..., Cm whose heads unify with p, a naive approach
to executing this basic step would be to build the subtree for p in a top-down fashion:

• Project Xcau on to the variables in p to obtain A, the projected call substitution
for p.

Report No. D IA /CLIP5/93 .0 June 1993

12 F. Bueno et al.

• For each clause C,-:

— compute its entry substitution,

— compute its exit substitution by recursively computing the success substitu­
tions for each of its subgoals in a left-to-right fashion,

— compute A', the projected success substitution for p from clause C\,

• Compute A', the projected success substitution for p by taking the least upper
bound (LUB) of X[, 1 < i < m

• Extend A' to ASMCCess, the success substitution for p.

The overall abstract interpretation scheme described works in a relatively straight­
forward way if the program has no recursion. Consider, on the other hand, a recursive
predicate p. If there are two OR-nodes for p in the abstract AND-OR tree such that
they are identical (i.e., they have the same atoms), one is an ancestor of the other, and
the call substitutions are the same for both, then the abstract AND-OR tree is infinite
and an abstract interpreter using the simple control strategy described above will not
terminate.

The goal of the fixpoint algorithm is then to facilitate the computation of the abstract
information in such cases without going into an infinite loop. The basic idea behind
such algorithm is as follows:

• Compute the approximate value of A' using the non-recursive clauses C\,..., Cr

for p and record this value in a memo table [18].

• Construct the subtree for p, using the approximate value of A' from the memo
table, if necessary.

• Update the value of A' using p's subtree. Update p 's subtree to reflect this change
and compute the new value of A' again. Repeat this step until the value of A'
doesn't change, i.e., it has reached fixpoint.

The aim of the memo table is to store possibly incomplete results obtained from an
earlier round of iteration. The memo table has an entry for each node, i.e for each
subgoal with a distinct atom and a distinct (projected) call substitution (modulo re­
naming of the variables) that occurs in the abstract AND-OR tree. In addition, each
entry contains the projection of its success substitution on the subgoal variables (A'),
characterization of this information indicating if the information is complete, approxi­
mate or fixpoint (the meaning of these labels will be explained below), and a unique ID
identifying the node in the abstract AND-OR tree.

The global analysis tools developed for the &-Prolog System use a highly optimized
fixpoint computation algorithm based on the scheme above, which is described in [36].

June 1993 UPM - Dept. of Computer Science

&-Prolog Tools for Partitioning 13

3.3 Sharing analyzer

The Sharinganalyzer defined in [36] was the first analyzer aimed at inferring accu­
rate sharing information as the previous step for automatically parallelization. The
approach to defining abstract substitutions was entirely different to that followed by
the traditional analyzers. It was not per se interested in the set of terms that a program
variable is bound to at a point in a clause. Rather, it was interested in the sharing of
variables among the sets of terms that program variables are bound to. For example,
let X and Y be the program variables in a clause. The abstract substitution in the
Sharingabstract interpreter should tell us whether the sets of terms that X and Y are
bound to, share any variables or not. As discussed above, this information will help to
eliminate groundness/independence checks.

The abstract substitution for a clause are then defined as a set of sets of program
variables in that clause. This follows an approach initially suggested in [26]. For the
example clause of the previous paragraph, the value of an abstract substitution may
be { { X } , { X , Y}}. This abstract substitution corresponds to a set of substitutions in
which X and Y are bound to terms Tx and Ty such that (1) a variable occurs in both
Tx and Ty (this corresponds to the element {X, Y}) and (2) a variable occurs only
in Tx (this corresponds to the element {X}) .

Below, we formally define the abstract substitution A{9) which corresponds to a
concrete substitution 9. The basic idea behind this definition is as follows: a set S
of program variables appears in A{9) iff there is a variable Z which occurs in each
member of S under 9. Thus, a program variable is ground if it does not appear in any
set A(9), and two program variables are independent if they do not appear together
in any set in A{9). In other words, each set in the abstract substitution containing
variables vi,..., vn represents the fact that there may be one or more shared variables
occurring in the terms to which vi,..., vn are bound. If a variable v does not occur in
any set, then there is no variable that may occur in the terms to which v is bound and
thus those terms are definitely ground. If a variable v appears only in a singleton set,
then the terms to which it is bound may contain only variables which do not appear in
any other term.

Before we formally define the abstraction function A, let us first review some basic
definitions about substitutions. A substitution for a clause is a mapping from the set of
program variables in that clause (Pvar) to terms that can be formed from the universe
of all variables (Var), the constants and functors in the given program. The domain
of a substitution 9 is written as dom(9). We consider only idempotent substitutions.
The instantiation of a term T under a substitution 9 is denoted as 19. var (T#) denotes
the set of variables in T9. Subst is the set of all substitutions which map variables in
Pvar to terms comprising of variables in Var, constants and functors in the given pro­
gram. Asubst is the set of all abstract substitutions for a clause. Asubst = p(p(Pvar))
where p(S) denotes the powerset of S. The function Occ takes two arguments, 9 (a
substitution) and U (a variable in Var) and produces the set of all program variables

Report No. DIA/CLIP5/93.0 June 1993

14 F. Bueno et al.

V G Pvar such that U occurs in var(V0) i.e

Occ(0, U) = {V\ V e dom(0) A U G var(V0)}

Definit ion 4 (Abs trac t ion of a subst i tut ion)

A : Subst —• Asubst

A(0) = {0cc(6, U)\ U G Far}

Example: Let 0 = { TF/a, X / / (, 4 , 5) , Y/g(B), Z/C}. Occ(0, A) = { X } , Occ(0, B) =
{X, Y}, Occ(0, C) = {Z} and Occ(0,P) = 0 for all other P G Var. Hence, A(0) =
{ 0 , { X } , { X , F } , { ^ } } .

As mentioned, the domain intuitively described above, is essentially the abstract
domain of Jacobs and Langen [26]. For efficiency and increased precision, however,
the analyzer integrated in the &-Prolog compiler uses the efficient abstract unification
and top-down driven abstract interpretation algorithms defined by Muthukumar and
Hermenegildo [36] instead of the pure bottom-up approach used by Jacobs and Langen.

The way in which this analyzer captures sharing information has been called set
sharing. The power of the Sharing domain is based on this set sharing information
since it not only represents when two terms possibly share, but also which variables
are possibly shared and which are definitely not shared. This information allows it to
accurately propagate groundness between variables. The reason is that it can represent
that a set of terms share all their variables, and therefore infer the groundness of one
term from the groundness of the others.

3.4 Sharing+Freeness analyzer

The Sharing+Freeness analyzer was defined in [35] as an improvement of the Sharing
analyzer in which not only sharing but also freeness information was obtained. Freeness
information is very useful for at least two reasons. First, the information itself is
vital in the detection of non-strict independence [24] among goals, and also in the
optimization of unification, goal ordering, avoidance of type checking, general program
transformation, etc. Second, by computing this freeness information in combination
with the sharing it is possible in turn to obtain much more accurate sharing information.
Conversely, keeping accurate track of sharing also allows more precise inference of
freeness. The overall effect is thus a more precise analysis than if two separate analyses
were performed.

The Sharing+Freeness abstract domain approximates this information by combining
two components: one is essentially the Sharing domain described above; the other
encodes freeness information. The freeness component of an abstract substitution for a

June 1993 UPM - Dept. of Computer Science

&-Prolog Tools for Partitioning 15

clause gives the mapping from its program variables to an abstract domain {G, F, NF}
of freeness values 5 i.e. Da-.freeness = p(Pvar —• {G, F, NF}). X/G means that X
is bound to only ground terms at run-t ime. X/F means that X is free, i.e., it is not
bound to a term containing a functor. X/NF means that X is potentially non-free,
i.e., it can be bound to terms which have functors. During the process of performing
abstract unification, we use a set of temporary freeness values of the form NF(e) (where
e is a normalized unification equation). After abstract unification is performed, these
values are changed to NF. X/NF(e) means that X was free prior to unification by
the equation e = X = f(t\,..., tn) but became non-free due to the equation e. The
important consequence of this is that it does not introduce any new sharing between
the variables in vars(f(ti,..., tn)) nor does it change their freeness values. Suppose,
subsequently, that equation e' = X = Term (where e ^ e') is processed. Now, the
freeness values of X and all variables in vars(f(ti,..., tn)) and Term are changed from
NF(e) to NF. The three freeness values are related to each other by the following
partial order: 1 C F C NF, _L C G C NF

More formally, the freeness value of a term is defined as follows:

Definit ion 5 (Abstract ion(freeness) of a Term)
•^freeness \ ^ &' ̂) —

if vars(Term) = 0 then G
if vars(Term) = {Y} A Term = Y then F
else NF

The freeness domain can be then represented as a list of those program variables
which are known to be free. Its interpretation is the following:

• if a program variable X appears in the freeness component of A, X is bound to a
free variable under 9, i.e., s.t. X9 = Y, Y £ Pvar.

• if a program variable X does not appear in the freeness component of A, but it
appears in at least one subset of the sharing component of A, nothing can be said
about the instantiation state of the term to which X is bound under 9, i.e., it can
be free, ground or any complex term.

3.5 Implementation Issues

This section deals with issues that arise when implementing the analyzers described
above. In particular, we will refer to the following four main issues: how the query

In its most compact form, the freeness component is represented simply by the set of all program
variables which are known to be free i.e. Da-freeness = p(Pvar). However, in this case, the groundness
information can be obtained only from the sharing component and as a result, abstract unification
algorithms become more complicated. Due to lack of space a description of the abstraction framework
and unification algorithms using the Da = p(p(Pvar)) x p(Pvar) domain is not included here. However,
it can be found in [33].

Report No. DIA/CLIP5/93.0 June 1993

16 F. Bueno et al.

forms for the analysis are used, how available information on builtins can be taken
advantage of in the process of analyzing, how meta-predicates in particular can be
analyzed, and how the cut is treated in the process.

The query forms in its minimal form (least burden on the programmer) can be simply
the names of the predicates which can appear in user queries (i.e., the program's "entry
points"). In order to increase the precision of the analysis, query forms can also include
a description of the set of abstract (or concrete) substitutions allowable for each entry
point. In the actual implementation of the analyzers, the query form is a declarative­
like declaration qmode/2 which has as first argument the goal pat tern of one of the
entry predicates of the program and as second argument a term with functor in fo and
any arity. Each of the arguments for this term corresponds to each of the analyzers of
the &-Prolog system. Abstract substitutions approximating the concrete substitutions
that can occur when entering the program can be placed here.

The analysis process can be viewed as interpreting the semantics of a program over
an abstract domain. This is done through analyzing the definitions of the program
predicates. But in doing this, predicates can be found which do not have an explicit
definition in the program, i.e. builtins. Thus, the semantics of builtins must be handled
by the analyzers themselves. This has the advantage of improving the information
inferred by the analyzer due to the a priori knowledge that they provide, thus avoiding
possible losses of information due to complex program definitions. In addition, builtins
can provide control information since they are easily "abstract executable" [19] —
typically, failure can be inferred at a program point where the builtin var(X) appears
and it is known that X is not a variable at that point. A disadvantage of this approach is
that system-specific builtins have to be added to the analyzer knowledge when porting
it. But this is a quite straightforward task once the precise behavior of the builtins is
known.

There is a class of builtins which are specially interesting and also difficult when an­
alyzing a program: meta-predicates (i.e. c a l l / 1 , s e t o f / 3 , f i n d a l l / 3 , b a g o f / 3 ,
\ + / l) . These predicates use other predicates as arguments. Thus, they often can
not be manipulated because it can not be known in advance which other predicates
they are calling to (i.e. those they use as arguments). In other cases the goal used
as argument is made explicit in the program (typically when using b a g o f / 3 and the
like). In these cases analysis can proceed further by taking the goal argument as the
procedure call and analyzing it. Correctness of this transformation relies on the fact
that the exit substitution for a procedure call correctly approximates the semantics of
all possible solutions to this call, thus also approximates that of b a g o f / 3 , f i n d a l l / 3
and s e t o f / 3 . The case of \ + / l is bit special, since the exit substitution inferred for
the goal call is not the exit substitution for the \ + / l goal, i.e. the call substitution to
\ + / l will remain the same as exit substitution. It is important to note that this does
not mean that the goal call is not analyzed, and therefore it can modify the information
already inferred for its program definition.

In the cases where the argument of the meta-predicate is not known, analysis cannot

June 1993 UPM - Dept. of Computer Science

&-Pro log Tools for Partit ioning 17

proceed, therefore a warning is issued to the user. This is not only due to the fact
that the call substitution for the next goal in the program is not known (the T element
of the abstract domain could always be assumed), but also because the information
already inferred for the definitions of the particular goals which might be called at that
point may be incorrect.

Handling the cut in the analysis framework presented is much more straightforward:
it is just ignored. Obviously, this does not alter the correctness of the results of the
analysis. On the other hand, cut could be abstractly executed in order to increase
accuracy of the analysis, by providing control information. However, it has not been
already shown that the complexity inherent to make possible this enhancement would
be worth. The reason for this is the difficulty present in deciding when the subgoals
involved in the pruning will always succeed.

4 Parallelization Tools: Annotators

Annotators are concerned with identifying the opportunities for parallel execution
in programs. The aim of the annotation process is, through different forms of depen­
dency analysis, to partition the original program into processes that are independent
(according to a particular definition of independence) and which can thus be safely run
in parallel. This task is performed as source-to-source transformations of the program
being annotated. Thus, these tools take Prolog programs and produce programs in
which goals which can be executed in parallel are explicitly annotated and in which the
sequencing relationships and safety conditions necessary to maintain the correctness
and efficiency of the original program are also expressed.

Three different algorithms (MEL, UDG, and CDG) are available in the &-Prolog sys­
tem for this purpose [34]. These algorithms select goals for parallel execution and, using
the sufficient rules proposed for Strict IAP [21], generate the conditions under which
independence is achieved and therefore independent parallel execution ensured. The
result is a transformation of a given Prolog clause into an &-Prolog clause containing
parallel expressions which achieve such independent and-parallelism.

The basic idea behind the algorithms is presented in the following, for a complete
description see [34]. The MEL (Maximum Expression Length) algorithm creates only
CGEs in its expressions to achieve parallelism, while seeking to maximize the number
of goals to be run in parallel within a CGE. Goals in a clause are treated as an ordered
sequence where dependency relations are identified, causing the required annotations
to be performed and possibly a partition of the sequence into plain subsequences (i.e.
no nested annotations are done). The UDG algorithm exploits only unconditional
parallelism, i.e. only goals which can be determined to be independent at compile-
time will be run in parallel. Thus, no run-t ime checks are generated, and therefore
resultant expressions only use the & parallel operator. It represents a clause body as
an Unconditional Dependency Graph (UDG).

Report No. D IA /CLIP5/93 .0 lune 1993

