Reacondicionamiento sísmico de pórticos de hormigón armado con relleno de mampostería

Seismic retrofitting of reinforced concrete frames with masonry infill pannels

Ricardo Perera Velamazán
Dr. Ingeniero de Minas, ETSI Industriales
Departamento de Mecánica Estructural y Construcciones Industriales (UPM)

Susana Gómez Schnackenberg
Dr. Ingeniero Industrial, ETSI Industriales
Departamento de Mecánica Estructural y Construcciones Industriales (UPM)

Enrique Alarcón Álvarez
Dr. Ingeniero de Caminos, ETSI Industriales
Departamento de Mecánica Estructural y Construcciones Industriales (UPM)

RESUMEN

Tanto las investigaciones experimentales y numéricas como las observaciones llevadas a cabo en áreas afectadas por terremotos aportan de forma continua nuevos datos sobre el comportamiento sísmico de las construcciones. Los avances en este campo redundan en normativas más exigentes y sistemas constructivos más efectivos.

Dentro de la ingeniería sísmica, uno de los objetivos está en proporcionar métodos simplificados de evaluación del daño potencial en una estructura sometida a acciones sísmicas como forma de medir la posible reparabilidad de la misma.

En el presente trabajo se propone una técnica de reacondicionamiento sísmico aplicada a pórticos de hormigón armado con relleno de mampostería. La eficiencia de dicha técnica es evaluada mediante ensayos experimentales.

Asimismo se propone un modelo numérico simplificado de evaluación de daño estructural cuya validación es llevada a cabo con los resultados experimentales anteriores.

SUMMARY

The experimental and numerical research as well as the observations performed in areas affected by earthquakes contribute new data about the seismic behaviour of buildings. The advances in this field produce more demanding codes and more effective construction systems.

One of the main objectives of seismic engineering is to find simplified methods of assessment of the potential damage in a structure under earthquake loadings as a measure of the reparability of the structure.

In the present work a seismic retrofitting technique is proposed for masonry infilled reinforced concrete frames. The performance of this technique is evaluated through experimental tests.

In the same way, a simplified numerical model for structural damage evaluation is proposed and calibrated with the experimental results.

1. INTRODUCCIÓN

Las consecuencias producidas por los terremotos más recientes (Kobe, Northridge, Loma Prieta, Umbria-Italia, Turquía) ha puesto de manifiesto, una vez más, los trágicos efectos acaecidos sobre la población - miles de personas muertas y heridas, personas sin vivienda, daños irreversibles sobre los edificios y sobre la herencia cultural de un país, alteración brusca de los sistemas que constituyen la infraestructura de una ciudad- en definitiva, un gran terremoto se traduce en pérdidas socio-económicas muy elevadas.

¿Cómo se podrían evitar situaciones tan catastróficas? Se están haciendo en este sentido en los últimos años esfuerzos en distintas direcciones. Por un lado, se dedica mucha aten-
Reaccondicionamiento sísmico de pórticos de hormigón armado...

1.1. Objetivos

Este trabajo se concentra en la evaluación de una técnica de reaccondicionamiento específica aplicada a la tipología de pórticos de hormigón armado con relleno de mampostería dimensionados con normativas antiguas. Este tipo de reaccondicionamiento se emintra en la tercera categoría de técnicas mencionadas anteriormente y consiste en sustituir uno de los paneles de relleno por un arriostramiento metálico excéntrico con un elemento disipador metálico vertical de cortante. Se pretende conservar así el efecto rigidizador positivo de la mampostería, mientras se compensa la escasa ductilidad de ésta con la capacidad de disipación de un elemento metálico.

En la práctica habitual este tipo de elementos disipadores, perfiles metálicos de reducida longitud, se sitúan en el medio o en los extremos de las vigas del piso. Sin embargo, bajo la acción de sísmos severos, se deben aceptar deformaciones elevadas de los disipadores en aquellas vigas. En el caso de que las vigas tuviesen que permanecer en el rango elástico, se deben emplear elementos disipadores verticales con el fin de trasladar las deformaciones plásticas a zonas más tolerables donde resulte más fácil la reparación o sustitución de las partes dañadas.

Paralelamente a la evaluación de resultados experimentales obtenidos mediante la aplicación de esta técnica, en lo que sigue se desarrolla un modelo numérico de evaluación del daño sísmico cuyo objetivo es el de predecir el comportamiento sísmico de pórticos de hormigón armado y, por tanto, la posibilidad de utilizarlo como herramienta numérica en la fase de decisión sobre la necesidad de reaccondicionamiento sísmico de una estructura.

De su comparación con los resultados experimentales se pueden extraer las conclusiones pertinentes sobre la aplicabilidad futura.

2. MODELO DE EVALUACIÓN NUMÉRICA

Para la evaluación numérica del daño estructural en pórticos de hormigón armado con relleno de mampostería y la simulación posterior de la técnica de reaccondicionamiento propuesta en este trabajo se hace necesario el desarrollo de tres modelos numéricos diferentes: uno para los elementos que constituyen el pórtico, otro para los muros de fábrica y, por último, el modelo correspondiente al reaccondicionamiento.

A continuación, se presenta de una forma simplificada cada uno de los tres modelos empleados.

2.1. Modelos de evaluación del daño sísmico

A la evaluación del daño potencial en estructuras de hormigón armado sometidas a acciones sísmicas se han dedicado muchos estudios e investigaciones en las últimas décadas. El procedimiento generalmente aceptado consiste en una evaluación en dos etapas: primeramente se lleva a cabo un cálculo estático no lineal de la estructura y el índice de daño se calcula a posteriori en una etapa de posproceso. Este método no
deja de resultar paradójico al utilizar para el cálculo del daño un procedimiento en el que no se incluye la influencia del mismo.

De una forma más congruente se puede plantear la evaluación del daño como un proceso acoplado al cálculo estructural y, por tanto, influyendo sobre el comportamiento mecánico de la estructura. Para ello, se ha de establecer el modelo utilizando los conceptos de la Mecánica de la Degrada-
ción Continua, lo cual conduce a formulaciones demasiado complejas.

Otra alternativa que es la utilizada en este estudio se basa en una aplicación de los conceptos de la Mecánica de la Degrada-
ción a los modelos de rótula plástica concentrada en los extremos. Una generalización de estos últimos para incluir el daño supone que en los extremos de cada barra se concentran no sólo los efectos plásticos sino también todos aquellos efectos que producen disipación en la estructura. Para ello, al igual que con la deformación plástica se definen unas variables de degradación en los extremos de las barras que permiten cuantificar el deterioro sufrido en cada una de estas seccio-
nes extremas.

Una aplicación de esta formulación para la simulación de los elementos del pórtico de hormigón y los muros de ma-
postería es la que se describe en los siguientes apartados de forma simplificada.

2.1.1. Modelo de daño concentrado para elementos apicotados

Como se ha mencionado anteriormente, en el desarrollo del modelo se emplean los conceptos de la Mecánica de la Degrada-
ción Continua. Según esto, la influencia del daño sobre el comportamiento elástico de un elemento se considera mediante el principio de equivalencia en deformaciones [1] que permite expresar la deformación reversible como:

$$\varepsilon - \varepsilon^p = \frac{\sigma}{E(1-d)}$$ \hspace{1cm} (1)

donde d representa una variable de daño isotrópico y la rigidez de descarga del material dañado queda definida por E(1-d).

De la deformación reversible la deformación verdadera mente elástica se obtiene como:

$$\varepsilon^e = \frac{\sigma}{E}$$ \hspace{1cm} (2)

El resto de la deformación reversible se asocia a la microfi-
suración producida durante el proceso de carga y representa el proceso de degradación de las propiedades elásticas [2]. Su valor se obtiene a partir de (1) y (2) como:

$$\varepsilon^d = \frac{\sigma d}{E(1-d)}$$ \hspace{1cm} (3)

En el caso particular de un elemento de celosía la aplicación de la ecuación (3) conduce a la siguiente expresión

$$\delta^d = \frac{N L}{E A (1-d)}$$ \hspace{1cm} (4)

en la cual N, δd y d representan el esfuerzo axial, el alarga-
iento debido al daño de la barra y el daño axial, respectiva-
mente.

Este resultado constituye el núcleo del modelo de daño desarrollado en este estudio ya que, por generalización de los modelos de plasticidad concentrada, se suponen todos los efectos dissipativos considerados (daño y plasticidad) concentrados en los extremos de las barras. Esto permite representar cualquier elemento de pórtico de forma idealizada mediante un elemento elástico con muelles en los extremos representativos de los fenómenos dissipativos (Modelo de disipación concentrada) [3].

Si se considera para cada elemento la distribución de ten-
siones definida por el vector $q=(M_1, M_2, N)^T$ conteniendo los momentos de flexión en los extremos y el esfuerzo axial se tiene:

$$\nu^d = \begin{bmatrix} \theta_1^d \\ \theta_2^d \\ \delta^d \end{bmatrix} = \begin{bmatrix} \frac{d_1}{1-d_1} & \frac{L}{4EI} \\ \frac{d_2}{1-d_2} & \frac{L}{4EI} \\ \frac{d_e}{1-d_e} & \frac{L}{EA} \end{bmatrix} \begin{bmatrix} M_1 \\ M_2 \\ N \end{bmatrix} = F^d q$$ \hspace{1cm} (5)

donde θ_1^d y θ_2^d representan los giros debidos al daño en los extremos de la barra, d_1 y d_2 las variables de daño asociadas a estos giros y F^d la matriz de flexibilidad asociada al daño. En la formulación de la ecuación (5) se ha postulado para los efectos de flexión una relación similar a la de la ecuación (4).

A partir de la ecuación (5) y del modelo de disipación con-
centrada empleado se obtienen las ecuaciones de comporta-
miento características del elemento de pórtico:

$$\nu - \nu^p = [F^0 + F^d] q$$ \hspace{1cm} (6)

donde ν^p agrupa la parte elástica de las deformaciones gene-
ralizadas y F_0 representa la matriz de flexibilidad elástica.

Al ser establecido el modelo dentro del marco de la termo-
dinámica de los procesos irreversibles la evolución de las variables internas ha de formularse también de forma con-
gruente con este marco. Más detalles de este modelo se pue-

2.1.2. Modelo de daño para muros de mampostería

El carácter no homogéneo y anisótropo del material que constituye los muros de mampostería hace que su respuesta sea compleja y de difícil modelado. Las dos grandes catego-
rias de modelos de mampostería desarrollados hasta ahora son
Los modelos micromecánicos y los modelos fenomenológicos o globales [6].

La primera clase, basada esencialmente en el Método de Elementos Finitos, requiere la modelización de cada uno de los constituyentes por separado y de la unión entre ellos y entre el muro y el pórtico lo cual resulta de gran dificultad y conduce a modelos demasiado complejos para su aplicación práctica.

Los modelos globales o simplificados permiten la representación del comportamiento del muro en conjunto mediante un elemento diagonal equivalente. Este elemento, además de simplificar notablemente el problema, representa de un modo integral las propiedades mecánicas del panel de relleno lo cual resulta muy valioso debido al carácter heterogéneo del material que lo constituye.

En este trabajo, se ha formulado un modelo de degradación para el muro basado en el elemento diagonal equivalente y en los principios de la Mecánica de la Degradaición.

El elemento diagonal es modelado como un muelle inelástico longitudinal cargado axialmente. La relación de comportamiento dependiente del daño correspondiente se formula entonces de un modo directo empleando el principio de equivalencia en deformaciones. La siguiente relación se obtiene:

\[N = K_0 (1 - d) \delta e = K_0 (1 - d) (\delta - \delta p) \]

siendo \(N \) el esfuerzo axial en el elemento diagonal, \(\delta \), \(\delta e \) y \(\delta p \) los alargamientos total, elástico y plástico del elemento, respectivamente, \(K_0 \) su rigidez inicial y \(d \) la variable de daño interna representativa de la degradación del muro.

El valor de la rigidez inicial \(K_0 \) se define a partir de las expresiones proporcionadas por diversos autores para determinar la anchura efectiva del elemento diagonal equivalente. En este estudio se ha empleado la propuesta por Mainstone [7] según la cual se tiene:

\[w_{cr} = 0.175 (\lambda_d H) \frac{1}{H^2 + L^2} \]

siendo \(H \) y \(L \) la altura del piso y la longitud del dintel del pórtico, respectivamente, y además

\[\lambda_d = \frac{E_c T_1 \sin \theta}{4 E_i f_t H_{pl}} \]

donde \(E_c \) es el módulo elástico del muro, \(E_i \) el módulo elástico del pórtico, \(t_1 \) el espesor del muro, \(l_1 \) el momento de inercia de la columna del pórtico, \(\theta \) la inclinación de la diagonal con respecto a la horizontal y \(H_{pl} \) la altura del panel.

La estimación de las leyes de evolución del daño y el alargamiento plástico se lleva a cabo, como en el caso de los elementos de pórtico, dentro del marco de la termodinámica de los procesos irreversibles.

La evolución de la deformación plástica propuesta viene definida por una ley de plastificación compuesta de un primer tramo con endurecimiento, hasta alcanzar la capacidad última del elemento diagonal, seguido de un reblandecimiento en el que el esfuerzo del elemento tiende a cero (Figura 1). Considerando esfuerzos compresivos positivos la expresión de la función de plastificación que se ha supuesto es:

\[f = N - \left[A_1 e^{-\delta \beta} + A_2 e^{-B_2 \delta \beta} \right] \]

donde \(A_1 \), \(A_2 \), \(B_1 \) y \(B_2 \) son cuatro parámetros desconocidos estimados a partir de la delimitación de las condiciones que ha de cumplir \(N \) en la función de plastificación [8].

La evolución de la variable daño \(d \) se asocia a la de la deformación plástica mediante su definición ligada a la energía disipada por plastificación.

2.2. Modelo numérico del reacondicionamiento

En este apartado se describe el modelo implementado para reproducir el comportamiento del reacondicionamiento empleado.
Como técnica de reacondicionamiento se ha empleado la sustitución de uno de los paneles de relleno por un arriostramiento metálico excéntrico con un elemento disipador metálico vertical de cortante (Figura 2).

En el modelo de Ricles y Popov se adoptan las siguientes hipótesis de comportamiento de este tipo de elemento disipador:

a) se desprecian los esfuerzos axiales ya que en un arriostramiento correctamente dimensionado, estos esfuerzos deberían ser mínimos;

b) el elemento no sufre inestabilidades fuera del plano;

c) no se produce interacción entre el momento y el cortante.

El disipador se modela como un elemento elástico lineal con tres rótulas no lineales en los extremos donde se concentran todas las acciones inelásticas derivadas del cortante y del momento (Figura 3). Suponiendo una relación carga-deformación bilineal para cada rótula la combinación en paralelo de las mismas produce leyes multilíneas para el cortante y el momento.

Según los resultados experimentales obtenidos por algunos autores [11][12] la plastificación por cortante sigue una ley de endurecimiento isotrópico mientras la debida al momento es más bien cinemática.

La definición del modelo requiere la determinación de todos aquellos parámetros que caracterizan las relaciones esfuerzo-deformación cortantes y momento-giro (Figura 4). A partir de resultados experimentales llevados a cabo sobre elementos disipadores verticales en el laboratorio ELSA de Ispra y en la Universidad de Darmstadt se han adoptado las siguientes calibraciones para el modelo analítico de este tipo de elementos:
Reacindicionamiento sísmico de pórticos de hormigón armado...

\[
\begin{align*}
V_{y1} &= 1.0V_y & M_{y1} &= 1.00 \ M_y \\
V_{y2} &= 1.5V_y & M_{y2} &= 1.03 \ M_y \\
V_{y3} &= 2.0V_y & M_{y3} &= 1.06 \ M_y \\
K_{y2} &= 0.100 & K_{y1} &= 0.030 & K_{M1} &= 0.003 \\
K_{y3} &= 0.030 & K_{y1} &= 0.015 & K_{M1} &= 0.002 \\
K_{y4} &= 0.007 & K_{y1} &= 0.002 & K_{M1} &= 0.002
\end{align*}
\]

(11)

(12)

siendo \(M_y\) y \(V_y\) los límites elásticos del momento y del esfuerzo cortante, respectivamente, \(K_{y1} = \frac{G}{E} l\); \(K_{M1} = \frac{G A_{bas}}{E}\) y \(e = \) longitud del elemento disipador.

3. RESULTADOS EXPERIMENTALES

El ensayo experimental de la técnica de reacindicacionamiento propuesta se llevó a cabo en el laboratorio ELSA de Ispra sobre un pórtico de hormigón armado a escala real de cuatro pisos y tres dinteles dimensionado solamente para cargas de gravedad. El detallado de dicho edificio es representativo de las construcciones de hace 40 años en países mediterráneos.

El reacindicionamiento se ensayó solamente para el segundo piso del edificio. Para estudiar su influencia sobre pórticos rellenos con muros de mampostería se introdujeron en este piso dos muros y el arriostramiento ecéntrico con elemento disipador vertical (Figura 5). De esta forma el efecto rigidizador producido por los muros se mantiene mientras su baja ductilidad se ve compensada por el excelente comportamiento disipativo del elemento disipador.

Para el elemento disipador se adoptó un perfil HE120A de acero ST52 de 0,6 m de longitud (Figura 6). En su dimensionamiento se consideró una resistencia a cortante similar a la prevista para los muros de mampostería a efectos de no incrementar la resistencia del pósito excesivamente y no sobrecargar así la cimentación. Las indicaciones empleadas para su dimensionamiento y distribución se pueden encontrar en [10] y un resumen de las principales características del elemento disipador se muestran en la Tabla 1.

Para el ensayo del piso reacindicionado se aplicó una historia de carga en desplazamientos en el segundo piso restringiendo el desplazamiento lateral del primer piso.

La historia de carga se eligió a partir del comportamiento monótono previsto para el piso reacindicionado escogiendo los niveles de desplazamiento que aparecen en la Tabla 2.
Reacccionamiento sísmico de pórticos de hormigón armado...

Tabla 1. Características del elemento disipador

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión normal de fluencia (alas)</td>
<td>360 N/mm²</td>
</tr>
<tr>
<td>Tensión normal de fluencia (alma)</td>
<td>380 N/mm²</td>
</tr>
<tr>
<td>Vp</td>
<td>118.56 kN</td>
</tr>
<tr>
<td>Vmax</td>
<td>250 kN</td>
</tr>
<tr>
<td>My</td>
<td>20.2 kNm</td>
</tr>
<tr>
<td>Mp</td>
<td>43.03 kNm</td>
</tr>
</tbody>
</table>

De cada uno de ellos se aplicaron tres ciclos con el objetivo de reengen el efecto de repetición de la carga.

Tabla 2. Historia de carga aplicada

<table>
<thead>
<tr>
<th>% desp. rel. entre forjados</th>
<th>Desp. Absoluto (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,04</td>
<td>1,08</td>
</tr>
<tr>
<td>0,08</td>
<td>2,16</td>
</tr>
<tr>
<td>0,12</td>
<td>3,24</td>
</tr>
<tr>
<td>0,16</td>
<td>4,32</td>
</tr>
<tr>
<td>0,24</td>
<td>6,48</td>
</tr>
<tr>
<td>0,32</td>
<td>8,64</td>
</tr>
<tr>
<td>0,48</td>
<td>12,96</td>
</tr>
<tr>
<td>0,64</td>
<td>17,28</td>
</tr>
<tr>
<td>0,80</td>
<td>21,6</td>
</tr>
</tbody>
</table>

De los resultados experimentales (Figura 7) se pueden distinguir fundamentalmente tres etapas en el comportamiento del piso.

En los primeros ciclos la rigidez (Figura 8) y la resistencia no experimentan variaciones importantes. Sin embargo, se empiezan a observar ya no linealidades debidas fundamentalmente a los muros. En esta primera fase se estaría hablando de un desplazamiento entre forjados del 0.16%.

En los tres niveles de desplazamiento siguientes (Figura 9) la carga deja prácticamente de aumentar y la no linealidad se hace más patente. Ya en la primera tanda de ciclos (0,24%) se produce la plastificación del elemento disipador. Igualmente se observó la pérdida de adherencia lateral entre pórtico y muros y el agrietamiento y aplastamiento de la mampostería en las esquinas.

![Figura 9. Ciclos en los que la pérdida de resistencia se hace patente.](image)

Al aplicar un desplazamiento relativo de 0,48% se produce una brusa caída de resistencia provocada por la pérdida de resistencia a cortante de los pilares extremos. Se ha producido también plastificación de las alas del elemento metálico por flexión y ha continuado el aplastamiento de las esquinas de ambos muros.

Ya en los ciclos correspondientes a 0,64% de desplazamiento relativo se observó el fallo en los pilares extremos por cortante sin que el disipador hubiese alcanzado su capacidad máxima (Figura 10).

![Figura 10. Comportamiento histerético del pórtico reacccionado.](image)

4. RESULTADOS NUMÉRICOS

El ensayo anterior se simuló numéricamente con los modelos de elementos presentados anteriormente. En la Figura 11...
se representa el modelo propuesto para el piso con mampostería reacondicionado. Los elementos del pórtico se simularon con el modelo expuesto en el apartado 2.1.1 mientras el comportamiento de la mampostería se incluyó mediante diagonales equivalentes (apartado 2.1.2); en el reacondicionamiento para las diagonales metálicas se emplearon elementos viga elásticos y para el elemento disipador metálico el modelo comentado en el apartado 2.2.

Los resultados numéricos se muestran en la Figura 12. Por comparación con la Figura 7 se observa un ajuste aceptable en todos los aspectos excepto en la degradación de resistencia. Los fenómenos acumulativos no fueron representados por el modelo.

La rigidez inicial es algo menor en los resultados numéricos lo que puede estar relacionado con el hecho de que la rigidez inicial de la diagonal considerada en el cálculo fue de alrededor del 30% de la inicial estimada. Por tanto, la fase inicial de separación de pórtico y relleno y de progresiva fisuración de la mampostería no se recoge en el modelo numérico.

En la Figura 13 se muestra la distribución final de la degradación obtenida numéricamente.

5. CONCLUSIONES

Se ha presentado un estudio experimental del comportamiento de pórticos de hormigón armado con muros de mampostería reacondicionados mediante arriostramientos excéntricos con elementos disipadores de cortante verticales. El uso de estos elementos verticales ha mostrado una capacidad dissipativa excelente y resulta particularmente atractivo al permitir su dimensionamiento solamente para fuerzas cortantes horizontales.

Se ha presentado igualmente un modelo numérico de evaluación del daño en pórticos de hormigón armado con muros de relleno. Dicho modelo representa bien el comportamiento global de la estructura y puede ser empleado como herramienta de evaluación sísmica estructural. A la vista de los resultados, de cara a estudiar el comportamiento dinámico del pórtico sería deseable obtener un mejor ajuste de la rigidez inicial y de la consideración de los fenómenos de degradación de resistencia por fatiga.
AGRADECIMIENTOS

Este trabajo se enmarca dentro del Proyecto de Investigación PB-97-0564 titulado “Fiable y vulnerabilidad sísmica de estructuras” subvencionado por el Ministerio de Educación y Cultura.

Asimismo, los datos experimentales usados en este trabajo fueron obtenidos de los ensayos experimentales llevados a cabo en el laboratorio ELSA del JRC (Joint Research Center) y financiados por la Comisión Europea bajo el programa ICONS de formación y movilidad de investigadores.

REFERENCIAS

