Three dimensional (3D) microstructure-based modeling of interfacial decohesion in particle reinforced metal matrix composites

Williams, J.J.; Segurado Escudero, Javier; Llorca Martinez, Francisco Javier y Chawla, N. (2012). Three dimensional (3D) microstructure-based modeling of interfacial decohesion in particle reinforced metal matrix composites. "Materials Science and Engineering A", v. 557 ; pp. 113-118. ISSN 0921-5093. https://doi.org/10.1016/j.msea.2012.05.108.

Descripción

Título: Three dimensional (3D) microstructure-based modeling of interfacial decohesion in particle reinforced metal matrix composites
Autor/es:
  • Williams, J.J.
  • Segurado Escudero, Javier
  • Llorca Martinez, Francisco Javier
  • Chawla, N.
Tipo de Documento: Artículo
Título de Revista/Publicación: Materials Science and Engineering A
Fecha: 15 Noviembre 2012
Volumen: 557
Materias:
Escuela: E.T.S.I. Caminos, Canales y Puertos (UPM)
Departamento: Ciencia de los Materiales
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

Modeling and prediction of the overall elastic–plastic response and local damage mechanisms in heterogeneous materials, in particular particle reinforced composites, is a very complex problem. Microstructural complexities such as the inhomogeneous spatial distribution of particles, irregular morphology of the particles, and anisotropy in particle orientation after secondary processing, such as extrusion, significantly affect deformation behavior. We have studied the effect of particle/matrix interface debonding in SiC particle reinforced Al alloy matrix composites with (a) actual microstructure consisting of angular SiC particles and (b) idealized ellipsoidal SiC particles. Tensile deformation in SiC particle reinforced Al matrix composites was modeled using actual microstructures reconstructed from serial sectioning approach. Interfacial debonding was modeled using user-defined cohesive zone elements. Modeling with the actual microstructure (versus idealized ellipsoids) has a significant influence on: (a) localized stresses and strains in particle and matrix, and (b) far-field strain at which localized debonding takes place. The angular particles exhibited higher degree of load transfer and are more sensitive to interfacial debonding. Larger decreases in stress are observed in the angular particles, because of the flat surfaces, normal to the loading axis, which bear load. Furthermore, simplification of particle morphology may lead to erroneous results.

Más información

ID de Registro: 15998
Identificador DC: http://oa.upm.es/15998/
Identificador OAI: oai:oa.upm.es:15998
Identificador DOI: 10.1016/j.msea.2012.05.108
URL Oficial: http://www.sciencedirect.com/science/article/pii/S092150931200891X
Depositado por: Memoria Investigacion
Depositado el: 28 Oct 2013 09:20
Ultima Modificación: 01 Dic 2014 23:56
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM