Estimation of functional connectivity from electromagnetic signals and the amount of empirical data required

Nevado, Angel; Hadjipapas, Avgis; Kinsey, Kristofer; Moratti, Stephan; Barnes, Gareth R.; Holliday, Ian E. y Green, Gary G. (2012). Estimation of functional connectivity from electromagnetic signals and the amount of empirical data required. "NEUROSCIENCE LETTERS", v. 513 (n. 1); pp. 57-61. ISSN 0304-3940. https://doi.org/10.1016/j.neulet.2012.02.007.

Descripción

Título: Estimation of functional connectivity from electromagnetic signals and the amount of empirical data required
Autor/es:
  • Nevado, Angel
  • Hadjipapas, Avgis
  • Kinsey, Kristofer
  • Moratti, Stephan
  • Barnes, Gareth R.
  • Holliday, Ian E.
  • Green, Gary G.
Tipo de Documento: Artículo
Título de Revista/Publicación: NEUROSCIENCE LETTERS
Fecha: Marzo 2012
Volumen: 513
Materias:
Palabras Clave Informales: Functional connectivity, Cross-correlation, Neuroimaging, Magnetoencephalography, Statistical analysis
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Tecnología Fotónica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (2MB) | Vista Previa

Resumen

An increasing number of neuroimaging studies are concerned with the identification of interactions or statistical dependencies between brain areas. Dependencies between the activities of different brain regions can be quantified with functional connectivity measures such as the cross-correlation coefficient. An important factor limiting the accuracy of such measures is the amount of empirical data available. For event-related protocols, the amount of data also affects the temporal resolution of the analysis. We use analytical expressions to calculate the amount of empirical data needed to establish whether a certain level of dependency is significant when the time series are autocorrelated, as is the case for biological signals. These analytical results are then contrasted with estimates from simulations based on real data recorded with magnetoencephalography during a resting-state paradigm and during the presentation of visual stimuli. Results indicate that, for broadband signals, 50–100 s of data is required to detect a true underlying cross-correlations coefficient of 0.05. This corresponds to a resolution of a few hundred milliseconds for typical event-related recordings. The required time window increases for narrow band signals as frequency decreases. For instance, approximately 3 times as much data is necessary for signals in the alpha band. Important implications can be derived for the design and interpretation of experiments to characterize weak interactions, which are potentially important for brain processing.

Más información

ID de Registro: 16163
Identificador DC: http://oa.upm.es/16163/
Identificador OAI: oai:oa.upm.es:16163
Identificador DOI: 10.1016/j.neulet.2012.02.007
URL Oficial: http://www.sciencedirect.com/science/article/pii/S0304394012001784
Depositado por: Memoria Investigacion
Depositado el: 07 Jul 2013 10:02
Ultima Modificación: 21 Abr 2016 16:29
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM