Maximum Likelihood Estimation of Modal Parameters in Structures Using the Expectation Maximization Algorithm

Cara Cañas, Francisco Javier; Carpio Huertas, Jaime; Juan Ruiz, Jesús y Alarcón Álvarez, Enrique (2010). Maximum Likelihood Estimation of Modal Parameters in Structures Using the Expectation Maximization Algorithm. En: "10th. International Conference on Computational Structures Technology", 14/09/2010-17/09/2010, Valencia, España. ISBN 978-1-905088-38-6.

Descripción

Título: Maximum Likelihood Estimation of Modal Parameters in Structures Using the Expectation Maximization Algorithm
Autor/es:
  • Cara Cañas, Francisco Javier
  • Carpio Huertas, Jaime
  • Juan Ruiz, Jesús
  • Alarcón Álvarez, Enrique
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 10th. International Conference on Computational Structures Technology
Fechas del Evento: 14/09/2010-17/09/2010
Lugar del Evento: Valencia, España
Título del Libro: Proceedings of the Tenth International Conference on Computational Structures Technology
Fecha: 2010
ISBN: 978-1-905088-38-6
Materias:
Palabras Clave Informales: System identification in structures ; State space models ; Kalman filter ; Stochastic subspace methods ; Modal analysis ; Benchmark problems.
Escuela: E.T.S.I. Industriales (UPM)
Departamento: Ingeniería de Organización, Administración de Empresas y Estadística
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (429kB) | Vista Previa

Resumen

This paper presents a time-domain stochastic system identification method based on maximum likelihood estimation (MLE) with the expectation maximization (EM) algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. The benchmark structure is a four-story, two-bay by two-bay steel-frame scale model structure built in the Earthquake Engineering Research Laboratory at the University of British Columbia, Canada. This paper focuses on Phase I of the analytical benchmark studies. A MATLAB-based finite element analysis code obtained from the IASC-ASCE SHM Task Group web site is used to calculate the dynamic response of the prototype structure. A number of 100 simulations have been made using this MATLAB-based finite element analysis code in order to evaluate the proposed identification method. There are several techniques to realize system identification. In this work, stochastic subspace identification (SSI)method has been used for comparison. SSI identification method is a well known method and computes accurate estimates of the modal parameters. The principles of the SSI identification method has been introduced in the paper and next the proposed MLE with EM algorithm has been explained in detail. The advantages of the proposed structural identification method can be summarized as follows: (i) the method is based on maximum likelihood, that implies minimum variance estimates; (ii) EM is a computational simpler estimation procedure than other optimization algorithms; (iii) estimate more parameters than SSI, and these estimates are accurate. On the contrary, the main disadvantages of the method are: (i) EM algorithm is an iterative procedure and it consumes time until convergence is reached; and (ii) this method needs starting values for the parameters. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using both the SSI method and the proposed MLE + EM method. The numerical results show that the proposed method identifies eigenfrequencies, damping ratios and mode shapes reasonably well even in the presence of 10% measurement noises. These modal parameters are more accurate than the SSI estimated modal parameters.

Más información

ID de Registro: 16659
Identificador DC: http://oa.upm.es/16659/
Identificador OAI: oai:oa.upm.es:16659
URL Oficial: http://www.ctresources.info/ccp/paper.html?id=5773
Depositado por: Biblioteca ETSI Industriales
Depositado el: 31 Jul 2013 08:27
Ultima Modificación: 21 Abr 2016 17:01
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM