Analytical properties of horizontal visibility graphs in the Feigenbaum scenario

Luque Serrano, Bartolome; Lacasa Saiz de Arce, Lucas; Ballesteros, Fernando J. y Robledo, Alberto (2012). Analytical properties of horizontal visibility graphs in the Feigenbaum scenario. "Chaos", v. 22 (n. 1); pp.. ISSN 1054-1500. https://doi.org/10.1063/1.3676686.

Descripción

Título: Analytical properties of horizontal visibility graphs in the Feigenbaum scenario
Autor/es:
  • Luque Serrano, Bartolome
  • Lacasa Saiz de Arce, Lucas
  • Ballesteros, Fernando J.
  • Robledo, Alberto
Tipo de Documento: Artículo
Título de Revista/Publicación: Chaos
Fecha: Marzo 2012
Volumen: 22
Materias:
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Matemática Aplicada y Estadística [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (3MB) | Vista Previa

Resumen

Time series are proficiently converted into graphs via the horizontal visibility (HV) algorithm, which prompts interest in its capability for capturing the nature of different classes of series in a network context. We have recently shown [B. Luque et al., PLoS ONE 6, 9 (2011)] that dynamical systems can be studied from a novel perspective via the use of this method. Specifically, the period-doubling and band-splitting attractor cascades that characterize unimodal maps transform into families of graphs that turn out to be independent of map nonlinearity or other particulars. Here, we provide an in depth description of the HV treatment of the Feigenbaum scenario, together with analytical derivations that relate to the degree distributions, mean distances, clustering coefficients, etc., associated to the bifurcation cascades and their accumulation points. We describe how the resultant families of graphs can be framed into a renormalization group scheme in which fixed-point graphs reveal their scaling properties. These fixed points are then re-derived from an entropy optimization process defined for the graph sets, confirming a suggested connection between renormalization group and entropy optimization. Finally, we provide analytical and numerical results for the graph entropy and show that it emulates the Lyapunov exponent of the map independently of its sign.

Más información

ID de Registro: 16705
Identificador DC: http://oa.upm.es/16705/
Identificador OAI: oai:oa.upm.es:16705
Identificador DOI: 10.1063/1.3676686
URL Oficial: http://scitation.aip.org/content/aip/journal/chaos/22/1/10.1063/1.3676686
Depositado por: Memoria Investigacion
Depositado el: 08 Abr 2014 18:29
Ultima Modificación: 21 Abr 2016 17:04
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM