Laser ablation modelling of aluminium, silver and crystalline silicon for applications in photovoltaic technologies

Colina Brito, Mónica; Molpeceres Álvarez, Carlos Luis; Morales Furió, Miguel; Allens-Perkins, F.; Guadaño, G. y Ocaña Moreno, José Luis (2011). Laser ablation modelling of aluminium, silver and crystalline silicon for applications in photovoltaic technologies. "Energy Materials", v. 27 (n. 6); pp. 414-423. ISSN 1748-9237. https://doi.org/10.1179/174329409X397804.

Descripción

Título: Laser ablation modelling of aluminium, silver and crystalline silicon for applications in photovoltaic technologies
Autor/es:
  • Colina Brito, Mónica
  • Molpeceres Álvarez, Carlos Luis
  • Morales Furió, Miguel
  • Allens-Perkins, F.
  • Guadaño, G.
  • Ocaña Moreno, José Luis
Tipo de Documento: Artículo
Título de Revista/Publicación: Energy Materials
Fecha: Julio 2011
Volumen: 27
Materias:
Palabras Clave Informales: Laser ablation ; Two temperature model ; Thin film photovoltaic technology
Escuela: E.T.S.I. Industriales (UPM)
Departamento: Física Aplicada a la Ingeniería Industrial [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (2MB) | Vista Previa

Resumen

Laser material processing is being extensively used in photovoltaic applications for both the fabrication of thin film modules and the enhancement of the crystalline silicon solar cells. The two temperature model for thermal diffusion was numerically solved in this paper. Laser pulses of 1064, 532 or 248 nm with duration of 35, 26 or 10 ns were considered as the thermal source leading to the material ablation. Considering high irradiance levels (108–109 W cm−2), a total absorption of the energy during the ablation process was assumed in the model. The materials analysed in the simulation were aluminium (Al) and silver (Ag), which are commonly used as metallic electrodes in photovoltaic devices. Moreover, thermal diffusion was also simulated for crystalline silicon (c-Si). A similar trend of temperature as a function of depth and time was found for both metals and c-Si regardless of the employed wavelength. For each material, the ablation depth dependence on laser pulse parameters was determined by means of an ablation criterion. Thus, after the laser pulse, the maximum depth for which the total energy stored in the material is equal to the vaporisation enthalpy was considered as the ablation depth. For all cases, the ablation depth increased with the laser pulse fluence and did not exhibit a clear correlation with the radiation wavelength. Finally, the experimental validation of the simulation results was carried out and the ability of the model with the initial hypothesis of total energy absorption to closely fit experimental results was confirmed.

Más información

ID de Registro: 16845
Identificador DC: http://oa.upm.es/16845/
Identificador OAI: oai:oa.upm.es:16845
Identificador DOI: 10.1179/174329409X397804
URL Oficial: http://www.maneyonline.com/doi/abs/10.1179/174329409X397804
Depositado por: Memoria Investigacion
Depositado el: 22 Ene 2014 18:14
Ultima Modificación: 21 Ago 2017 11:40
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM