Order 10 4 speedup in global linear instability analysis using matrix formation

Paredes Gonzalez, Pedro; Hermanns Navarro, Miguel; Le Clainche Martínez, Soledad y Theofilis, Vassilios (2013). Order 10 4 speedup in global linear instability analysis using matrix formation. "Computer Methods in Applied Mechanics and Engineering", v. 253 ; pp. 287-304. ISSN 0045-7825. https://doi.org/10.1016/j.cma.2012.09.014.

Descripción

Título: Order 10 4 speedup in global linear instability analysis using matrix formation
Autor/es:
  • Paredes Gonzalez, Pedro
  • Hermanns Navarro, Miguel
  • Le Clainche Martínez, Soledad
  • Theofilis, Vassilios
Tipo de Documento: Artículo
Título de Revista/Publicación: Computer Methods in Applied Mechanics and Engineering
Fecha: Enero 2013
Volumen: 253
Materias:
Palabras Clave Informales: Global linear flow instability analysis High-order finite-differences Large-scale eigenvalue problems Sparse linear algebra
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Motopropulsión y Termofluidodinámica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

A unified solution framework is presented for one-, two- or three-dimensional complex non-symmetric eigenvalue problems, respectively governing linear modal instability of incompressible fluid flows in rectangular domains having two, one or no homogeneous spatial directions. The solution algorithm is based on subspace iteration in which the spatial discretization matrix is formed, stored and inverted serially. Results delivered by spectral collocation based on the Chebyshev-Gauss-Lobatto (CGL) points and a suite of high-order finite-difference methods comprising the previously employed for this type of work Dispersion-Relation-Preserving (DRP) and Padé finite-difference schemes, as well as the Summationby- parts (SBP) and the new high-order finite-difference scheme of order q (FD-q) have been compared from the point of view of accuracy and efficiency in standard validation cases of temporal local and BiGlobal linear instability. The FD-q method has been found to significantly outperform all other finite difference schemes in solving classic linear local, BiGlobal, and TriGlobal eigenvalue problems, as regards both memory and CPU time requirements. Results shown in the present study disprove the paradigm that spectral methods are superior to finite difference methods in terms of computational cost, at equal accuracy, FD-q spatial discretization delivering a speedup of ð (10 4). Consequently, accurate solutions of the three-dimensional (TriGlobal) eigenvalue problems may be solved on typical desktop computers with modest computational effort.

Más información

ID de Registro: 19104
Identificador DC: http://oa.upm.es/19104/
Identificador OAI: oai:oa.upm.es:19104
Identificador DOI: 10.1016/j.cma.2012.09.014
URL Oficial: http://www.sciencedirect.com/science/article/pii/S0045782512002964
Depositado por: Memoria Investigacion
Depositado el: 07 Abr 2014 16:45
Ultima Modificación: 21 Abr 2016 17:21
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM