Identification of a biomarker panel for colorectal cancer diagnosis

Armañanzas Arnedillo, Ruben; Larrañaga Múgica, Pedro; García Bilbao, Amaia; Ispizua, Ziortza; Calvo, Begoña; Alonso Varona, Ana; Inza Cano, Iñaki; López Vivanco, Guillermo; Suárez Merino, Begoña y Betanzos, Mónica (2012). Identification of a biomarker panel for colorectal cancer diagnosis. "BMC Cancer", v. 12 ; ISSN 1471-2407.

Descripción

Título: Identification of a biomarker panel for colorectal cancer diagnosis
Autor/es:
  • Armañanzas Arnedillo, Ruben
  • Larrañaga Múgica, Pedro
  • García Bilbao, Amaia
  • Ispizua, Ziortza
  • Calvo, Begoña
  • Alonso Varona, Ana
  • Inza Cano, Iñaki
  • López Vivanco, Guillermo
  • Suárez Merino, Begoña
  • Betanzos, Mónica
Tipo de Documento: Artículo
Título de Revista/Publicación: BMC Cancer
Fecha: 2012
Volumen: 12
Materias:
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Inteligencia Artificial
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
Pdf - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Localizaciones alternativas

URL Oficial: http://www.biomedcentral.com/1471-2407/12/43

Resumen

Background:Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries. Methods: A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60-mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables. Results: After an exhaustive process of pre-processing to ensure data quality--lost values imputation, probes quality, data smoothing and intraclass variability filtering--the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples. Conclusions: We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955).

Más información

ID de Registro: 19236
Identificador DC: http://oa.upm.es/19236/
Identificador OAI: oai:oa.upm.es:19236
Depositado por: Memoria Investigacion
Depositado el: 23 Sep 2013 15:20
Ultima Modificación: 21 Abr 2016 17:30
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM