Single- and double energy swift and slow heavy ion irradiated optical waveguides in Er: Tungstene-Tellurite glass and BGO for telecom applications

I. Bányász a,*, J. Olivares b, O. Pech-Rodríguez b, c, Miguel L. Crespo b, c, Z. Zélai a, M. Fink b, T. Luhn e, S. Brnoecchi d, G. Bigi a, c, S. Pelli e, f, S. Berneschi e, f, G. Righini e, f, S. Pelli f, G. Nunzi Conti

1. Department of Crystal Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest, Hungary
2. Centro de Micro-Análisis de Materiales, Universidad Autonoma de Madrid (UAM), Cantoblanco, E-28049 Madrid, Spain
3. Instituto de Óptica. Consejo Superior de Investigaciones Científicas (CSIC), C/ Serrano 121, E-28006 Madrid, Spain
4. Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, P.O.B. 49, H-1525 Hungary
5. "Enrico Fermi" Center for Study and Research, Piazza del Viminale 2, 00184 Roma, Italy
6. MDF-Lab, "Nello Carrara" Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019

*Corresponding author: banyasz.istvan@wigner.mta.hu

1. Motivation

• Er3+-doped tungsten-tellurite glasses - very attractive materials for the fabrication of broadband amplifiers in wavelength division multiplexing (WDM) around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth.

• Bi4Ge3O12 (eulityne type BGO) - well known scintillator material, also a rare-earth host material, photorefractive waveguides produced in it only using light ions in the past. Recently: MeV N+ ions and swift O5+ and C5+ ions, too*

• Bi12GeO20 (sillenite type BGO) - high photoconductivity and photorefractive sensitivity in the visible and NIR – good candidate for real-time holography and optical phase conjugation, photorefractive waveguides produced in it only using light ions. No previous attempts of ion beam fabrication of waveguides in it.

2. Design and fabrication of the waveguides

2.1 SRIM calculations

2.1.1 Single- and double energy N+ ion irradiation in Er: Tungstene-Tellurite glass

Mechanism of waveguide formation: Reduced ref. index barrier layer around stopping range (dominant nuclear interaction)*

Fig. 1 Algebraic sum of the pairs of calculated N+ distributions along the sample depth.

2.1.2 Single- and double-energy N+ ion irradiation in eulityne (Bi4Ge3O12) and sillenite (Bi12GeO20) type Bismuth Germanate crystals

Mechanism of waveguide formation: Reduced ref. index barrier layer around stopping range (dominant nuclear interaction)*

Fig. 3 Double - energy N+ distributions along the sample depth in eulityne (left) and sillenite (right) type BGO crystals.

2.1.3 Waveguide fabrication via irradiation of sillenite (Bi$_{12}$GeO$_{20}$) type Bismuth Germanate crystals with 25 MeV C$^{5+}$ ions

Mechanism of waveguide formation: A reduced refr. index amorphous barrier layer is created around the maximum of the electronic stopping power, S_z. Its thickness is controlled by the irradiated (low or ultralow) fluence (use of the electronic interaction) *. Irradiation conditions (at CMAM, UAM, Madrid)

Energy : 25 MeV

Angles of incidence: 60° and 70°.

Total irradiadiation fluences: $10^{13} < F < 10^{15}$ ions/cm2

3. Spectroscopic ellipsometry

Spectroscopic ellipsometer used: WOOLLAM M-2000DL

Optical model: 2-layer Cauchy dispersion

ψ = relative intensity change at reflection
Δ = relative phase change at reflection

$\rho = \tan \psi e^{i\Delta}$

3.1 Results for Er:Te glass

3.2 Results for Eulytine and Sillenite type BGO

4. M-line spectroscopy

COMPASSO, a semi-automatic m-line spectroscopic instrument, developed at IFAC, was used for the characterization of the planar waveguides implanted in the samples, except of the 25 MeV C$^{5+}$ irradiated sillenite type BGO.

With COMPASSO, multi-wavelength m-line spectroscopy was perfomed at the following wavelengths:

635, 980, 1310 and 1550 nm.

Accuracy of the instrument is generally $\pm 1 \cdot 10^{-4}$ and $\pm 4 \cdot 10^{-4}$ on the effective refractive index and bulk refractive index, respectively. In the case of the N$^{+}$-implanted planar waveguides in the Er:Te glass, due to the lower contrast in the measurement, the accuracy was lower, about $4 \cdot 10^{-5}$ and $1 \cdot 10^{-3}$ respectively.

Due to the high refractive index of the bulk Er:Te glass (around 2.0 at 635 nm), and even higher of the sillenite BGO (about 2.55 at 635 nm) we used special rutile prisms to couple the light in the irradiated regions. All the measurements presented here were performed in TE configuration.
4.1 Results for Er:Te glass

Fig. 8 M-line spectra of a waveguide in Er:Te glass. Fluence = 8·10\(^16\) ions/cm\(^2\), E = 3.5 MeV. (a) at 635 nm and (b) at 1550 nm.

Fig. 9 M-line spectra of a waveguide in Er:Te glass, with double energy N\(^+\) ions at 3.5 MeV and 3.0 MeV, taken at 635 nm (a) and 1550 nm (b).

4.2 Results for Eulytine and Sillenite type BGO

Fig. 10 Effective refractive indices of the a) fundamental and b) first modes vs. fluence at λ = 635 nm for 1.5 MeV N\(^+\) (full squares) and 3.5 MeV N\(^+\) (open triangles), Er:Te glass. Note the different abscissas for the two curves.

Fig. 11 M-line spectra of waveguide in Eulytine BGO. a) N\(^+\) Fluence = 1.6·10\(^16\) ions/cm\(^2\), E = 3.5 MeV, at 635 nm and b) at 1550 nm.

Fig. 12 Effective refractive indices at a) 635 nm and b) 980 nm of the fundamental mode vs. fluence for Eulytine (full squares) and Sillenite (open triangles) type BGO, irradiated with 3.5 MeV N\(^+\). Note the different abscissas for the two curves in both graphs.

Fig. 13 Calculated refractive index profile of the waveguides in Sillenite type BGO irradiated with 25 MeV C\(^{12+}\) ions. Angle of incidence was 60°.
5. Conclusion and outlook

Working barrier-type slab waveguides in Er: tungsten-tellurite glass, and in Eulytine and Sillenite type BGO fabricated by 2.5 – 3.5 MeV N\(^+\) and 25 MeV C\(^{5+}\) ion irradiation, up to \(\lambda = 1550\) nm.

Double-energy N\(^+\) ion irradiation in Er: tungsten-tellurite glass to suppress leaky modes and reduce propagation loss thanks to a thicker barrier layer.

A new method for waveguide characterization, making use of the multilayer measurement measurements has been developed (not discussed here) and is being improved by Dr. Stefano Pelli.

Propagation loss measurements in new single- and double N\(^+\) ion irradiated planar waveguides of increased lateral dimensions are underway. A new method for waveguide characterization, making use of the multilayer measurement measurements has been developed (not discussed here) and is being improved by Dr. Stefano Pelli.

Annealing experiments with all the available ion beam-irradiated waveguides are underway.

Refinement of spectroscopic ellipsometric model needed.

Special thanks to: Prof. M. Bettinelli and A. Sperghini of the University of Verona for the Er:Te glass samples, to Mr. R. Calzolai of IFAC, Sesto Fiorentino and Mr. Gy. Matók of the Wigner research center for polishing the glass and crystal samples.

This work has been supported by the Hungarian National Research Fund (OTKA-NKTH and OTKA) projects K 68688 and K 101223 and by a bilateral 2010-2012 CNR/MTA Italian - Hungarian project.

The materials

Composition of the Er: tungsten-tellurite glass: 60 TeO\(_2\) – 25 WO\(_3\) – 15 Na\(_2\)O – 0.5 Er\(_2\)O\(_5\) (mol%)

Bi\(_4\)Ge\(_3\)O\(_12\) (eulytine type)

Thickness = 1 mm

Bi\(_{12}\)GeO\(_{20}\) (sillenite type)

of the same orientation and thickness, but 14.0 mm x 21.5 mm.

Waveguide Characterization

The availability of data at several wavelengths (635, 980, 1310, and 1550 nm) has allowed us to obtain a more accurate and flexible data processing. Actually, assuming a Sellmeier-like law to account for chromatic dispersion for all layers, and using it in the fit process, it was possible to obtain the thickness of the guiding layer and the parameters A and B for the guiding and the barrier layers in a broad wavelength range.

The fitting process allowed us to model through the A and B parameters the wavelength dependent refractive index of both the guiding (\(n_f\)) and barrier layers (\(n_s\)) by means of the A and B parameters and the above equation.

Moreover, the effective indices of the modes were calculated with the values of the numerical regression results and the same assumptions used in the fit process. The agreement between the experimental data (dots in Fig. 14) and the calculated effective indices is very good. Thickness of the guiding layer was assessed to be 2.2 m, in agreement with SRIM simulations.

Fig. 14 Reconstruction of the refractive index of the guiding and barrier layers as a function of the wavelength. Sample irradiated with \(8 \times 10^{16}\) ions/cm\(^2\). Calculated effective indices of the modes are also shown.