Effect of ion flux on helium retention in helium-irradiated tungsten

Rivera de Mena, Antonio; Valles, G.; Caturla Terol, Maria Jose y Martín-Bragado, I. (2012). Effect of ion flux on helium retention in helium-irradiated tungsten. En: "11th Computer Simulation of Radiation Effects in Solids (COSIRES)", 24/06/2012 - 29/06/2012, Santa Fe, USA. p. 1.

Descripción

Título: Effect of ion flux on helium retention in helium-irradiated tungsten
Autor/es:
  • Rivera de Mena, Antonio
  • Valles, G.
  • Caturla Terol, Maria Jose
  • Martín-Bragado, I.
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 11th Computer Simulation of Radiation Effects in Solids (COSIRES)
Fechas del Evento: 24/06/2012 - 29/06/2012
Lugar del Evento: Santa Fe, USA
Título del Libro: 11th Computer Simulation of Radiation Effects in Solids (COSIRES)
Fecha: Junio 2012
Materias:
Escuela: Instituto de Fusión Nuclear (UPM)
Departamento: Otro
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img] PDF (Document Portable Format) - Acceso permitido solamente a usuarios en el campus de la UPM - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (3MB)

Resumen

Helium retention in irradiated tungsten leads to swelling, pore formation, sample exfoliation and embrittlement with deleterious consequences in many applications. In particular, the use of tungsten in future nuclear fusion plants is proposed due to its good refractory properties. However, serious concerns about tungsten survivability stems from the fact that it must withstand severe irradiation conditions. In magnetic fusion as well as in inertial fusion (particularly with direct drive targets), tungsten components will be exposed to low and high energy ion (helium) irradiation, respectively. A common feature is that the most detrimental situations will take place in pulsed mode, i.e., high flux irradiation. There is increasing evidence on a correlation between a high helium flux and an enhancement of detrimental effects on tungsten. Nevertheless, the nature of these effects is not well understood due to the subtleties imposed by the exact temperature profile evolution, ion energy, pulse duration, existence of impurities and simultaneous irradiation with other species. Physically based Kinetic Monte Carlo is the technique of choice to simulate the evolution of radiation-induced damage inside solids in large temporal and space scales. We have used the recently developed code MMonCa (Modular Monte Carlo simulator), presented in this conference for the first time, to study He retention (and in general defect evolution) in tungsten samples irradiated with high intensity helium pulses. The code simulates the interactions among a large variety of defects and impurities (He and C) during the irradiation stage and the subsequent annealing steps. In addition, it allows us to vary the sample temperature to follow the severe thermo-mechanical effects of the pulses. In this work we will describe the helium kinetics for different irradiation conditions. A competition is established between fast helium cluster migration and trapping at large defects, being the temperature a determinant factor. In fact, high temperatures (induced by the pulses) are responsible for large vacancy cluster formation and subsequent additional trapping with respect to low flux irradiation.

Más información

ID de Registro: 20344
Identificador DC: http://oa.upm.es/20344/
Identificador OAI: oai:oa.upm.es:20344
URL Oficial: http://cosires.newmexicoconsortium.org/
Depositado por: Memoria Investigacion
Depositado el: 06 Nov 2013 19:36
Ultima Modificación: 22 Sep 2014 11:19
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM