LEVEL II RELIABILITY METHODS FOR TUNNELS

A. Fraile1, I. del Rey1, Ma. S. Gómez2 and E. Alarcón2

1 Mechanical Engineering Centre (CEMIM); José Gutiérrez Abascal 2, 28006 Madrid (Spain)
2 Technical University of Madrid (UPM); José Gutiérrez Abascal 2, 28006 Madrid (Spain)

e-mail: afraille@etsii.upm.es; idelrey@etsii.upm.es

1. FOREWORD

In tunnel construction, as in every engineering work, it is usual the decision making with incomplete data. Nevertheless, consciously or not, the builder weighs the risks (even if this is done subjectively) so that he can offer a cost.

The objective of this paper is to recall the existence of a methodology to treat the uncertainties in the data so that it is possible to see their effect on the output of the computational model used and then to estimate the failure probability or the safety margin of a structure. In this scheme it is possible to include the subjective knowledge on the statistical properties of the random variables and, using a numerical model consistent with the degree of complexity appropriate to the problem at hand, to make rationally based decisions.

As will be shown with the method it is possible to quantify the relative importance of the random variables and, in addition, it can be used, under certain conditions, to solve the inverse problem.

It is then a method very well suited both to the project and to the control phases of tunnel construction.

2. MODELLING OF PERFORATION EFFECTS

Figures 1 and 2 show the classical approach to the understanding of the displacements observed during tunnel perforation. In an elastoplastic medium it is assumed that a plastic ring of radius \(\rho \) is formed. This ring grows consistently to the longitudinal transfer of load shown in figure 2.

![Figure 1](image-url)

![Figure 2](image-url)

In order to simplify the three-dimensional nature of the problem it is usual to treat the medium according to a three-dimensional simplification proposed by Panet [1] in which the internal pressure varies from the initial state to the final one (induced by the liner) according to a parameter \(\lambda \) whose meaning can be seen in figure 3.

This procedure, typical for circular tunnels can be extended to a general case using the finite element method as follows. First of all a rock mass is isolated in which an initial stress-
state \(\{ \sigma^0 \} \) as well as an overload \(p_0 \) on the upper border (equivalent to the geostatic pressure induced by the non-modelled part) are assumed. The remaining boundary is fixed to induce the initial stress-state generally defined using an at-rest coefficient \(K_0 \) and a vertical geostatic pressure \(\sigma_0 \) as well as a plane-strain condition. This last one is not consistent with the general 3-D randomness that should be rigorously assumed, but it is one of the prices to be paid in order to make the problem manageable in practical cases.

![Diagram](image)

\[\lambda = 1 \quad \lambda < 1 \quad \lambda = 0 \]

\[
\begin{align*}
\sigma_0 &= \frac{1}{2} \sigma R \\
\sigma_0 &= \frac{1}{2} \sigma R \\
\sigma_0 &= (1 - \lambda) \sigma^0 \\
\sigma_0 &= \sigma^0 \\
\end{align*}
\]

Figure 3

Although generally the excavation process has different phases (for instance: top heading and bench) a case with total excavation and delayed application of the total liner is described in what follows, although this does not imply any limitation for the procedure that could be generalized to a greater number of steps.

If the void to be excavated is not represented in the mesh, the out-of-equilibrium forces \(\{ f \} \) in the excavated boundary can be used to simulate the Panet procedure. Only a part \(\lambda \{ f \} \) are applied before building the liner, as the 3-D effect is equivalent to the existence of a virtual liner able to sustain pressures \((1-\lambda) \{ f \} \).

The forces equivalent to the unlined step are then
\[
\{ f_1 \} = \lambda \{ f \},
\]
and their effect can be obtained solving the problem
\[
[K_1] \{ u^1 \} = \{ f_1 \},
\]
where \([K_1] \) is the stiffness matrix corresponding to the unlined mesh.

Stresses and displacements are then
\[
\{ \sigma \} = \{ \sigma^1 \} + \{ \sigma^0 \}, \quad \{ u \} = \{ u^1 \}.
\]

As soon as the concrete is projected, the front advances and the load transfer is completed
\[
\{ f_2 \} = (1-\lambda) \{ f \}.
\]

Those loads can be automatically obtained if it is accepted that the initial stress state is now \(\{ \sigma^0 \} \). In addition in this step the liner is added so that a new stiffness matrix \([K_2] \) is assembled and the problem to be solved is
\[
[K_2] \{ u^2 \} = \{ f_2 \}.
\]

Solving those equations, stresses \(\{ \sigma^2 \} \) and displacements \(\{ u^2 \} \) are obtained. The last ones represent the “convergences” usually measured in-situ. It is possible to write then
\[
\{ u \} = \{ u^1 \} + \{ u^2 \}, \quad \{ \sigma \} = \{ \sigma^1 \} + \{ \sigma^0 \} + \{ \sigma^2 \}.
\]
3. LIMIT STATES

During the tunnel construction measures are taken systematically in relation with
displacements (convergences, extensometers) and stresses (load cells) so it is natural to try to
establish the limit states on those indexes. On the other hand there are two conditions that
affect the builder, i.e.: the pay line and the need to assure the stability of the plastified soil ring.

In the first case the builder is obliged to follow the established geometry as closely as
possible if he has to avoid an economic penalty but, in addition, an excessive soil displacement
can act against him. In that sense the limitation of the relative displacements (convergences)
can be considered as a service limit state. On the other hand the stability of the soil ring is also
affected by the displacement because a limit has to be stabilised in order to avoid a catastrophic
failure. In this sense the convergence would measure an ultimate limit state. To avoid that
duplication and to control more direct factors it is desirable to analyze the stress state in some
point of the mesh or, in order to have a more global representation, to use the plastification
radius limiting it to a desired factor of the tunnel mean radius.

Finally the liner safety has to be guaranteed. In this case it is possible to use the
classical Rabcewickz [2] criteria that can be established using a condition on stresses.

In the example developed in what follows the limit states are:

a) The convergence has to be less than a limiting value
b) The “plastification” radius has to be less than a limiting value
c) The stress in the central fibber of the liner has to be less than a limiting value.

As a linear and elastic computational method is proposed, it is necessary to have some
criteria to obtain a “plastification” radius. To do that the over-stress ratio (OSR) resulting after
comparing the radius \(\rho^* \) of the Mohr circle in a point with the maximum admissible one \(\rho \) in a
Mohr-Coulomb criteria is proposed, i.e.:

\[
OSR = \frac{\rho^*}{\rho} = \frac{|\sigma_1 - \sigma_3|}{2 \cos \varphi + (\sigma_1 + \sigma_3) \sin \varphi}
\]

(7)

where \(\varphi \) is the effective friction angle.

If, for instance, the limit state condition is

\[
\rho^* \leq 2 \, R
\]

(8)

where \(R \) is the tunnel mean radius, it can be stated as

\[
OSR \leq 1 \text{ at a distance } 2 \, R.
\]

(9)

A new problem is now that the OSR = 1 curve depends on the tunnel geometry and on
the soil mechanical properties. We propose that, after a study using mean values, the designer
chooses the direction in which the curve OSR = 1 goes farther and in this way he can select the
point in which the test (9) will be done.

4. BASIC VARIABLES AND LEVEL II METHODS

The randomness can be grouped in that related to the liner and the one collecting the
soil properties. A common characteristic is the excavation geometry that affects both the stress
distribution in the soil and the liner thickness. Although it is possible to introduce the geometry
as a random variable, this study has been limited to consider only the randomness of the liner
thickness.

Among the variables considered are the following.

In relation to material properties:

- In the soil: Young modulus, density, cohesion, initial stress state, etc
• In the liner: thickness, density, etc
In relation with the simulation procedure:
• Panet coefficient, excavation steps (heading, bench), etc

Generally the variables are not independent and, in addition to the mean values their
definition includes the correlation matrix.

In addition, soil properties have to be defined as random fields (Jourvel [3]; Magnam
[4]; Van Mareeke [5]; Li [6]). In most actual occasions the difficulty of disposal of sufficient
data produces the simplification of considering total correlation inside different zones. It is for
instance usual to define a ring around the tunnel in which a Young modulus lesser than that
used in the rest is used in order to model in a simplified manner the soil plastification.

To establish the reliability a First Order Second Moment method is used in which
(figure 4) the basic variables \{z\} are transformed to a standard normal space \{y\} in which the
problem is reduced (Madsen [7]) to compute the point \{y^*\} in the failure surface
corresponding to the limit state under study \(g(z)\) such that it minimises.

![Figure 4](image)

\[
Q = \frac{1}{2} \{y\}^T \{y\}. \tag{10}
\]

under the condition

\[
G(\{y^*\}) = 0; \quad G(\{y\}) = G([T]\{z\}) = g(z) = 0. \tag{11}
\]

The obtained point is called the design point and can be written as

\[
\{y^*\} = \beta \{\alpha\}. \tag{12}
\]

where \(\beta\) is called reliability index and \(\{\alpha\}\) are the sensitivities of the design point with respect
to each basic variable.

The algorithm to search the minimum of eq. 10 & 11 is characteristic of every method.
In our case the well-known Hasofer-Lind-Rackwitz-Fiessler algorithm (Madsen [7]) has been
used. The iterations are done using the Taylor development of the finite element equations
around the current design point according to the well known philosophy of Probabilistic Finite
Elements (Kleiber [8]).

Finally it is interesting to point out that this method can be used to solve the inverse
problem if only a unique condition has to be adjusted (for instance the convergence or the
stress measured at a point). It is only necessary to define the measured value as a new limit
state and to search the point \(\{y^*\}\) corresponding to the design point of that state.
5. EXAMPLE

A road tunnel whose general dimensions can be seen in figure 5 has been chosen to show the performance of the method. Also the mean material properties can be shown.

The tunnel is 330 m under the surface and the model only takes 43 m above the key, which implies that an overload \(p_0 = \rho g H = 2300 \cdot 9.8 \cdot 287 = 6.47 \cdot 10^6 \) N/m has to be applied in the upper boundary. Both the soil and the liner have been modelled using 8 nodes isoparametric elements. Figure 6 shows the mesh in which the simetry has been accepted and also the different materials that have been used: 14 for the liner and 2 for the soil. The same figure shows the position of the nodes referred to in the limit-state definitions.

Figure 5

Liner
- Density \(\rho = 2500 \text{ kg/m}^3 \)
- Young modulus \(E_{15} = 1.5 \cdot 10^{10} \text{ N/m}^2 \)
- Poisson coefficient \(\nu = 0.25 \)

Soil
- Density \(\rho = 2300 \text{ kg/m}^3 \)
- Young modulus \(E_{15} = E_{16} = 4 \cdot 10^9 \text{ N/m}^2 \)
- Poisson coefficient \(\nu = 0.18 \)
- Overload \(p_0 = 6.47 \cdot 10^6 \text{ N/m} \)
- Cohesion \(C = 2 \cdot 10^3 \text{ N/m}^2 \)
- Friction angle \(\phi = 25^\circ \)
- At-rest coefficient \(K_0 = 1 \)
- Panet coefficient \(\lambda = 0.7 \)

Figure 6

In this example the random variables are the following:
- Soil Young modulus \((E_{15}, E_{16}) \)
- Liner Young modulus \((E_1, E_2, ..., E_{14}) \)
- Overload \(p_0 \)
- At-rest coefficient \(K_0 \)
- Panet coefficient \(\lambda \)
The limit states are defined as follows:

a) **Serviceability limit state**: Maximum displacement is defined as $R/100$, i.e.: U_{lim} (node 73) $< R/100 = 6.4$ cm. The results are presented in figure 8.

![Figure 7](image)

![Figure 8](image)

b) **Ultimate limit state 1 (liner)**: It is considered that the liner fails when the stress reaches 150×10^5 N/m2, i.e.: σ_{lim} (node 60) $< 150\times10^5$ N/m2. (Figure 9).

![Figure 9](image)
c) **Ultimate limit state 2 (soil)** The OSR parameter limited to 1 at a distance 1.5 R, i.e.: OSR (node 203) < 1. The results are presented in figure 10.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Design Point Physic Value</th>
<th>Sensitivity Coefficient</th>
<th>Weighting Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>E<sub>1</sub></td>
<td>1.492E+10</td>
<td>0.6163E-03</td>
<td>0.99497</td>
</tr>
<tr>
<td>E<sub>2</sub></td>
<td>1.492E+10</td>
<td>0.6697E-04</td>
<td>0.99497</td>
</tr>
<tr>
<td>E<sub>3</sub></td>
<td>1.492E+10</td>
<td>0.1714E+03</td>
<td>0.99495</td>
</tr>
<tr>
<td>E<sub>4</sub></td>
<td>1.418E+10</td>
<td>0.4456E-01</td>
<td>0.94820</td>
</tr>
<tr>
<td>E<sub>5</sub></td>
<td>1.417E+10</td>
<td>0.1532E-01</td>
<td>0.94809</td>
</tr>
<tr>
<td>E<sub>6</sub></td>
<td>1.417E+10</td>
<td>0.9865E-02</td>
<td>0.94790</td>
</tr>
<tr>
<td>E<sub>7</sub></td>
<td>1.4163E+10</td>
<td>0.9334E-02</td>
<td>0.94711</td>
</tr>
<tr>
<td>E<sub>8</sub></td>
<td>1.4159E+10</td>
<td>0.7847E-02</td>
<td>0.94693</td>
</tr>
<tr>
<td>E<sub>9</sub></td>
<td>1.4139E+10</td>
<td>0.9764E-02</td>
<td>0.94578</td>
</tr>
<tr>
<td>E<sub>10</sub></td>
<td>1.2994E+10</td>
<td>0.7224E-01</td>
<td>0.87588</td>
</tr>
<tr>
<td>E<sub>11</sub></td>
<td>1.3175E+10</td>
<td>0.5147E-02</td>
<td>0.88906</td>
</tr>
<tr>
<td>E<sub>12</sub></td>
<td>1.3245E+10</td>
<td>0.2883E-02</td>
<td>0.89559</td>
</tr>
<tr>
<td>E<sub>13</sub></td>
<td>1.2946E+10</td>
<td>0.3228E+01</td>
<td>0.87577</td>
</tr>
<tr>
<td>E<sub>14</sub></td>
<td>1.2962E+10</td>
<td>0.2477E+01</td>
<td>0.87607</td>
</tr>
<tr>
<td>E<sub>15</sub></td>
<td>0.3833E+10</td>
<td>0.1317E+01</td>
<td>0.94384</td>
</tr>
<tr>
<td>E<sub>16</sub></td>
<td>0.4610E+10</td>
<td>-0.1624E+01</td>
<td>1.14538</td>
</tr>
<tr>
<td>λ</td>
<td>0.83309</td>
<td>-0.87666</td>
<td>1.20544</td>
</tr>
<tr>
<td>K<sub>n</sub></td>
<td>1.2167</td>
<td>-0.41104</td>
<td>1.15819</td>
</tr>
<tr>
<td>P<sub>n</sub></td>
<td>0.7232E+07</td>
<td>-0.16249</td>
<td>1.10846</td>
</tr>
</tbody>
</table>

Figure 10

As can be seen, for the 3 states results obtained for the reliability indexes are high so that the failure probability is low. The most influential variables are the soil Young modulus, the at-rest coefficient, the Panet one and the overload. The liner Young moduli are not much important except for the limit state b) where it is possible to see the relative importance of the elements near to the key and how important is the correlation among the variables defining the liner vault (moduli 10 to 14). In this way the temptation to define material 10 as deterministic has to be avoided due to the correlation with the highly influential material 14. It can be seen that the weighting coefficients of both materials are similar.

In all cases the values of the at-rest coefficient, Panet coefficient and overload at the design points are higher than the mean values (weighting coefficient higher than 1) indicating that they are "load" variables. On the contrary, the soil Young modulus is a "resistance" variable for the limit states a) and b) while it is a "load" one for the OSR limit state.

Finally in order to show the possibilities of the method for the **inverse problem** let us imagine now that the instrumentation has provided data that we should like to use to establish the stress state in the system. In particular, imagine that a loading cell at the key point has registered a normal stress of 70·10⁵ N/m² and that the horizontal convergence at the vault springs is 4 cm.

Analysis Type	σ_{ave} (10⁵ N/m²)	μ	σ	ε Unit	E₁	E₂	E₃	E₄	E₅	E₆	E₇	E₈	E₉	E₁₀	E₁₁	E₁₂	E₁₃	E₁₄	E₁₅	E₁₆	K_n	λ	P_n	(10⁵ N/m²)		
Determ.	2.21	80.61	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	4.0	4.0	1.0	0.7	6.47					
Probab.	0.60	106.5	1.49	1.49	1.49	1.49	1.47	1.47	1.47	1.47	1.47	1.42	1.42	1.42	1.42	1.42	3.05	2.93	1.09	1.07	5.78					
Probab.	2.52	70.60	1.49	1.49	1.49	1.49	1.41	1.41	1.41	1.41	1.41	1.41	1.40	1.00	1.00	1.00	1.00	0.99	0.99	0.95	3.25	3.65	1.00	0.65	6.47	
Probab.	0.00	90.29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.62	2.86	1.07	0.69	7.40
Probab.	3.34	70.00	1.48	1.48	1.48	1.38	1.38	1.38	1.38	1.38	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	2.62	2.86	1.03	0.66	6.77		
Probab.	0.00	74.31	1.47	1.47	1.47	1.34	1.34	1.34	1.34	1.34	0.08	0.08	0.08	0.08	0.08	0.08	0.07	0.07	0.07	2.37	2.75	1.06	0.68	6.98		
Probab.	0.02	70.00	1.46	1.46	1.46	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.30	0.07	0.07	0.07	0.07	0.07	2.28	2.66	1.06	0.68	6.80

Figure 11

If the design point is obtained for every condition considered as a limit state we shall have the values of the basic variables giving the maximum failure probability, i.e.: we obtain the
worst combination consistent with the registered measurement. Obviously the procedure does not solve simultaneously the problem for both conditions but it is possible to use a sequential procedure trying to accomplish every condition and, if necessary to use a combination of the results (figure 11).

The figures inside shaded areas are such that either have been measured or fixed during the procedure. The first step is to compute using a limit state on the convergence value. In this way a stress figure of $106 \times 10^5 \text{ N/m}^2$ has been obtained which is different of the actual one. Then using the values of the design point a limit stress state is fixed which after solving produces a convergence value of 2.52 cm. The procedure continues until an admissible combination is obtained.

6. CONCLUSIONS

In this paper we have shown the possibility of combining the ideas of probabilistic finite element methods with the computation of tunnels reliability using Panet method. The idea is to have a procedure to quantify the randomness transmitted to the results by that contained in the data usually accompanying the project of construction of tunnels in real life. With the described methods it is possible to analyze the impact of assumed incertitude of the data on the accomplishment of certain limit states. The ones described here are common practice in tunnel projects but its is possible to imagine others for special cases and which implementation does not offer any special difficulty.

An interesting by-product of the method is the computation of the sensitivity of the result to different variables, what allows to consider deterministic those less influential and to increase the tests on those more important in order to reduce the incertitude. There is also a direct relationship among those sensitivity coefficients and the weighting factors typical of structural analysis. After a repeated use of method they could allow the preparation of recommendations for structural tunnel analysis.

Finally, the in situ measurements can be used to calibrate the model so that it is possible to get an idea of the values taken by other variables of interest as the soil-structure interaction pressure, the size of the soil ring co-operating whit the liner, etc. In addition it is possible to use the measured data for the inverse problem, between certain limits that can be improved using the reliability of systems theory.

7. REFERENCES