A GLOBAL LAGRANGIAN DESCRIPTOR APPLIED TO THE KUROSHIO CURRENT

Carolina Mendoza1,2 and Ana M. Mancho3

1 Dept. de Ciencias Aplicadas a la Ing. Naval, Universidad Politécnica de Madrid
2 College of Marine and Earth Sciences, University of Delaware
3 Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM

September 26, 2011
Altimetric data

The altimeter at a satellite sends a wave to be analyzed after it is reflected on the sea surface. The level of the sea is thus measured as the difference of distances between the satellite–water surface (calculated from the lag the wave needs to return to the satellite) and the position of the satellite respect to a given reference ellipsoid close to the real surface. Besides the level of the sea, we can determine the height of the waves and the wind speed (from the amplitude form of the reflected wave).

VELOCITY FIELD

Data have daily frequency and span from November 1 of 2002 to July 31 of 2003, with a resolution of $1/3^\circ$ in longitude (42 km in the Equator). Data come from project MERSEA 2008.
EQUATIONS OF MOTION

\[
\begin{align*}
\frac{d\phi}{dt} &= \frac{u(\phi, \lambda, t)}{R \cos(\lambda)} \\
\frac{d\lambda}{dt} &= \frac{v(\phi, \lambda, t)}{R}
\end{align*}
\]

\(\phi\) means longitude and \(\lambda\) latitude.
Mercator projection

\[\mu = \ln|\sec \lambda + \tan \lambda| \]
Consider the dynamical system:

\[
\frac{d\vec{x}}{dt} = \vec{v}(\vec{x}, t), \quad \vec{x} \in \mathbb{R}^2
\]

where \(\vec{v}(\vec{x}, t)\) is \(C^r (r \geq 1)\) in \(\vec{x}\) and continuous in \(t\). Let \(\vec{x}(t) = (x_1, x_2) \in \mathbb{R}^2\) denote a trajectory. For all initial conditions \(\vec{x}^*\) in an open set \(\mathcal{B} \in \mathbb{R}^2\), at a given time \(t^*\), we define the function \(M(\vec{x}^*, t^*)_{\vec{v}, \tau} : (\mathcal{B}, t) \to \mathbb{R}\) for the previous dynamical system as follows:

\[
M(\vec{x}^*, t^*)_{\vec{v}, \tau} = \int_{t^* - \tau}^{t^* + \tau} \sqrt{\left(\frac{dx_1(s)}{ds} \right)^2 + \left(\frac{dx_2(s)}{ds} \right)^2} \, dt
\]

J.A. Jiménez and Ana M. Mancho, Chaos, 2009
Function M for March 17 of 2003

Start external animation
TIME τ

$\tau = 2$

$\tau = 15$
FUNCTION M FOR MAY 2 OF 2003. LONGITUDE 148°E-168°E AND LATITUDE 30°N-41.5°N;

$\tau = 15$

$\tau = 30$
Evaluation of Function M at the center of an eddie on May 3 of 2003

a) $\tau = 15$;
b) $\tau = 30$;
c) $\tau = 72$
Function M vs. Lyapunov exponents $\tau = 50$
LIMIT COORDINATES

2003-03-07 12:00:00.000000 UTC

lat
lon

L1
L2
L3
Distinguishable trajectories:

L2 \(t = 113 \) to 184 and **L3** \(t = 117 \) to 213

\[
\frac{d\vec{x}}{dt} = f(\vec{x}, t) \quad \rightarrow \quad \vec{x} = \min(M(\vec{x}^*), t^*, \tau)
\]
DISTINGUISHED HYPERBOLIC TRAJECTORIES (DHT)
2003–03–07 12:00:00.000000 UTC
stable and unstable manifolds of time-dependent hyperbolic trajectories

2003-04-17 12:00:00.000000 UTC

2003-04-27 12:00:00.000000 UTC

2003-05-10 12:00:00.000000 UTC

2003-05-26 12:00:00.000000 UTC
$\tau = 15$ WITHOUT/WITH MANIFOLDS
Unstable manifolds
Stable manifolds
Limit coordinates, white dots.
Integral of the modulus of the acceleration along trajectories:

\[|a(x(t))| = \sqrt{\sum_{i=1}^{n} \left(\frac{d^2 x_i(t)}{dt^2} \right)^2} \]
ArcLength vs Acceleration

\[\tau = 15 \]
Arc Length vs Acceleration

\[\tau = 30 \]
Conclusions

- We have calculated the function M and determined the Lagrangian skeleton of the Kuroshio current.
- We have applied the definitions of limite coordinates to find the distinguished hyperbolic trajectories.
- We have found that the evaluation of function M is a technique more precise and faster than the usual technique based on Lyapunov exponents.