Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements

Jiménez Ruiz, Antonio Ramón; Seco Granja, Fernando; Prieto Honorato, José Carlos y Guevara Rosas, Jorge I. (2012). Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements. "IEEE Transactions on Instrumentation and Measurement", v. 61 (n. 1); pp. 178-189. ISSN 0018-9456. https://doi.org/10.1109/TIM.2011.2159317.

Descripción

Título: Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements
Autor/es:
  • Jiménez Ruiz, Antonio Ramón
  • Seco Granja, Fernando
  • Prieto Honorato, José Carlos
  • Guevara Rosas, Jorge I.
Tipo de Documento: Artículo
Título de Revista/Publicación: IEEE Transactions on Instrumentation and Measurement
Fecha: 2012
Volumen: 61
Materias:
Escuela: Centro de Automática y Robótica (CAR) UPM-CSIC
Departamento: Otro
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (4MB) | Vista Previa

Resumen

We present a new method to accurately locate persons indoors by fusing inertial navigation system (INS) techniques with active RFID technology. A foot-mounted inertial measuring units (IMUs)-based position estimation method, is aided by the received signal strengths (RSSs) obtained from several active RFID tags placed at known locations in a building. In contrast to other authors that integrate IMUs and RSS with a loose Kalman filter (KF)-based coupling (by using the residuals of inertial- and RSS-calculated positions), we present a tight KF-based INS/RFID integration, using the residuals between the INS-predicted reader-to-tag ranges and the ranges derived from a generic RSS path-loss model. Our approach also includes other drift reduction methods such as zero velocity updates (ZUPTs) at foot stance detections, zero angular-rate updates (ZARUs) when the user is motionless, and heading corrections using magnetometers. A complementary extended Kalman filter (EKF), throughout its 15-element error state vector, compensates the position, velocity and attitude errors of the INS solution, as well as IMU biases. This methodology is valid for any kind of motion (forward, lateral or backward walk, at different speeds), and does not require an offline calibration for the user gait. The integrated INS+RFID methodology eliminates the typical drift of IMU-alone solutions (approximately 1% of the total traveled distance), resulting in typical positioning errors along the walking path (no matter its length) of approximately 1.5 m.

Más información

ID de Registro: 21270
Identificador DC: http://oa.upm.es/21270/
Identificador OAI: oai:oa.upm.es:21270
Identificador DOI: 10.1109/TIM.2011.2159317
URL Oficial: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5953513&tag=1
Depositado por: Memoria Investigacion
Depositado el: 05 Nov 2013 18:10
Ultima Modificación: 21 Abr 2016 11:25
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM