Nonuniform target illumination in the deflagration regime: Thermal smoothing

J. Sanz, J. A. Nicolás, J. R. Sanmartín, and J. Hilario
Escuela Técnica Superior de Ingenieros Aeronáuticos, Universidad Politécnica, 28040 Madrid, Spain

(Received 30 July 1987; accepted 29 February 1988)

Thermal smoothing in the plasma ablated from a laser target under weakly nonuniform irradiation is analyzed, assuming absorption at n_e and a deflagration regime (conduction restricted to a thin quasisteady layer next to the target). Magnetic generation effects are included and found to be weak. Differences from results available in the literature are explained; the importance of the character of the underdense flow at uniform irradiation is emphasized.

I. INTRODUCTION

Direct-drive laser fusion has usually been considered too sensitive to nonuniformities, e.g., in laser-energy deposition, and to instabilities at or outside the ablation surface. An alternative approach, one based on Hohlraum x rays, has been considered to bypass that difficulty. Recently, however, apparently moderate Rayleigh–Taylor growth rates and improved optics such as the induced spatial incoherence technique have made the direct drive more attractive. The motion of the plasma was later included in an analysis by Manheimer et al. Evans carried out some time-dependent calculations and Bell and Epperlein took into account magnetic effects. Here we consider thermal smoothing within a well-specified model, taking special care about the location of the critical surface and the plasma flow at and below the critical density n_e. We obtain complete results and discuss how they are dependent on the character of that flow. Effects caused by underdense refraction of light, which are also important, will be considered in a future paper.

We assume the following: an almost uniform irradiation, absorption occurring only at n_e, and a deflagration regime (heat conduction restricted to a quasisteady layer enclosing the critical surface). In Sec. V we will discuss how these same simplifications were used in Ref. 7 and their effect on the results.) If refraction is ignored, a study of the layer will suffice to determine the smoothing. Such a layer exists if the distance x_c between the critical and ablation surfaces is small compared with both the overall length of plasma L and its transverse dimension R (radius of a pellet or radius of the focal spot on a foil). In this regime $x_c \sim \bar{K} T^{5/3} \bar{m}^{1/3} \rho_c^{2/3}$ and $L \sim R$ or $L \sim (I_p/\rho_c)^{1/3} \tau$, whichever is smaller, $\bar{K}(Z_f)$ is the factor (weakly dependent on density and temperature through a Coulomb logarithm) in Spitzer's conductivity, Z_f and \bar{m} are the ion charge number and mass, and $\rho_c \equiv m_n e$. For a peaked pulse, τ and I_p are the duration and peak-absorbed intensity; in many numerical calculations a pulse of constant intensity I_0 is used and τ is then the time at the end of the run. Note that in the large isentropic region outside the layer, unsteady and/or three-dimensional effects must be important.

In Sec. II we present the equations of the model. Sections III and IV develop the mathematics of the solution to zero and first order in the nonuniformity. A discussion of the results is given in Sec. V.

II. BASIC EQUATIONS

The equations for the conducting layer are those of a quasisteady, quasineutral, two-fluid plasma:

ion continuity,

$$\nabla \cdot n_e E/Z_f = 0, \quad (1)$$

electron and total momentum,

$$0 = -\nabla (nT) - e n(E + \nabla \times B) + \mathbf{R}, \quad (2)$$

$$\bar{m}_e e \nabla \cdot \mathbf{v} = -\nabla (nT), \quad (3)$$

and electron internal energy (or entropy),

$$\bar{m}_e (v + u) \cdot \nabla T - T (v + u) \cdot \nabla n = -\nabla q - u \mathbf{R} + I', \quad (4)$$

together with Ampère and Faraday laws,

$$\nabla \times \mathbf{B} = -(4\pi/e) e n u \quad (\nabla \cdot \mathbf{B} = 0), \quad (5)$$

$$\nabla \cdot \mathbf{E} = 0. \quad (6)$$

Here n and T are the electron density and temperature, n_e/Z_f is ion density, and v and $v + u$ are ion and electron flow velocities. Electron continuity follows from (1) and (5). We have neglected electron inertia and viscous terms, and considered a large Z_f. This justifies our neglecting ion pressure in (3), and direct heating (due to temperature relaxation) in (4), thus uncoupling system (1)–(6) from the ion energy equation. Here I' is a 5 function term representing laser heating at n_e.

The ion friction on the electrons and the electron heat flux are given by

$$\mathbf{R} = -\alpha_0 (m_e n/\tau) u - \beta_e n \nabla T$$

$$- (\beta_e/\delta_0) n (\tau e B/m_e) \nabla T,$$ (7)

$$q = -\bar{K} T^{5/2} \nabla T + \beta_e n u$$

$$- (\gamma_m/\gamma_e \delta_0^{2/3}) \bar{K} T^{5/2} (\tau e B/m_e) \nabla T.$$ (8)
The first terms above represent simple Ohm's and Fourier laws, while those at the end represent Nernst and Righi-Leduc effects, respectively. The terms in the middle are the thermoelectric effects. Also τ is an electron collision time, $\tau = e m_e kT^{3/2} / \gamma_0 \hbar$. The factors in (7) and (8) are functions of Z_i. For Z_i large, $\alpha_0 = 0.295$, $\beta_0 = 0.877$, $\gamma_0 = 12.5$, $\gamma^0 = 10.2$, $\delta_0 = 0.0961$.9

For a one-dimensional layer, u and B vanish, E is irrotational and given by (2), and Eqs. (1), (3), and (4) suffice to determine the n, v, and T variables. For a weakly two-dimensional layer, as assumed below, u and B would be small, first-order quantities related by Eq. (5), and generated by density and temperature cross gradients through the requirement $\nabla \cdot E = 0$ used in (2). Hall and Etinghausen effects have not been included in (7) and (8), respectively, because they are proportional to the product $u \wedge B$, and thus are second-order quantities. For the same reason, a term $- e n u \wedge B / c$ was omitted from both momentum equations above; the v terms on the left-hand side of (4) may then be written as $\nabla \cdot v_{\parallel} (\frac{1}{2} m v_{\parallel}^2 + \frac{1}{2} T)$. The factors in all terms of Eqs. (7) and (8) are, in general, even functions of $|B|$, so to the order considered we used their values for vanishing $|B|$. Both the magnetic field and current affect the electron energy balance. The thermoelectric effects drop off the heating rate $- (\nabla \cdot q + u \cdot R)$, so that only Fourier (Spitzer) and Righi-Leduc terms, dependent on the temperature gradient, enter that rate. On the other hand, the electron entropy is convected with the velocity $v + u$, and thus there is a direct current effect on the electron heating (in Ref. 7, the term $- T v \cdot \nabla n$ was missing from the energy equation). In the equation resulting from (2) and (6), u enters through Ohm's term and B through the $v \wedge B$ and Nernst terms; the thermoelectric effect drops off again (the term $- \beta_0 \nabla T$ in R/n is irrotational).

III. UNIFORM IRRADIATION

We first review the results for a one-dimensional layer. Light impinging from the right on a dense, heavy target. Because of this, we may take the base of the corona (the ablation light surface) to lie throughout at $x = 0$, and let $n \to \infty$ as $x \to 0$.10 The intensity absorbed at the critical surface is assumed to be transversely uniform, $I_r = I_{r_0}$. Then, $I' = I_{r_0} \delta(x - x_{r0})$ with $n(x_{r0}) = n_{r0}$, and the solution depends only on x. We have $u = B = 0$, $q = - kT^{3/2} / \gamma T$, and $R = - \beta_0 n \nabla T$; E is given by $eE = - \beta_0 n \nabla T - n \nabla (nT)$ and Eqs. (1), (3), (4) become

$$\frac{d}{dx} (n_0 \nu_0) = 0, \quad \frac{d}{dx} (m_0 \nu_0^2 + n_0 T_0) = 0,$$

$$\frac{d}{dx} \left[n_0 \nu_0 \left(\frac{1}{2} \bar{m} \nu_0^2 + \frac{5}{2} T_0 \right) - kT^{3/2} \frac{dT_0}{dx} \right] = I' \equiv I_{r_0} \delta(x - x_{r0}).$$

The above system determines the structure of the conducting layer, where x / x_{r0} is of order unity. As seen in the Introduction, the system and its solution fail at large enough x / x_{r0}, where either three-dimensional or unsteady effects, or both, are important and where, on the other hand, gradients are so weak that conduction is negligible and the flow isentropic. This is a typical problem with two widely different length scales, x_{r0} and L. An asymptotic expansion in the small parameter x_{r0} / L will be singular, and a method such as inner and outer expansion must be used to solve the entire problem. At large x / x_{r0} the layer's (inner) solution must match the isentropic (outer) solution at small x / L.

For a variety of situations the layer's exhaust velocity, $v_0 (x / x_{r0}$ large), was proved equal to the local isentropic sound speed (Chapman-Jouguet condition).12,13 The proof was based on two facts: (i) system (9) and (10) does not

FIG. 1. Normalized fluid profiles in a deflagration layer under uniform irradiation; temperature \rightarrow, density \rightarrow, velocity \rightarrow. Absorption around the critical density at x_{c}; target at $x = 0$. Within the scale of the layer, the profiles become constant as $x / x_{c} \to \infty$.

Phys. Fluids, Vol. 31, No. 8, August 1988
allow an isentropically supersonic exhaust velocity; and (ii) the flow outside, if it is quasisteady and spherical \([L > R < (I_0/\rho_c)^1/3\tau]^{12}\) or planar and unsteady though self-similar \([L > (I_0/\rho_c)^1/3\tau < R]^{13}\) cannot start at (isentropically) subsonic speeds. (In combustion theory, the determination of the structure of a thin detonation or deflagration layer requires similar information on the flow outside.) The \(\delta\) function at \(x = 0\) then requires that \(\nu_0\) and the local isothermal sound speed be equal at the critical density; both \(n_0\) and \(\nu_0\) present infinite gradients there.

We then find that \(n(x/x_0 \rightarrow \infty) \rightarrow 4 \pi n_c/5\); the entire structure of the layer can be determined and is shown in Fig. 1. Some quantities of interest such as the energy \(\varepsilon_0\), the pressure \(P_0\) at the ablation surface \(x = 0\), the mass ablation rate \(\dot{m}\), or the temperature \(T_0\) at the critical density \(x_c\) are determined.

\[
x_c \approx 0.0326 K_0^{u/2} I_0^{u/3} (\rho_c^{-1/3}, P_0^{-1/3}, n_c^{-1/3}, P_0^{-1/3}/I_0^{-1/3}),
\]

\[
P_0 = 8 \times 10^{4} \rho_c^{-1/3} I_0^{1/3}, \quad \dot{m}_0 \approx \frac{1}{4} (P_0^{1/3}/I_0^{-1/3}),
\]

\[
\frac{1}{2} T(x/x_0 \rightarrow \infty) = T_0 \approx \dot{m} u_c^{2} / P_0 / 2 n_c.
\]

The more complex case of arbitrary \(Z_1\) has been solved in the past, also; for instance, if \(Z_1 = 1\), we have \(n_c = 0.61 n_c\) as \(x/x_0 \rightarrow \infty\) and \(1.27 T(x/x_0 \rightarrow \infty) = T_0^{13}\).

IV. WEAKLY NONUNIFORM IRRADIATION

We now consider a weakly nonuniform absorbed intensity

\[
I_r = I_0 + I_1 \exp(iky),
\]

with \(I_1/I_0\) small and \(k\) arbitrary. The laser heating term \(I'\) is then \(I' = \delta(x - x_c)\), where \(x_c\) must be expanded in the form

\[
x_c = x_c + \chi_c \exp(iky) + \cdots.
\]

(11)

A naive expansion of the dependent variables would produce derivatives of \(\delta\) function for first and higher orders in the expansion. Worse than this, the sonic character of the zeroth-order solution at \(x_c\) would result, for instance, in the perturbed density being infinite there. This would also make the numerical treatment around \(x_c\) troublesome. A simple way to deal with this difficulty is to strain the \(x\) coordinate in the form

\[
x = s [1 + (x_c/x_0) \exp(iky) + \cdots],
\]

(12)

that is, to define new variables \(s = x [1 - \exp(iky) x_c/x_0 + \cdots]\) and \(y = y\). Equations (11) and (12) show that \(x = x_c\) at \(x = x_c\) to all orders; the heating term is then \(I' = [I_1 = I_0 + (I_c - I_0) x_c/x_0 \exp(iky) + \cdots] \delta(x - x_c)\).

Variables as well as partial variables are now expanded to first order: \(n = n_0(x) + n_1(x) \exp(iky)\) (similarly for \(T_0\) and \(v_s\)), \(v_r = v_r(x) \exp(iky)\) (similarly for \(u_x, u_y\), and \(B_1\)), and

\[
\frac{\partial}{\partial x} = \left[1 - \frac{x_c}{x_0} \exp(iky)\right] \frac{\partial}{\partial s}, \quad \frac{\partial}{\partial y} = \frac{\partial}{\partial x} \frac{x_c}{x_0} \exp(iky) \frac{\partial}{\partial s}.
\]

The zeroth-order solution \(n_0(x), v_r(x),\) and \(T_0(x)\) is obviously given by the same functions of \(x\) \((n_0, v_r, T_0)\) determined by Eqs. (9) and (10).

To next order Eqs. (1), (3), and (4) yield a fifth-order linear system of ordinary differential equations with variable coefficients, for \(n_1, v_x, v_y,\) and \(T_1:\)

\[
\begin{align*}
\frac{d}{ds}(v_r n_1 + n_0 v_x) + i k n_0 v_y & = 0, \\
\frac{d}{ds}(2 \dot{m}_0 v_x + P_0 n_1 + n_0 T_1) + i k n_0 v_y & = 0, \\
\dot{m} \left(\frac{dv_y}{ds} + ik \frac{x_c}{x_0} \frac{dv_x}{ds} \right) + ik (n_0 T_1 + \dot{m} \dot{n}_0) & = 0, \\
(n_0 v_x + v_0 v_y) \frac{d}{ds} \left(\frac{1}{2} \dot{m} u_c^{2} + \frac{5}{2} T_0 \right) & = - \frac{d}{ds} \left(\frac{5}{2} n_0 T_1 + \dot{m} u_c^{2} \right) + \left(k^2 - \frac{d^2}{ds^2} \right) K T_0^{u/2} T_1 \\
- I_1 \delta(x - x_c) + \frac{x_c}{x_0} \frac{d}{ds} \left(\frac{1}{2} \dot{m} u_c^{2} - k^2 \right) K T_0^{u/2} T_0 & = \tau_0 \frac{d}{ds} \left(\frac{3}{2} \frac{1}{n_0} T_0 n_0 dv_y/ds + \Lambda_0 \right).
\end{align*}
\]

Here \(Q \equiv \dot{m} u_c v_x / \dot{m} \tau_0 \alpha_{\beta} \dot{n}_0 \tau_0 \) is a heating rate, its equation being obtained from (2), (5), and (6):

\[
\begin{align*}
\frac{d^2}{ds^2} Q + \frac{d}{ds} \left[\frac{Q}{T_0} \frac{d}{ds} \left(\frac{3}{2} \tau_0 \frac{d}{ds} \right) \right] + \frac{\Lambda_0^2}{\alpha_0 \tau_0} \left(\beta'' - \frac{d e_m v_0}{d \tau_0} \right) & = - k^2 \frac{v_0}{a_0} \left(\frac{T_0}{n_0} + \dot{n}_0 \right) \frac{d}{ds} \left(\frac{1}{2} \dot{m} u_c^{2} - T_1 \frac{d}{ds} T_0 n_0 \right).
\end{align*}
\]

(14)

On the right-hand side of (13d) the \(\Lambda_0\) term is the Righi–Leduc effect, the rest coming from the \(\alpha\) terms on the left of (4). The \(\Lambda_0\) terms in (14) are the \(\nu\) and B and Nernst effects, the rest on the left coming from Ohm's law. The dimensionless ratio \(\tau_0 \dot{T}_0 / \dot{n}_0 \dot{T}_0 / \dot{m} \dot{n}_0\), where \(\tau_0 \equiv \tau(n_0 T_0)\), grows monotonically from 0.20 at \(s = 0\) to 0.24 at \(s = x_c\); it increases monotonically from \(-0.01\) at \(s = x_c\) to zero as \(s/x_c \rightarrow \infty\). We also have

\[
\begin{align*}
\Lambda^2 & = \frac{\varepsilon_{T_0}^{2/3}}{\delta_0 \tau_0} \left(\frac{2 \pi \tau_0}{\lambda} \right)^2 \frac{\dot{T}_0}{\dot{n}_0} \frac{I_0}{10^{13} \text{ W cm}^{-2}} ^{2/3} \varepsilon_{\lambda} \left(\frac{\lambda}{0.26 \mu m} \right)^{12/3} \left(\frac{100}{Z_{10} A} \right)^{2/3}, \\
\lambda^2 & = 0.29 \frac{m_p}{2 m_p} \left(\frac{M_0}{10^{13} \text{ W cm}^{-2}} \right)^{2/3} \varepsilon_{\lambda} \left(\frac{\lambda}{0.26 \mu m} \right)^{12/3} \left(\frac{100}{Z_{10} A} \right)^{2/3},
\end{align*}
\]

(15a)

\[(m_p = \text{proton mass}, \ln \lambda = \text{Coulomb logarithm, } \lambda = \text{laser wavelength}).
\]

Eight conditions are clearly required to determine the solution to this seventh-order system with one eigenvalue \(x_c\). They are as follows.

(1) Zero current off the target (which otherwise would become charged), \(Q T_0^{u/3} \alpha n_c \mu_{ab} = 0 \) at \(s = 0\).

(2) and (3) Pressure and mass flow rate bounded at the ablation surface, leading to \(v_x = 0 \) at \(s = 0\).

(4) \(v_y\) continuous at the ablation surface and hence \(v_y = 0 \) at \(s = 0\).

(5) \(n_1 = 0 \) at \(s = x_c\) (note that \(n - n_0 = n_1 \exp(iky) + \cdots\) and that at \(s = x_c\) both \(n\) and \(n_0\) are equal to \(n_c\)).

(6) Fluid variables bounded at \(s = x_c\). This condition
arises from the sonic character of the zeroth-order solution at x_{c0}; one of the modes of the linear system for the first-order fluid variables is singular there.

(7) and (8) Variables bounded as $s / x_{c0} \to \infty$; both system (13) and Eq. (14) have one homogeneous unbounded mode.

To carry out the integration, the behavior of the modes near $s = 0$ (where $n \to \infty$) and on both sides of x_{c0} (where density and velocity gradients are singular) had to be determined. Since explicit formulas for n_{c0}, T_{c0}, and dv_{c0}/ds in terms of v_0 are available from Eqs. (9)–(11), we used v_0 instead of s as an independent variable. For the underdense region, straightforward integration off the critical surface was sufficient to accurately determine x_{c1} and other overall quantities, although fluid profiles could only be roughly determined.

FIG. 2. Fractional perturbed ablation pressure normalized with fractional perturbed absorbed intensity; $\cdots \cdots \Lambda_s = 0$, $\cdots \Lambda_s = 10$, $\cdots \Lambda_s = \infty$ [Λ_s defined in Eqs. (15a) and (15b)]. Unperturbed distance between ablation and critical surfaces = x_{c0}, wavenumber = k.

FIG. 3. Normalized perturbed critical temperature; other symbols as in Fig. 2.
Two dimensionless parameters determine the solution: kx_{c0} and Λ_c. This second number characterizes current (low Λ_c) and magnetic (high Λ_c) effects, and is essentially the ratio of the electron mean free path to laser wavelength, both assumed small compared with x_{c0}. In fact, the results of Sec. III show that the mean free path is indeed less than x_{c0} by a factor of order $(m_e/\bar{m})^{1/2}$.

V. DISCUSSION

Figures 2–5 show the results (conveniently normalized) for perturbed ablation pressure P_{ac}, critical temperature T_{c1}, and critical pressure, mass flow rates \dot{m}_{a1}, \dot{m}_{a1} at ablation and critical surfaces, and location x_{c1} of critical density, respectively; e.g., Fig. 2 shows $(P_{ac}/P_{a0})/(I_{c1}/I_0)$.
Values of \(\Lambda_c = 0, 10, \infty \) for \(kx_{co} \) arbitrary were considered. Because of the coordinate strain introduced in Sec. IV, \(T_{c1} \) in Fig. 3 represents the difference between the exact \(T \) at the exact \(x_c \) and \(T_{co} \). (Here, of course, "exact" means "to zero and first order.") We note the following features.

(i) The amount of smoothing increases as \(\Lambda_c \) becomes larger, but this dependence is weak. There is no practical difference between results for \(\Lambda_c = 0 \) and those obtained by simply dropping the entire right-hand side of (13d) (except in \(m_{a1} \), for which we show both). Low \(\Lambda_c \) values (and dominant current effects) correspond to short wavelength \(\lambda \) because the mean free path varies as \(\lambda^{14/3} \); current effects are also favored in the overdense part of the layer [see Eqs. (15)].

(ii) As expected from the laws in Sec. III (\(P_{a0} \sim T_{co} \sim m_{a0}^2 \sim x_{co}^{1/2} \sim I_{co}^{3/2} \)), the ordinates in Figs. 2–5 go to \(1, \frac{1}{2}, \frac{1}{2} \), and \(\frac{1}{2} \), respectively, as \(kx_{co} \to 0 \). Smoothing, which is practically nil at \(kx_{co} \sim 10^{-2} \), is important at \(kx_{co} \sim 10^{-1} \).

(iii) The mass ablation rate \(m_{a1} \) exhibits a substantial peak at \(kx_{co} \sim 1 \) (Fig. 4), and shows no noticeable smoothing. The effect is due to the overdense lateral mass flow (the difference between \(m_{a1} \) and \(m_{a1} \)) which must obviously vanish for both \(kx_{co} \to 0 \) and \(kx_{co} \to \infty \), and peak somewhere. The mass ablation rate must sustain both that mass "loss" and the mass flow at \(s = x_{co} \).

(iv) The ratio \(x_{c1} / L_{c1} \) is negative beyond \(kx_{co} \) around unity (Fig. 5) (note similar, weaker effects on \(m_{a1} \) and \(P_{a1} \)). At such wavenumbers there is a substantial energy loss caused by the lateral flux. This requires a larger overdense temperature gradient normal to the target. If the increased critical temperature is unable to sustain that gradient, the critical surface moves closer to the target.

The analysis by Bell and Epperlein is similar to ours: weak nonuniformity, absorption at \(n_e \), and conduction within a quasisteady layer (deflagration regime). The results, however, were quite different. As previously mentioned, the term \(- Tu \nabla n\) was missing from their equations, but this cannot account for the differences because the current and magnetic effects were weak [their results correspond to either dropping the right-hand side of (13d) or taking \(\Lambda_c \to \infty \)]. The root of the differences lies in the character of the zeroth-order solution they considered. They set the isothermal Mach number at the critical surface, \(M_{co} \), arbitrarily equal to 0.95, with fluid variables remaining constant throughout the underdense part of the layer. As shown in Sec. III, however, if absorption only occurs at \(n_e \), it is impossible, in general, to match such a layer to the three-dimensional and/or unsteady flow that must exist outside (this flow was not discussed in Ref. 7).

Yet, if absorption by inverse bremsstrahlung is substantial, the outside flow is not isentropic, and the argument of Sec. III does not apply. This situation was recently studied for uniform irradiation. Two dimensionless parameters appeared in the study: the fractional absorption \(\alpha \) at the critical surface, \(\alpha \), and a number characterizing inverse bremsstrahlung (\(V \) for dominant spherical effects, \(\hat{U} \) for dominant unsteady effects). For small values of, say, \(V \) we have the case considered in this paper: \(M_{co} = 1 \) and \(M_{a0} = (\frac{1}{2})^{1/2} \), \(M_{a0} \) being the isothermal Mach number of the exit of the layer (the exit isentropic Mach number is then equal to unity). As \(V \) is increased, \(M_{co} \) remains unity while \(M_{a0} \) starts to decrease until it reaches \(M_{co} \). For larger \(V \), \(M_{co} \) and \(M_{a0} \) decrease together, and at some stage the situation of Ref. 7 is attained. (For \(M_{co} = M_{a0} < 1 \), condition 6 of Sec. IV disappears, but then \(u \) fluid modes are unbounded at infinity so that the total number of boundary conditions does not change.) Note that in this case nonthermal smoothing outside the layer, caused by nonuniform bremsstrahlung absorption, must be considered, since the analysis of just the layer is not sufficient, as it is in our problem.

As an example of the differences mentioned above, Fig. 6 shows \(x_{c1} / x_{co} \) for the problem of Bell and Epperlein; that quantity was not given in Ref. 7. Note that \(x_{c1} / L_{c1} \) is negative for all wavenumbers, and that \((x_{c1} / x_{co}) / (I_{c1} / I_{co}) \) does not ap-

![FIG. 6. Normalized perturbed distance between ablation and critical surfaces for the problem of Ref. 7; results neglecting the right-hand side of Eq. (13d).](image-url)
proach \(\frac{k x_{\infty}}{x_{\infty}} \rightarrow 0 \), as in Fig. 5. The ordinate at the origin in both Figs. 5 and 6 [and similarly for \((P_{el} / P_{\infty}) (I_{el} / I_{\infty})\), etc.] may be obtained analytically by systematically using the limit \(k x_{\infty} \rightarrow 0 \) in the analysis of the solution. For instance, for \(M_{\infty} = 1, 1 < M_{\infty} < (\frac{3}{2})^{1/2} \) we obtain

\[
\frac{x_{el} / x_{\infty}}{I_{el} / I_{\infty}} = \frac{4(M_{\infty}^2 - 1)(M_{\infty}^2 + 5)}{3M_{\infty}^4 + 6M_{\infty}^2 - 5},
\]

yielding \(\frac{M_{\infty}^2}{x_{\infty}} = \frac{3}{2} \) (Fig. 5). For \(M_{\infty} = M_{\infty} < 1 \), a somewhat more involved expression is obtained; it is easily verified that for \(M_{\infty} = M_{\infty} \approx 0.95 \), \((x_{el} / x_{\infty}) / (I_{el} / I_{\infty}) \approx -0.77 \), as in Fig. 6.

Results from the present work are clearly only indicative; in particular it is unrealistic to neglect inverse bremsstrahlung if conduction is restricted to a thin layer in the corona (long, low-intensity, short-wavelength pulses). Extensions from our work to other regimes might include, besides inverse bremsstrahlung, spherical and unsteady effects mixed up with the smoothing, nonclassical transport, light refraction (these results will be published in a future paper), and possible instabilities tied up with smoothing processes. The richness of coronal regimes (and corresponding zero order, symmetric flows) should lead to a variety of results that are of interest for the direct-drive approach.

ACKNOWLEDGMENTS

This work was supported by the Comisión Asesora de Investigación Científico-Técnica of Spain (Project 1983/82) and the Instituto de Fusión Nuclear.