The shape of charged drops over a solid surface and symmetry-breaking instabilities

Fontelos, Marco Antonio y Kindelan Bustelo, Ultano (2008). The shape of charged drops over a solid surface and symmetry-breaking instabilities. "Siam Journal on Applied Mathematics", v. 69 (n. 1); pp. 126-148. ISSN 0036-1399. https://doi.org/10.1137/080713707.

Descripción

Título: The shape of charged drops over a solid surface and symmetry-breaking instabilities
Autor/es:
  • Fontelos, Marco Antonio
  • Kindelan Bustelo, Ultano
Tipo de Documento: Artículo
Título de Revista/Publicación: Siam Journal on Applied Mathematics
Fecha: Agosto 2008
Volumen: 69
Materias:
Palabras Clave Informales: electrowetting, symmetry-breaking bifurcations, boundary integral method, varia-tional formulation
Escuela: E.T.S.I. Minas (UPM) [antigua denominación]
Departamento: Matemática Aplicada y Métodos Informáticos [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (68kB) | Vista Previa

Resumen

We study the static shape of charged drops of a conducting fluid placed over a solid substrate, surrounded by a gas, and in absence of gravitational forces. The question can be formulated as a variational problem where a certain energy involving the areas of the solid-liquid interface and of the liquid-gas interface, as well as the electric capacity of the drop, has to be minimized. As a function of two parameters, Young’s angle µY and the potential at the drop’s surface V0, we find the axisymmetric minimizers of the energy and describe their shape. We also discuss the existence of symmetry-breaking bifurcations such that, for given values of µY and V0, configurations for which the axial symmetry is lost are energetically more favorable than axially symmetric configurations. We prove the existence of such bifurcations in the limits of very flat and almost spherical equilibrium shapes. All other cases are studied numerically with a boundary integral method. One conclusion of this study is that axisymmetric drops cannot spread indefinitely by introducing sufficient amount of electric charges, but can reach only a limiting (saturation) size, after which the axial symmetry would be lost and finger-like shapes energetically preferred.

Más información

ID de Registro: 2182
Identificador DC: http://oa.upm.es/2182/
Identificador OAI: oai:oa.upm.es:2182
Identificador DOI: 10.1137/080713707
URL Oficial: http://scitation.aip.org/dbt/dbt.jsp?KEY=SMJMAP&Volume=69&Issue=1
Depositado por: Memoria Investigacion
Depositado el: 08 Feb 2010 11:42
Ultima Modificación: 20 Abr 2016 11:56
  • InvestigaM
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM