Optimización de la Exactitud Geométrica al Integrar Diversas Fuentes de Datos en Proyectos de Inventario Forestal Basados en Escaneo Laser Aerotransportado=Optimizing Geometric Accuracy in Data Source Integration for Airborne Laser Scanning-based Forest Inventory Projects

Valbuena Puebla, Ruben (2013). Optimización de la Exactitud Geométrica al Integrar Diversas Fuentes de Datos en Proyectos de Inventario Forestal Basados en Escaneo Laser Aerotransportado=Optimizing Geometric Accuracy in Data Source Integration for Airborne Laser Scanning-based Forest Inventory Projects. Thesis (Doctoral), E.T.S.I. Montes (UPM).

Description

Title: Optimización de la Exactitud Geométrica al Integrar Diversas Fuentes de Datos en Proyectos de Inventario Forestal Basados en Escaneo Laser Aerotransportado=Optimizing Geometric Accuracy in Data Source Integration for Airborne Laser Scanning-based Forest Inventory Projects
Author/s:
  • Valbuena Puebla, Ruben
Contributor/s:
  • Martín Fernández, Susana
  • Manzanera de la Vega, José Antonio
Item Type: Thesis (Doctoral)
Date: 2013
Subjects:
Faculty: E.T.S.I. Montes (UPM)
Department: Economía y Gestión Forestal [hasta 2014]
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (7MB) | Preview

Abstract

La mayoría de las aplicaciones forestales del escaneo laser aerotransportado (ALS, del inglés airborne laser scanning) requieren la integración y uso simultaneo de diversas fuentes de datos, con el propósito de conseguir diversos objetivos. Los proyectos basados en sensores remotos normalmente consisten en aumentar la escala de estudio progresivamente a lo largo de varias fases de fusión de datos: desde la información más detallada obtenida sobre un área limitada (la parcela de campo), hasta una respuesta general de la cubierta forestal detectada a distancia de forma más incierta pero cubriendo un área mucho más amplia (la extensión cubierta por el vuelo o el satélite). Todas las fuentes de datos necesitan en ultimo termino basarse en las tecnologías de sistemas de navegación global por satélite (GNSS, del inglés global navigation satellite systems), las cuales son especialmente erróneas al operar por debajo del dosel forestal. Otras etapas adicionales de procesamiento, como la ortorectificación, también pueden verse afectadas por la presencia de vegetación, deteriorando la exactitud de las coordenadas de referencia de las imágenes ópticas. Todos estos errores introducen ruido en los modelos, ya que los predictores se desplazan de la posición real donde se sitúa su variable respuesta. El grado por el que las estimaciones forestales se ven afectadas depende de la dispersión espacial de las variables involucradas, y también de la escala utilizada en cada caso. Esta tesis revisa las fuentes de error posicional que pueden afectar a los diversos datos de entrada involucrados en un proyecto de inventario forestal basado en teledetección ALS, y como las propiedades del dosel forestal en sí afecta a su magnitud, aconsejando en consecuencia métodos para su reducción. También se incluye una discusión sobre las formas más apropiadas de medir exactitud y precisión en cada caso, y como los errores de posicionamiento de hecho afectan a la calidad de las estimaciones, con vistas a una planificación eficiente de la adquisición de los datos. La optimización final en el posicionamiento GNSS y de la radiometría del sensor óptico permitió detectar la importancia de este ultimo en la predicción de la desidad relativa de un bosque monoespecífico de Pinus sylvestris L. ABSTRACT Most forestry applications of airborne laser scanning (ALS) require the integration and simultaneous use of various data sources, pursuing a variety of different objectives. Projects based on remotely-sensed data generally consist in upscaling data fusion stages: from the most detailed information obtained for a limited area (field plot) to a more uncertain forest response sensed over a larger extent (airborne and satellite swath). All data sources ultimately rely on global navigation satellite systems (GNSS), which are especially error-prone when operating under forest canopies. Other additional processing stages, such as orthorectification, may as well be affected by vegetation, hence deteriorating the accuracy of optical imagery’s reference coordinates. These errors introduce noise to the models, as predictors displace from their corresponding response. The degree to which forest estimations are affected depends on the spatial dispersion of the variables involved and the scale used. This thesis reviews the sources of positioning errors which may affect the different inputs involved in an ALS-assisted forest inventory project, and how the properties of the forest canopy itself affects their magnitude, advising on methods for diminishing them. It is also discussed how accuracy should be assessed, and how positioning errors actually affect forest estimation, toward a cost-efficient planning for data acquisition. The final optimization in positioning the GNSS and optical image allowed to detect the importance of the latter in predicting relative density in a monospecific Pinus sylvestris L. forest.

More information

Item ID: 22138
DC Identifier: http://oa.upm.es/22138/
OAI Identifier: oai:oa.upm.es:22138
Deposited by: Archivo Digital UPM 2
Deposited on: 18 Jan 2014 10:57
Last Modified: 14 May 2015 17:08
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM