Metrizability of spaces of holomorphic functions

Jerónimo López-Salazar

Abstract

In this paper we prove that if U is an open subset of a metrizable locally convex space E of infinite dimension, the space $\mathcal{H}(U)$ of all holomorphic functions on U, endowed with the Nachbin–Coeuré topology \mathcal{T}_S, is not metrizable. Our result can be applied to get that, for all usual topologies, $\mathcal{H}(U)$ is metrizable if and only if E has finite dimension.

1. Introduction

The study of locally convex topologies on $\mathcal{H}(U)$ is a topic of interest for many researchers. It is very natural to ask which properties $\mathcal{H}(U)$ has from the point of view of functional analysis. In particular, some mathematicians have been interested in characterizing the locally convex spaces E such that $\mathcal{H}(U)$ is metrizable for all open subsets U of E and for topologies as the compact open, Nachbin ported and Nachbin–Coeuré topologies. In 1968, Alexander proved the following theorem for Banach spaces with Schauder basis, which was generalized by Chae:

Theorem 1. (See [1, p. 13], [4, Theorem 16.10].) Let U be an open subset of an infinite dimensional Banach space. If τ is a topology on $\mathcal{H}(U)$ finer than the topology of pointwise convergence, then $(\mathcal{H}(U), \tau)$ is not metrizable.

Although this result can be applied to all usual topologies on $\mathcal{H}(U)$, its proof is only valid when E is a Banach space because Baire and Josefson–Nissenzweig Theorems are used (see [6] and [11]).

In 2007, Ansemil and Ponte have got that, for the Nachbin ported topology, Theorem 1 can be generalized to metrizable locally convex spaces E (see [3]). In this article, we prove an analogous result for the Nachbin–Coeuré topology \mathcal{T}_S, which answers a question stated by Mujica in [8, Problem 11.9] thirty years ago.

2. Definitions and previous results

Throughout this paper, the letter E will denote a complex locally convex space, E' will represent the dual space of E and U will be an open subset of E. A function $f : U \to \mathbb{C}$ is holomorphic on U if it is continuous and for each $z \in U$ and $w \in E$ the function of one complex variable

$$\lambda \mapsto f(z + \lambda w)$$
is holomorphic on a neighborhood of zero in \(\mathbb{C} \). Let \(\mathcal{H}(U) \) denote the space of all holomorphic functions on \(U \). The compact open topology on \(\mathcal{H}(U) \), \(\tau_0 \), is defined by the seminorms

\[
f \in \mathcal{H}(U) \mapsto \sup_{z \in K} |f(z)|
\]

when \(K \) ranges over the compact subsets of \(U \).

Let us recall the definition of other fundamental topologies on \(\mathcal{H}(U) \). A seminorm \(p \) on \(\mathcal{H}(U) \) is ported by a compact subset \(K \) of \(U \) if for every open neighborhood \(V \) of \(K \) in \(U \) there is a constant \(C > 0 \) such that

\[
p(f) \leq C \cdot \sup_{z \in V} |f(z)|
\]

for all \(f \in \mathcal{H}(U) \). The Nachbin topology \(\tau_{\omega} \) is the locally convex topology on \(\mathcal{H}(U) \) defined by the seminorms ported by the compact subsets of \(U \).

The Nachbin–Coeure topology, denoted by \(\tau_\beta \), is the locally convex topology on \(\mathcal{H}(U) \) defined by the seminorms \(p \) which verify the following property: for each increasing countable open cover of \(U \), \(\{V_n\}_{n=1}^\infty \), there exist \(n_0 \in \mathbb{N} \) and \(C > 0 \) such that

\[
p(f) \leq C \cdot \sup_{z \in V_{n_0}} |f(z)|
\]

for all \(f \in \mathcal{H}(U) \). It is well known that the space \((\mathcal{H}(U), \tau_\beta) \) is bornological and \(\tau_0 \leq \tau_{\omega} \leq \tau_\beta \) on \(\mathcal{H}(U) \) (see [5, Propositions 3.17, 3.18]). Moreover, \(\tau_{\omega} \) and \(\tau_\beta \) coincide on \(E' \), which can be identified with a subspace of \(\mathcal{H}(U) \) (see [5, Proposition 3.22]).

In our main result (Theorem 4), the following proposition will be used:

Proposition 2. (See [3, Proposition 1.]) Let \(E \) be a metrizable locally convex space. If \((E', \tau_{\omega}) \) is metrizable, then \(E \) is a normed space.

We will also need some results about bounding and limited sets. A subset \(A \) of \(E \) is said to be bounding if \(\sup_{z \in A} |f(z)| < \infty \) for all \(f \in \mathcal{H}(E) \). A set \(B \subset E \) is limited if

\[
\lim_{n \to \infty} \left(\sup_{z \in B} |\varphi_n(z)| \right) = 0
\]

for every sequence \(\{\varphi_n\}_{n=1}^\infty \subset E' \) such that \(\lim_{n \to \infty} \varphi_n(z) = 0 \) for all \(z \in E \).

Proposition 3. Let \(E \) be a Banach space.

1. Every bounding set in \(E \) is limited (see [10, Corollary 2.13]).
2. If \(A \) is a limited subset of \(E \), the closed convex balanced hull of \(A \) is also limited (see [10, Remark 4.2(c)]).
3. If \(E \) has infinite dimension, every limited set in \(E \) has empty interior (see [10, Corollary 4.13]).

The third property is a consequence of the Josefson–Nissenzweig Theorem. Indeed, if a limited subset \(A \) of an infinite dimensional Banach space \(E \) has no empty interior, there exist \(z_0 \in A \) and \(r > 0 \) such that \(B_E(z_0, r) \subset A \). Then \(B_E(0, 1) \subset \frac{1}{r}(A - z_0) \) and we obtain that \(B_E(0, 1) \) is also limited. By the Josefson–Nissenzweig Theorem, there is a sequence \(\{\varphi_n\}_{n=1}^\infty \) in \(E' \) such that \(\|\varphi_n\| = 1 \) for all \(n \in \mathbb{N} \) and \(\lim_{n \to \infty} \varphi_n(z) = 0 \) for all \(z \in E \). Therefore,

\[
1 = \lim_{n \to \infty} \|\varphi_n\| = \lim_{n \to \infty} \left(\sup_{z \in B_E(0, 1)} |\varphi_n(z)| \right) = 0.
\]

This is absurd; so limited subsets in \(E \) have empty interior.

3. Metrizability of \(\mathcal{H}(U) \)

Theorem 4. Let \(U \) be an open subset of a metrizable locally convex space \(E \). If \((\mathcal{H}(U), \tau_\beta) \) is metrizable, then \(E \) is a finite dimensional normed space.

Proof. The symbol \(\widehat{E} \) will denote the completion of \(E \). If \(r > 0 \), \(B_E(0, r) \) and \(B_{\widehat{E}}(0, r) \) will represent the open balls with center 0 and radius \(r \) in \(E \) and \(\widehat{E} \), respectively. If \((\mathcal{H}(U), \tau_\beta) \) is metrizable, then the subspace \((E', \tau_\beta) \) is also metrizable. As the topologies \(\tau_{\omega} \) and \(\tau_\beta \) coincide on \(E' \), by Proposition 2 we obtain that \(E \) is a normed space. Its completion \(\widehat{E} \) is a Banach space.

Let \(\{\mathcal{F}_n\}_{n=1}^\infty \) be a fundamental system of neighborhoods of 0 in \((\mathcal{H}(U), \tau_\beta) \). For each \(n \in \mathbb{N} \) let

\[
A_n = \{z \in U: |f(z)| \leq 1 \text{ for every } f \in \mathcal{F}_n\}.
\]
We claim that the sets \(A_n \) are limited in \(E \). Indeed, if \(n \in \mathbb{N} \) and \(f \in \mathcal{H}(E) \), then \(f|_U \) is holomorphic on \(U \). Since \(\mathcal{F}_n \) is a neighborhood of zero, there is \(\alpha > 0 \) such that \(\alpha f|_U \in \mathcal{F}_n \). If \(z \in A_n \), then \(|\alpha f(z)| \leq 1 \) and so
\[
\sup_{z \in A_n} |f(z)| \leq \frac{1}{\alpha} < \infty.
\]
This shows that \(A_n \) is a bounding subset of \(E \). Hence, by Proposition 3, \(A_n \) and \(\mathcal{T}(A_n)^E \), the closed convex balanced hull of \(A_n \), are limited in \(E \) for every \(n \in \mathbb{N} \).

If \(z_0 \in U \), the mapping
\[
T : (\mathcal{H}(U), \tau_5) \to (\mathcal{H}(U - z_0), \tau_5)
\]
defined by
\[
Tf(z) = f(z + z_0)
\]
for each \(f \in \mathcal{H}(U) \) and \(z \in U - z_0 \), is a homeomorphism. Therefore, the space \((\mathcal{H}(U), \tau_5)\) is metrizable if and only if \((\mathcal{H}(U - z_0), \tau_5)\) is also metrizable and so we can assume that \(0 \in U \).

Now we use an adaptation of [7, p. 184] for open subsets made in [3, Theorem 4]. Let \(r > 0 \) such that \(B_E(0, 2r) \subset U \). If \(\hat{z} \in B_E(0, r) \), there is a point \(z_1 \in B_E(0, r) \) such that
\[
\|\hat{z} - z_1\| < \frac{r}{4}.
\]
Therefore,
\[
\hat{z} - z_1 \in B_E\left(0, \frac{r}{4}\right)
\]
and there is \(z_2 \in B_E(0, \frac{r}{4}) \) such that
\[
\|\hat{z} - z_1 - z_2\| < \frac{r}{4^2}.
\]
If we repeat this argument, for each \(n \in \mathbb{N} \) we can find a point \(z_n \in B_E(0, \frac{r}{4^{n-1}}) \) such that
\[
\left\|\hat{z} - \sum_{k=1}^{n} z_k\right\| < \frac{r}{4^n}.
\]
Hence \(\hat{z} = \sum_{k=1}^{\infty} z_k \).

Let \(w_n = 2^n z_n \in E \) for each \(n \in \mathbb{N} \). The sequence \(\{w_n\}_{n=1}^{\infty} \) converges to zero:
\[
\|w_n\| = 2^n \|z_n\| < 2^n \cdot \frac{r}{4^n-1} = \frac{2r}{2^n-1} \xrightarrow{n \to \infty} 0.
\]
Moreover,
\[
w_n \in B_E\left(0, \frac{2r}{2^n-1}\right) \subset B_E(0, 2r) \subset U
\]
for all \(n \). Therefore,
\[
K = \{w_n : n \in \mathbb{N}\} \cup \{0\}
\]
is a compact subset of \(U \) and
\[
\left\{ f \in \mathcal{H}(U) : \sup_{z \in K} |f(z)| \leq 1 \right\}
\]
is a neighborhood of zero in \((\mathcal{H}(U), \tau_5)\). Since \(\{\mathcal{F}_n\}_{n=1}^{\infty} \) is a fundamental system of neighborhoods of zero in \((\mathcal{H}(U), \tau_5)\), there is \(n_1 \in \mathbb{N} \) such that
\[
\mathcal{F}_{n_1} \subset \left\{ f \in \mathcal{H}(U) : \sup_{z \in K} |f(z)| \leq 1 \right\}.
\]
Let \(w \in K \). If \(f \in \mathcal{F}_{n_1} \), then
\[
|f(w)| \leq \sup_{z \in K} |f(z)| \leq 1.
\]
Hence \(w \in A_{n_1} \) and so \(K \subset A_{n_1} \).
For every \(n \in \mathbb{N} \), \(\sum_{k=1}^{n} \frac{1}{2^k} w_k \) is a convex linear combination of elements of \(K \), which implies that
\[
\sum_{k=1}^{n} \frac{1}{2^k} w_k \in \Gamma(K) \subseteq \Gamma(A_{n_1})^{\hat{E}}.
\]
As the last set is closed in \(\hat{E} \), we have
\[
\hat{z} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{2^k} w_k \in \Gamma(A_{n_1})^{\hat{E}}.
\]
Thus, we have proved that
\[
B_{\hat{E}}(0, r) = \bigcup_{n=1}^{\infty} \Gamma(A_{n_1})^{\hat{E}}.
\]
Since \(B_{\hat{E}}(0, r) \) is an open subset of the Banach space \(\hat{E} \), there exists \(n_2 \in \mathbb{N} \) such that \(\Gamma(A_{n_2})^{\hat{E}} \) has no empty interior in \(\hat{E} \).
As we have seen that \(\Gamma(A_{n_2})^{\hat{E}} \) is a limited set, by Proposition 3 \(\hat{E} \) has finite dimension and so \(E \) is also a finite dimensional space. \(\square \)

Theorem 5. Let \(U \) be an open subset of a metrizable locally convex space \(E \). Let \(\tau \) be a locally convex topology on \(\mathcal{H}(U) \) such that \(\tau_0 \leq \tau \leq \tau_5 \). Then \((\mathcal{H}(U), \tau) \) is a metrizable space if and only if \(E \) has finite dimension.

Proof. As \(E \) is a metrizable space, \(\tau_5 \) is the bornological topology associated with \(\tau_0 \) (see [5, Example 3.20(a)]). If \(E \) has finite dimension, it is well known that \((\mathcal{H}(U), \tau_0) \) is a metrizable space. Hence \(\tau_0 \) is bornological and so \(\tau_5 = \tau_0 \). This implies that \(\tau = \tau_0 \) and, therefore, \((\mathcal{H}(U), \tau) \) is metrizable.

Now we show the opposite implication. Since \(\tau_0 \leq \tau \leq \tau_5 \), \(\tau_5 \) is also the bornological topology associated with \(\tau \). If \((\mathcal{H}(U), \tau) \) is metrizable, then \(\tau \) is bornological and so \(\tau = \tau_5 \). Hence, by Theorem 4, \(E \) is a finite dimensional space. \(\square \)

Theorem 5 can be applied to all usual topologies on \(\mathcal{H}(U) \), among them, \(\tau_{oo}, \tau_0 \) and \(\beta \). The definition of \(\tau_{oo} \) is based on the topology of uniform convergence on bounded sets, while \(\beta \) is the strong topology when \(\mathcal{H}(U) \) is considered as a dual space (see [5, Definitions 3.29 and 3.39]).

Our last proposition will show that the only hypothesis on Theorems 4 and 5 (\(E \) is metrizable) cannot be suppressed. We recall that a topological space \(X \) is said to be hemicompact if there is a fundamental sequence of compact subsets of \(X \). A locally convex space \(E \) is a DFC space if there exists a Fréchet space \(F \) such that \(E = (F', \tau_0) \).

Infinite dimensional DFC spaces are not metrizable. Indeed, if \(F \) is a Fréchet space and \((F', \tau_0) \) is metrizable, then there is a fundamental sequence \(\{K_n\}_{n=1}^{\infty} \) of compact subsets of \(F \). Hence we have
\[
F = \bigcup_{n=1}^{\infty} K_n.
\]
Since \(F \) is a Baire space, there is \(n \in \mathbb{N} \) such that \(K_n \) has no empty interior and, therefore, \(F \) is a finite dimensional space.

Proposition 6. Let \(F \) be a separable Fréchet space and let \(U \) be an open subset of \(E = (F', \tau_0) \). Then \(\tau_0 = \tau_5 \) on \(\mathcal{H}(U) \) and \((\mathcal{H}(U), \tau_5) \) is a Fréchet space.

Proof. Using the Banach–Dieudonné Theorem, it is possible to prove that \((F', \tau_0) \) is a \(k \)-space and so the open subset \(U \) is a \(k \)-space as well (see [9, Theorem 7.6]). Hence \((C(U), \tau_0) \), the space of all continuous functions on \(U \) with the compact open topology, is complete and \((\mathcal{H}(U), \tau_0) \) is also complete because it is closed in \((C(U), \tau_0) \).

Now we use [9, Theorem 7.4]. Let \(\{V_m\}_{m=1}^{\infty} \) be a fundamental system of neighborhoods of \(0 \) in \(F \). Then the polar sets \(\{V_m^\circ\}_{m=1}^{\infty} \) form a fundamental sequence of compact subsets of \((F', \tau_0) \). Since \(F \) is separable, there is a countable dense subset \(D \) in \(F \) and then the topology \(\sigma(F', D) \) on \(F' \) is defined by a metric \(\rho \). Moreover \(\sigma(F', D) \) coincides with \(\tau_0 \) on the compact subsets of \(U \).

Consider the sets
\[
L_{m,n} = \left\{ x \in V_m^\circ \cap U : \rho(x, V_m^\circ \backslash U) \geq \frac{1}{n} \right\},
\]
where \(m \) and \(n \) are any natural numbers. Each \(L_{m,n} \) is a compact subset of \(U \) because it is closed in \(V_m^\circ \). In the proof of [9, Theorem 7.4], Mujica asserts that \(\{L_{m,n} = L_{m,n+1} \}_{n=1}^{\infty} \) is a fundamental system of compact subsets of \(U \). As he has recognized in a private communication, it is not clear whether this is true. However, it is possible to prove that \(\{L_{m,n} : m, n \in \mathbb{N} \} \) is a
fundamental sequence of compact subsets of U and thus U is hemicompact. Hence the compact open topology on $\mathcal{H}(U)$ is metrizable and $(\mathcal{H}(U), \tau_0)$ is a Fréchet space.

As U is a k-space, τ_3 is the bornological topology associated with τ_0 (see [2, Theorem 1]). Since τ_0 is metrizable, it follows that τ_0 is bornological and then we have $\tau_0 = \tau_3$. □

Acknowledgments

I would like to thank professors Ansemil and Ponte for their help and suggestions during the preparation of this paper.

References