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Abstract—In this paper we show the possibility of applying adaptive procedures as an alternative
to the well-known philosophy of standard Boundary Elements. The three characteristic steps
of adaptive procedures, i.e. hierarchical shape functions families, indicator criteria, and a pos-
teriori estimation, can be defined in order to govern an automatic refinement and stopping of
the solution process. A computer program to treat potential problems, called QUEIMADA,
has been developed to show the capabilities of the new idea.

1. INTRODUCTION

The last decade has seen the spectacular increment
of research and applications of Boundary Element
(BE) techniques. Although some authors [1] con-
sider it as a part of Finite Element Method (FEM),
in principle its development was almost indepen-
dent [2—4, 6-9], and the FEM philosophy was in-
corporated later [5]. Since then, there has been an
explosion of books [10-17] to teach the subject, as
well as a series of International Conferences [18—
22], specially dedicated to BE. The research has
maintained a similar pace; our group, for instance,
has explored several possibilities [25-35].

After all that effort, the method seems to be well
founded, although some problems remain to bé
solved. Among them, the most important seems to
be the evaluation of the influence matrices involv-
ing singular integrals, which takes a substantial part
of the computer time in all BE codes.

In order to fix ideas, let us concentrate on ap-
plications to potential theory, as shown elsewhere
[25]. The basic collocation equation for two-dimen-
sional and a Laplacian problem is
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where 9 is the boundary of the domain, ¢ is the
potential, P the collocation point, Q a running
dummy point, n the normal vector at Q, * the fun-
damental solution of the Laplacian equation
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and ¢ depends on the local geometry. For smooth
boundaries,

A1 P EQ
c{ll ifP € 3
0 ifPeq.

If there is a conical vertex at P, c¢ is the corre-
sponding solid angle.

The standard direct BEM, as described in Ref.
[25], proceeds interpolating in an isoparametric
fashion the boundary as well as the potential and
fluxes defined along it
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where N collects the desired interpolation shape
functions. A detailed treatment, as well as a com-
puter program in Fortran, for the linear case, can
be seen in Ref. [25]. A Basic version, with some
improved features, prepared for the IBM-PC, is in-
cluded in Ref. [17]. Introducing the previous inter-
polatory conditions in eqn (1), it is possible to build
a system like

Ad =Bq,

where A and B are influence matrices containing
elements of the type
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respectively, where ¢ and q are vectors containing
the values of the potential and the fluxes along the
boundary. After input of boundary conditions, eqn
(5) is written in standard form

KX =PF,

where X contains the boundary unknowns.
The most attractive feature of the method is, of
course, the reduction in the dimensions that have



to be discretized, but the payed price is, on the one
hand, the nonsymmetry of A and B, and in the
other, the fact that both of them are completely
filled, due to the global nature of the fundamental
solution [eqn (2)]. In addition, the integrals to be
evaluated are singular, and that means an extra ef-
fort in computing.

In spite of the previous difficulties, the method
is worthwhile and its performances are excellent as
shown in the abovementioned references. In par-
ticular, its behavior under an h-convergence type
test can be seen in Ref. [49].

2. NATURAL ELEMENTS. HIERARCHY OF
INTERPOLATING FUNCTIONS

The introduction of the isoparametric idea was,
no doubt, a major step in the BEM evolution. Given
a single set of points, everything is defined: the ge-
ometry, the collocation points, and the locally
based interpolation functions. The procedure can
be very efficiently automatized although some de-
tails are worth noting. First the enormous rigidity
of the approach: a complicated geometry enforces
a very detailed mesh, even if the boundary condi-
tions are simple. Of course, the reciprocal, i.e. sim-
ple geometry with complicated boundary condi-
tions is also possible. And the mesh refinement
always increases the computing burden. While
more effective computing procedures are devel-
oped, it is interesting to adopt a different approach.

Evidently, the current FEM tendencies push us
to choose locally based interpolating functions but,
why to do it when the weighting functions are glo-
bally based?

What is necessary is to identify in each problem,
where the discontinuities arise and to adjust then
our elements (and their corresponding shape func-
tions) to the particular needs of the problem under
study.

That is very simple in two-dimensional potential
problems,: the discontinuities are due to sharp cor-
ners or sudden changes in nature (or value) of the
boundary conditions, and they define the ‘‘natural’
elements of the problem. Inside them it is possible
then to apply a global approach with all the advan-
tages of progressive refinement inherent to the clas-
sical Ritz approach.

In fact, what we are facing is the idea of Adaptive
Elements as described for FEM in Refs. [43-47].

Needless to say, the problem now is how to de-
fine the geometry and how to choose the collocation
points when the initial linear approach has been ex-
ceeded, but the freedom introduced will pay the
change by reducing the computational effort to
those parts where it is really needed.

That is the idea that we presented in Refs. [42]
and [48]. In order to assimilate the adaptive phi-
losophy, it is necessary first of all to define a hi-

erarchy of functions that, in our éase, is the well
known Peano’s family [47-50].
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produces the nesting of the succesive influence
matrices. For instance, if
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To produce the last row it has been necessary to
define a new collocation point. Currently we are
choosing them at the center and quarters of the ac-
tivated elements.

Surely, the hierarchy induced in both A and B is
integrally transmitted to the final system, producing
nested matrices, better conditioned than usual and
prone to an iterative solution. (Although, to say the
truth, and probably due to the small size of the ma-
trices we are working with, we have not found any
advantage in using iterative in place of direct-elim-
ination solvers). '

3. REFINEMENT AND STOPPING

As was said in the Abstract, in order to get an
adaptive procedure it is necessary to establish an
indicator of the places needing future refinements
and an estimator giving an idea of the level of pre-
cision reached with the preexisting solution.

For FEM the development of a posteriori error
estimates by Babuska, Szabo, Rheinbolt, etc. has



allowed the splendid flourishment of adaptive meth-
ods.

Unfortunately, in our case that mathematical ap-
proach is still lacking, and we have been forced to
work under physical or intuitive reasons.

About the indicator, we have followed closely the
method proposed by Peano et al. [50]. That is, over
the initial system,

K;5 =P, 14
new degrees of freedom (one per element and with
the hierarchy consecutive to the previously incor-
porated) are assembled.

K; : Ki|]|8 P;
-= -:— =11 =" (15)
Kji | Kj; | |9 P;
Note that, due to the BEM properties,
K% # K. (16)
Taking the second row box,
Kj' Sj = Pj - Kj‘ 8,‘. (17)

Assuming for 8; the values obtained after having
solved eqn (14), eqn (17) will give a first approach
to §;. This is why, after some energy reasons, Peano
et al. propose to make the indication through
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If Q; is less than a prescribed tolerance, the equa-
tion j is not assembled.

In our case it is very easy to have the K;; prepared
during the previous step without much additional
effort. On the contrary, the computation of K
would be very onerous. This is why we have de-
cided to use eqn (18) but through the previously
computed K;;. In that way, every refinement needs
only the computation of the diagonal of K;; and that
of P, e

Once the active new degrees of freedom are se-
lected, we compute the remaining integrals and
start the iteration process with an estimate based
on eqn (18).

We have tried also other criteria, see Ref. [48],
but Peano’s seem to work well enough.

So the computer runs until some limit is reached.
This limit is usually provided by an a posteriori es-
timation. As said above, the lack of a rigorous es-
timator, has moved us to check an ‘‘equilibrium-
type”’ condition.

It is well known that, due to the very nature of
the problem, it is necessary for the flux to be glo-

bally equilibrated, i.e.

@ds = 0.
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That is precisely the condition we have choose to
check. For every refinement, the residual flux is
computed and only when it reaches a certain pre-
cision level, the process is stopped.

In some occasions we have found even useful to
enforce condition (19) as the last step of the solving
procedure. There are various methods, see Refs.
[51] or [52], the simplest one being the direct change
of one of the computed equations by eqn (19).

-

4. IMPLEMENTATION AND EXAMPLES

The previous ideas have been implemented in a
computer program called QUEIMADA. Due to the
simplicity of the problem, it has been possible to
do it in an IBM-PC microcomputer, according to
the plan developed in Fig. 1 that follows closely the
philosophy presented in Ref. [50].

The preprocessor module contains (1) input of
geometric and boundary conditions, specifying ver-
tex nodes and indicating whether the evolution is
linear or curve. (2) Interpolation using preselected
paths (analytical, Peano’s interpolation, etc.).
(3) Printing and plotting of data. (4) Automatic
coding of vertexes, see Ref. [25], and elimination
of sharp-Dirichlet type corners, see Ref. [17].
(5) Saving of results.

The primary solver allows for a first approach
using a linear interpolation (Np and N,, shape func-
tions) for the unknowns. The essential parts are:
(1) Reading of data and precomputed arrays (re-
lated to numerical integrations). (2) Computation
of influence coefficients and matrices. (3) Solving
the system of equations. (4) Recording of results
as well as influence coefficients needed by the next
step.

The self-adaptive solver proceeds along the
above developed lines and with the following gen-
eral pattern: (1) Read of data and precomputed ar-
rays. (2) Indicator computations. (3) Activation of
new degrees of freedom. (4) Assembling of new in-
fluence coefficients. (5) Solving the system of
equations. (6) Estimation of the accuracy and de-
cision about a new refinement. In Fig. 2 we present
a simple example described for instance in Ref. [40].

The same was solved in a previous paper [17]
where we employed 32 linear elements. In com-
parison, here the natural elements are only five and
the final refinement has only 10 dof.

If the equilibrium condition is taken as an esti-
mation of the accuracy, it is possible to draw the
curve [log E ~ log (1/N)] where E is the error and
N the number of dof. It is seen that the global rate
of convergence is 3.6.
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Fig. 2. Convergence of a simple case.

In Fig. 3, a more interesting case is discussed.
The subject is the Saint-Venant torsion of an el-
liptical shaft that is reduced to a mixed potential
problem using symmetry. A solution with linear ele-
ments was presented in Ref. [24] where we used 30
elements. In comparison, here the natural elements
are only 3, although due to the bad linear starting
provoked by the condition ¢ = 0 we have repeated
the problem with four elements subdividing the
curved side by 2. The last situation is seen in parts
Al and B1, for the unknown potential and fluxes,
respectively, while A2 and B2 present the three-
element discretization.

As can be seen the first case needs only six dof
to produce an almost perfect solution, while the
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Fig. 1. Interactive environment for program QUEIMADA.
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Fig. 3. Behavior of an ellipse under Saint-Venant torsion,

(A1) Evolution of the potential along the curved side, when

it is modeled with two elements. (A2) Ditto with one ele-

ment. (B1) Evolution of the fluxes along the straight sides

when the curved side is modeled with two elements. (B2)
Ditto with one element.

three-element discretization behaves poorer. A dra-
matic improvement in accuracy can be obtained in
the last case by using the technique suggested at
the end of point 3.

Finally, Fig. 4 presents the convergence results
for both situations. In (A) we have measured the
quadratic error of the potential along the curved
sides, while in (B) we have taken the residual flux
estimator. As can be seen, the rate of convergence
is 4 in the first case, 2 when we use only one element
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to discretize the curved side, and 3.6 when subdi-
viding it in two elements.

5. FUTURE PROJECTIONS AND RESEARCH DIRECTION

Paraphrasing Lachat and Watson [5], we think
that the adaptive approach can be called ‘‘the third
generation”’ of boundary integral equations pro-
grams, and it can have the same importance on fu-
ture research as the similar concepts had on FE.

There are obvious directions to study. The first
of course is the extension to elasticity problems. It
is straightforward and we present some results in
this Symposium. Fracture and plasticity can be
seen now under a new light.

From a mathematical viewpoint, the method is a
challenge to found reliable estimators, and indica-
tors better founded than those presented in this
paper.

Finally the importance of the collocation point
on the final accuracy needs to be studied in order
to optimize the presented algorithm.
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