Design and Validation of an Optimized MB-OFDM Ultra Wideband Transceiver System

Autor: Guixuan Liang
Máster en Ingeniería en Diseño de Circuitos Integrados por la Hong Kong University of Science and Technology

Directores: Teresa Riesgo Alcaide Doctora Ingeniera Industrial por la Universidad Politécnica de Madrid
Jorge Portilla Berrueco Doctor en Ingeniería Electrónica por la Universidad Politécnica de Madrid

2013
In recent years, the Wireless Visual Sensor Network (WVSN) has drawn great interest in wireless communication research area. They enable a wealth of new applications such as building security control, image sensing, and target localization. However, nowadays wireless communication protocols (ZigBee, Wi-Fi, and Bluetooth for example) cannot fully satisfy the demands of high data rate, low power consumption, short range, and high robustness requirements. New communication protocol is highly desired for such kind of applications. The Ultra Wideband (UWB) wireless communication protocol, which has increased in importance for high data rate wireless communication field, are emerging as an important topic for WVSN research.

UWB has emerged as a technology that offers great promise to satisfy the growing demand for low-cost, high-speed digital wireless indoor and home networks. The large bandwidth available, the potential for high data rate transmission, and the potential for low complexity and low power consumption, along with low implementation cost, all present a unique opportunity for UWB to become a widely adopted radio solution for future Wireless Personal Area Network (WPAN) applications.

UWB is defined as any transmission that occupies a bandwidth of more than 20% of its center frequency, or more than 500 MHz. In 2002, the Federal Communications Commission (FCC) has mandated that UWB radio transmission can legally operate in the range from 3.1 to 10.6 GHz at a transmitter power of -41.3 dBm/Hz. Under the FCC guidelines, the use of UWB technology can provide enormous capacity over short communication ranges. Considering Shannon’s capacity equations, increasing the channel capacity requires linear increasing in bandwidth, whereas similar channel capacity increases would require exponential increases in transmission power. In recent years, several different UWB developments has been widely studied in different area, among which, the MB-OFDM UWB wireless communication protocol is considered to be the leading choice and has recently been adopted in the ISO/IEC standard for WPANs.

By combing the OFDM modulation and data transmission using frequency hopping techniques, the MB-OFDM UWB system is able to support various data rates, ranging from 55 to 480 Mbps, over distances up to 10 meters. The MB-OFDM technology is expected to consume very little power and silicon area, as well as provide low-cost solutions that can satisfy consumer market demands.

To fulfill these expectations, MB-OFDM UWB research and development have to cope with several challenges, which consist of high-sensitivity synchronization, low-
complexity constraints, strict power limitations, scalability, and flexibility. Such challenges require state-of-the-art digital signal processing expertise to develop systems that could fully take advantages of the UWB spectrum and support future indoor wireless applications.

This thesis focuses on fully optimization for the MB-OFDM UWB digital baseband transceiver system, aiming at researching and designing a wireless communication subsystem for the Wireless Visual Sensor Networks (WVSNs) application. The inherent high complexity of the FFT/IFFT processor and synchronization system, and high operation frequency for all processing elements, becomes the bottleneck for low power MB-OFDM based UWB digital baseband system hardware design and implementation. The proposed transceiver system targets low power and low complexity under the premise of high performance. Optimizations are made at both algorithm and architecture level for each element of the transceiver system. The low-power hardware-efficient structures are firstly proposed for those core computation modules, i.e., the mixed-radix algorithm based pipelined architecture is proposed for the Fast Fourier Transform (FFT/IFFT) processor, and the cost-speed balanced Viterbi Decoder (VD) module is developed, in the aim of lowering the power consumption and increasing the processing speed. In addition, a low complexity sign-bit correlation based symbol timing synchronization scheme is presented so as to detect and synchronize the OFDM packets robustly and accurately. Moreover, several state-of-the-art technologies are used for developing other processing subsystems and an entire MB-OFDM digital baseband transceiver system is integrated.

The target device for the proposed transceiver system is Xilinx Virtex 5 XC5VLX110T FPGA board. In order to validate the proposed transceiver system in the FPGA board, a unified algorithm-architecture-circuit hardware/software co-design environment for complex FPGA system development is presented in this work. The main objective of the proposed strategy is to find an efficient methodology for designing a configurable optimized FPGA system by using as few efforts as possible in system verification procedure, so as to speed up the system development period. The presented co-design methodology has the advantages of easy to use, covering all steps from algorithm proposal to hardware verification, and widely spread for almost all kinds of FPGA developments.

Because only the digital baseband transceiver system is developed in this thesis, the validation of transmitting signals through wireless channel in real communication environments still requires the analog front-end and RF components. However, by using the aforementioned hardware/software co-simulation methodology, the transmitter and receiver digital baseband systems get the opportunity to communicate with each other through the channel models, which are proposed from the IEEE
802.15.3a research group, established in MATLAB. Thus, by simply adjust the characteristics of each channel model, e.g. mean excess delay and center frequency, we can estimate the transmission performance of the proposed transceiver system through different communication situations.

The main contributions of this thesis are:

- A novel mixed radix 128-point FFT algorithm by using multipath pipelined architecture is proposed. The complex multipliers for each processing stage are designed by using modified shift-add architectures. The system word-length and twiddle word-length are compared and selected based on Signal to Quantization Noise Ratio (SQNR) and power analysis.

- IFFT processor performance is analyzed under different Block Floating Point (BFP) arithmetic situations for overflow control, so as to find out the perfect architecture of IFFT algorithm based on the proposed FFT processor.

- An innovative low complex timing synchronization and compensation scheme, which consists of Packet Detector (PD) and Timing Offset Estimation (TOE) functions, for MB-OFDM UWB receiver system is employed. By simplifying the cross-correlation and maximum likelihood functions to sign-bit only, the computational complexity is significantly reduced.

- A 64 state soft-decision Viterbi Decoder system by using high speed radix-4 Add-Compare-Select architecture is proposed. Two-pointer Even algorithm is also introduced into the Trace Back unit in the aim of hardware-efficiency.

- Several state-of-the-art technologies are integrated into the complete baseband transceiver system, in the aim of implementing a highly-optimized UWB communication system.

- An improved design flow is proposed for complex system implementation which can be used for general Field-Programmable Gate Array (FPGA) designs. The design method not only dramatically reduces the time for functional verification, but also provides automatic analysis such as errors and output delays for the implemented hardware systems.

- A virtual communication environment is established for validating the proposed MB-OFDM transceiver system. This methodology is proved to be easy for usage and convenient for analyzing the digital baseband system without analog frontend under different communication environments.

This PhD thesis is organized in six chapters. In the chapter 1 a brief introduction to the UWB field, as well as the related work, is done, along with the motivation of MB-OFDM system development. In the chapter 2, the general information and requirement of MB-OFDM UWB wireless communication protocol is presented. In the chapter 3, the architecture of the MB-OFDM digital baseband transceiver system is presented. The
design of the proposed algorithm and architecture for each processing element is
detailed in this chapter. Design challenges of such system involve trade-off discussions
among design complexity, power consumption, hardware cost, system performance,
and some other aspects. All these factors are analyzed and discussed. In the chapter 4,
the hardware/software co-design methodology is proposed. Each step of this design
flow will be detailed by taking some examples that we met during system
development. Then, taking advantages of this design strategy, the Virtual
Communication procedure is carried out so as to test and analyze the proposed
transceiver architecture. Experimental results from the co-simulation and synthesis
report of the implemented FPGA system are given in the chapter 5. The chapter 6
includes conclusions and future work, as well as the results derived from this PhD
work.
Resumen

Esta tesis está incluida dentro del campo del campo de Multiband Orthogonal Frequency Division Multiplexing Ultra Wideband (MB-OFDM UWB), el cual ha adquirido una gran importancia en las comunicaciones inalámbricas de alta tasa de datos en la última década.

UWB surgió con el objetivo de satisfacer la creciente demanda de conexiones inalámbricas en interiores y de uso doméstico, con bajo coste y alta velocidad. La disponibilidad de un ancho de banda grande, el potencial para alta velocidad de transmisión, baja complejidad y bajo consumo de energía, unido al bajo coste de implementación, representa una oportunidad única para que UWB se convierta en una solución ampliamente utilizada en aplicaciones de Wireless Personal Area Network (WPAN).

UWB está definido como cualquier transmisión que ocupa un ancho de banda de más de 20% de su frecuencia central, o más de 500 MHz. En 2002, la Comisión Federal de Comunicaciones (FCC) definió que el rango de frecuencias de transmisión de UWB legal es de 3.1 a 10.6 GHz, con una energía de transmisión de -41.3 dBm/Hz. Bajo las directrices de FCC, el uso de la tecnología UWB puede aportar una enorme capacidad en las comunicaciones de corto alcance. Considerando las ecuaciones de capacidad de Shannon, incrementar la capacidad del canal requiere un incremento lineal en el ancho de banda, mientras que un aumento similar de la capacidad de canal requiere un aumento exponencial en la energía de transmisión. En los últimos años, diferentes desarrollos del UWB han sido extensamente estudiados en diferentes áreas, entre los cuales, el protocolo de comunicaciones inalámbricas MB-OFDM UWB está considerado como la mejor elección y ha sido adoptado como estándar ISO/IEC para los WPANs.

Combinando la modulación OFDM y la transmisión de datos utilizando las técnicas de salto de frecuencia, el sistema MB-OFDM UWB es capaz de soportar tasas de datos con que pueden variar de los 55 a los 480 Mbps, alcanzando una distancia máxima de hasta 10 metros. Se espera que la tecnología MB-OFDM tenga un consumo energético muy bajo copando un área muy reducida en silicio, proporcionando soluciones de bajo coste que satisfagan las demandas del mercado.

Para cumplir con todas estas expectativas, el desarrollo y la investigación del MB-OFDM UWB deben enfrentarse a varios retos, como son la sincronización de alta sensibilidad, las restricciones de baja complejidad, las estrictas limitaciones energéticas, la escalabilidad y la flexibilidad. Tales retos requieren un procesamiento digital de la señal de última generación, capaz de desarrollar sistemas que puedan aprovechar por
completo las ventajas del espectro UWB y proporcionar futuras aplicaciones inalámbricas en interiores.

Esta tesis se centra en la completa optimización de un sistema de transceptor de banda base MB-OFDM UWB digital, cuyo objetivo es investigar y diseñar un subsistema de comunicación inalámbrica para la aplicación de las Redes de Sensores Inalámbricas Visuales. La complejidad inherente de los procesadores FFT/IFFT y el sistema de sincronización así como la alta frecuencia de operación para todos los elementos de procesamiento, se convierten en el cuello de la botella para el diseño y la implementación del sistema de UWB digital en base de banda basado en MB-OFDM de baja energía.

El objetivo del transceptor propuesto es conseguir baja energía y baja complejidad bajo la premisa de un alto rendimiento. Las optimizaciones están realizadas tanto a nivel algorítmico como a nivel arquitectural para todos los elementos del sistema.

Una arquitectura hardware eficiente en consumo se propone en primer lugar para aquellos módulos correspondientes a núcleos de computación. Para el procesado de la Transformada Rápida de Fourier (FFT/IFFT), se propone un algoritmo mixed-radix, basado en una arquitectura con pipeline y se ha desarrollado un módulo de Decodificador de Viterbi (VD) equilibrado en coste-velocidad con el objetivo de reducir el consumo energético e incrementar la velocidad de procesamiento. También se ha implementado un correlador signo-bit simple basado en la sincronización del tiempo de símbolo es presentado. Este correlador es usado para detectar y sincronizar los paquetes de OFDM de forma robusta y precisa.

Para el desarrollo de los subsistemas de procesamiento y realizar la integración del sistema completo se han empleado tecnologías de última generación. El dispositivo utilizado para el sistema propuesto es una FPGA Virtex 5 XC5VLX110T del fabricante Xilinx. La validación el propuesta para el sistema transceptor se ha implementado en dicha placa de FPGA. En este trabajo se presenta un algoritmo, y una arquitectura, diseñado con filosofía de co-diseño hardware/software para el desarrollo de sistemas de FPGA complejos. El objetivo principal de la estrategia propuesta es de encontrar una metodología eficiente para el diseño de un sistema de FPGA configurable optimizado con el empleo del mínimo esfuerzo posible en el sistema de procedimiento de verificación, por tanto acelerar el periodo de desarrollo del sistema. La metodología de co-diseño presentada tiene la ventaja de ser fácil de usar, contiene todos los pasos desde la propuesta del algoritmo hasta la verificación del hardware, y puede ser ampliamente extendida para casi todos los tipos de desarrollos de FPGAs.

En este trabajo se ha desarrollado sólo el sistema de transceptor digital de banda base por lo que la comprobación de señales transmitidas a través del canal inalámbrico en
los entornos reales de comunicación sigue requiriendo componentes RF y un front-end analógico. No obstante, utilizando la metodología de co-simulación hardware/software citada anteriormente, es posible comunicar el sistema de transmisor y el receptor digital utilizando los modelos de canales propuestos por IEEE 802.15.3a, implementados en MATLAB. Por tanto, simplemente ajustando las características de cada modelo de canal, por ejemplo, un incremento del retraso y de la frecuencia central, podemos estimar el comportamiento del sistema propuesto en diferentes escenarios y entornos.

Las mayores contribuciones de esta tesis son:

- Se ha propuesto un nuevo algoritmo 128-puntos base mixto FFT usando la arquitectura pipeline multi-ruta. Los complejos multiplicadores para cada etapa de procesamiento son diseñados usando la arquitectura modificada shift-add. Los sistemas word length y twiddle word length son comparados y seleccionados basándose en la señal para cuantización del SQNR y el análisis de energías.

- El desempeño del procesador IFFT es analizado bajo diferentes situaciones aritméticas de bloques de punto flotante (BFP) para el control de desbordamiento, por tanto, para encontrar la arquitectura perfecta del algoritmo IFFT basado en el procesador FFT propuesto.

- Para el sistema de receptor MB-OFDM UWB se ha empleado una sincronización del tiempo innovadora, de baja complejidad y esquema de compensación, que consiste en funciones de Detector de Paquetes (PD) y Estimación del Offset del tiempo. Simplificando el cross-correlation y maximizar las funciones probables solo a sign-bit, la complejidad computacional se ve reducida significativamente.

- Se ha propuesto un sistema de decodificadores Viterbi de 64 estados de decisión-débil usando velocidad base-4 de arquitectura suma-compara-selecciona. El algoritmo Two-pointer Even también es introducido en la unidad de rastreador de origen con el objetivo de conseguir la eficiencia en el hardware.

- Se han integrado varias tecnologías de última generación en el completo sistema transceptor basebanda, con el objetivo de implementar un sistema de comunicación UWB altamente optimizado.

- Un diseño de flujo mejorado es propuesto para el complejo sistema de implementación, el cual puede ser usado para diseños de Cadena de puertas de campo programable general (FPGA). El diseño mencionado no sólo reduce dramáticamente el tiempo para la verificación funcional, sino también provee
un análisis automático como los errores del retraso del output para el sistema de hardware implementado.

- Un ambiente de comunicación virtual es establecido para la validación del propuesto sistema de transceptores MB-OFDM. Este método es provisto para facilitar el uso y la conveniencia de analizar el sistema digital de basebanda sin parte frontera analógica bajo diferentes ambientes de comunicación.

Esta tesis doctoral está organizada en seis capítulos. En el primer capítulo se encuentra una breve introducción al campo del UWB, tanto relacionado con el proyecto como la motivación del desarrollo del sistema de MB-OFDM. En el capítulo 2, se presenta la información general y los requisitos del protocolo de comunicación inalámbrica MB-OFDM UWB. En el capítulo 3 se habla de la arquitectura del sistema de transceptor digital MB-OFDM de banda base. El diseño del algoritmo propuesto y la arquitectura para cada elemento del procesamiento está detallado en este capítulo. Los retos de diseño del sistema que involucra un compromiso de discusión entre la complejidad de diseño, el consumo de energía, el coste de hardware, el desempeño del sistema, y otros aspectos. En el capítulo 4, se ha descrito la co-diseñada metodología de hardware/software. Cada parte del flujo del diseño será detallado con algunos ejemplos que se ha hecho durante el desarrollo del sistema. Aprovechando esta estrategia de diseño, el procedimiento de comunicación virtual es llevado a cabo para probar y analizar la arquitectura del transceptor propuesto. Los resultados experimentales de la co-simulación y el informe sintético de la implementación del sistema FPGA son reflejados en el capítulo 5. Finalmente, en el capítulo 6 se incluye las conclusiones y los futuros proyectos, y también los resultados derivados de este proyecto de doctorado.
Index

Index .. I

Index of Figures ... V

Index of Tables ... XI

List of Acronyms ... XIII

1. Introduction .. 1
 1.1. Motivation and Background................................. 1
 1.2. Overview of UWB .. 4
 1.2.1 History of UWB ... 4
 1.2.2 Advantages of UWB................................. 8
 1.2.3 UWB applications 9
 1.2.4 Why MB-OFDM UWB? 13
 1.2.4.1 Interference ... 14
 1.2.4.2 Robustness .. 14
 1.2.4.3 Performance ... 15
 1.2.4.4 Complexity .. 15
 1.2.4.5 Conclusion ... 16
 1.2.5 Challenges for MB-OFDM UWB 18
 1.3. FPGA Design and Validation Methodology 21
 1.4. Present work .. 23
 1.4.1 Main goals .. 23
 1.4.2 Design methodology 24
 1.4.3 Contributions ... 26
 1.5. Content and organization of the thesis 27

2. MB-OFDM UWB System Description ... 29
 2.1. Introduction ... 29
 2.2. General description .. 30
 2.2.1 MAC general description of MB-OFDM standard 30
2.2.2 PHY general description of MB-OFDM standard 31
2.2.3 Signal model of Multiband OFDM UWB ... 34
2.3 Description of the signals ... 36
2.4 Physical Layer Convergence Protocol (PLCP) sublayer 38
 2.4.1 PLCP Protocol Data Unit (PPDU) .. 38
 2.4.2 OFDM modulation .. 40
2.5 Conclusions ... 41
3. Transceiver Architecture of MB-OFDM UWB System 43
 3.1 Introduction .. 43
 3.2 Overview of the MB-OFDM UWB system ... 47
 3.3 FFT/IFFT processor .. 51
 3.3.1 Introduction .. 51
 3.3.2 FFT Algorithms .. 52
 3.3.2.1 Radix-2 Algorithms ... 53
 3.3.2.2 Radix-4 Algorithms .. 56
 3.3.2.3 Radix-2m Algorithm .. 57
 3.3.3 Different FFT Architectures ... 58
 3.3.4 MB-OFDM modulation ... 61
 3.3.5 Overview of FFT in MB-OFDM UWB ... 65
 3.3.5.1 Evaluations of FFT processor .. 65
 3.3.5.2 Related Works .. 67
 3.3.6 Proposed FFT Processor ... 68
 3.3.6.1 Proposed mixed-radix FFT algorithm 69
 3.3.6.2 Architecture of the proposed FFT processor 72
 3.3.6.3 Architecture Pre-check in SIMULINK 82
 3.3.6.4 Overflow Control and Word-length Decision 88
 3.3.6.5 Experimental Results of Final Implementation 97
 3.3.7 Proposed IFFT Processor ... 99
 3.3.7.1 IFFT Algorithm ... 99
 3.3.7.2 BFP Consideration ... 101
 3.3.8 Conclusions and Contributions ... 112
 3.4 Synchronization .. 113
 3.4.1 Introduction .. 113
 3.4.2 Synchronization Issues ... 114
Index of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>UWB spectral mask for indoor communication systems [Yang’04]</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Spectrum of UWB and existing narrowband systems [Siriwongpairat’07]</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Wireless USB application for PCs [Inno-Logic’12]</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>HDTV signal transmission by using UWB technology [Mitsubishi’07]</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>Home/Office entertainment system combining UWB and wireless LAN [Inno-Logic’12]</td>
<td>11</td>
</tr>
<tr>
<td>1.6</td>
<td>Design challenge and tradeoff point for MB-OFDM UWB system implementation</td>
<td>21</td>
</tr>
<tr>
<td>1.7</td>
<td>Design methodology for this thesis</td>
<td>25</td>
</tr>
<tr>
<td>2.1</td>
<td>Architectural reference model</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Diagram of the band group allocation [ISO/IEC 26907’09]</td>
<td>32</td>
</tr>
<tr>
<td>2.3</td>
<td>Example of time-frequency coding for the MB-OFDM systems</td>
<td>33</td>
</tr>
<tr>
<td>2.4</td>
<td>Compare of the transmitter spectrum by using CP and ZP</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>UWB multiband OFDM spectrum</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Format of one MB-OFDM symbol</td>
<td>37</td>
</tr>
<tr>
<td>2.7</td>
<td>PPDU structure</td>
<td>38</td>
</tr>
<tr>
<td>2.8</td>
<td>Systematic Reed-Solomon encoder</td>
<td>39</td>
</tr>
<tr>
<td>2.9</td>
<td>CCITT CRC-16 block diagram</td>
<td>40</td>
</tr>
<tr>
<td>3.1</td>
<td>MB-OFDM physical layer</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Structure of MB-OFDM Transmitter (Tx) system</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Structure of MB-OFDM Receiver (Rx) system</td>
<td>50</td>
</tr>
<tr>
<td>3.4</td>
<td>Cooley-Tukey Butterfly processing</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>Modified radix-2 butterfly processing</td>
<td>55</td>
</tr>
<tr>
<td>3.6</td>
<td>Signal flow of radix-2^2 algorithm processing</td>
<td>57</td>
</tr>
<tr>
<td>3.7</td>
<td>Signal flow of Radix-2^2 algorithm processing</td>
<td>58</td>
</tr>
<tr>
<td>3.8</td>
<td>Single Memory Architecture</td>
<td>58</td>
</tr>
<tr>
<td>3.9</td>
<td>Dual Memory Architecture</td>
<td>59</td>
</tr>
<tr>
<td>3.10</td>
<td>Cached-memory architecture</td>
<td>59</td>
</tr>
</tbody>
</table>
Figure 3.44 Waveform of shift after BU compared with embedded IFFT function .. 104
Figure 3.45 SQNR for shift right BEFORE BU ... 105
Figure 3.46 SQNR for shift right stage 1 BEFORE and other stages AFTER 106
Figure 3.47 SQNR stage 1 BEFORE and other stages AFTER, Rounding the number.. 107
Figure 3.48 Stage 1 Rounding for negative number and other stages AFTER .. 108
Figure 3.49 Stage 1 Rounding for all number and other stages AFTER...................... 109
Figure 3.50 Waveform of best simulation situation compared with embedded IFFT function .. 110
Figure 3.51 SQNR of different scale down method: a. Scale down the signals before calculation; b. Stage 1 scale down before processing, other stages after; c. Round up the results for all stages based on (b); d. Round up the negative signals only for Stage 1 based on (b); e. Round up all signals only for Stage 1 based on (b). .. 111
Figure 3.52 Synchronization errors in OFDM based baseband signals 115
Figure 3.53 Scenarios of FFT window location .. 116
Figure 3.54 Proposed timing synchronization work flow .. 123
Figure 3.55 Block diagram of proposed Packet Detector algorithm 124
Figure 3.56 Output waveforms of CC and PD algorithms at 10 dB SNR CM1 channel.. 125
Figure 3.57 Waveform of detecting standard MB-OFDM preamble sequences. 126
Figure 3.58 Proposed Timing Offset Estimation algorithm .. 129
Figure 3.59 RTL implementation for PD by using System generator block 130
Figure 3.60 Simulation environment for experimental test of proposed timing synchronization algorithm.. 131
Figure 3.61 Performance comparison in terms of Psync in CM1 132
Figure 3.62 Performance comparison in terms of Psync in CM2 132
Figure 3.63 Architecture of CFO estimation and compensation block 136
Figure 3.64 Architecture of complex multiplier for delay-correlation: (a) traditional method; (b) modified method.. 137
Figure 3.65 Architecture of Sampling Frequency Synchronization block.............. 140
Figure 3.66 Convolutional encoder: rate R=1/3, constraint length K=7 144
Figure 3.67 Block diagram of the Viterbi Decoder system 146
Figure 3.68 Add-Compare-Select Model ... 147
Figure 3.69 Radix-2 butterfly units ... 148
Figure 3.70 Radix-4 butterfly units ... 149
Figure 3.71 A radix-4 butterfly and its corresponding two step radix-2 butterfly ... 151
Figure 3.72 The branch symmetry of a radix-4 butterfly .. 152
Figure 3.73 Four-way radix-4 ACSU for state 0 .. 154
Figure 3.74 Modulo comparison of normalized metrics .. 156
Figure 3.75 Two-way add-compare subsystem .. 157
Figure 3.76 Modified Comparison rule .. 159
Figure 3.77 Trellis diagram of two-step radix-4 procedure 160
Figure 3.78 Trace back order for 3-pointer even method 162
Figure 3.79 Memory operations for 2-pointer even algorithm 163
Figure 3.80 Proposed two-step 64-state radix-4 Viterbi Decoder 164
Figure 3.81 Block diagram of the side-stream scrambler 169
Figure 3.82 Scrambler simulation waveform .. 170
Figure 3.83 Various stages of the bit interleaver for MB-OFDM UWB system ... 171
Figure 3.84 Data flow for Symbol Interleaver .. 173
Figure 3.85 Implementation of Symbol Interleaver for 53.3 Mbps data rate 173
Figure 3.86 Data flow for Tone Interleaver .. 174
Figure 3.87 Implementation of Tone Interleaver for 53.3 Mbps data rate 175
Figure 3.88 Data flow for Cyclic Shifter ... 176
Figure 3.89 Cyclic Shifter Operation .. 177
Figure 3.90 QPSK constellation bit encoding ... 178
Figure 3.91 Architecture of soft output QPSK demapper with TDS symbol combining ... 180
Figure 3.92 QPSK soft demapper output waveforms .. 181
Figure 3.93 DCM constellation mapping process: (a) mapping for y_k; (b) mapping for y_{k+50} ... 183
Figure 3.94 Channel estimation procedure .. 188
Figure 3.95 Estimation results of Channel Estimation sequence in frequency-domain ... 189
Figure 3.96 Implementation of one-tap ZF equalizer by using Xilinx System Generator ... 191
Figure 3.97 Waveform of restored OFDM symbol after channel equalization .. 191
Figure 3.98 Data processing flow of 200 bits PLCP Header ... 193
Figure 3.99 Processing flow when using global clock .. 195
Figure 3.100 Proposed processing flow after retiming ... 196
Figure 3.101 Simulation waveforms of the MB-OFDM transmitter system .. 198
Figure 3.102 Clock island architecture ... 199
Figure 3.103 Procedures for removing pilot/DC/guard subcarriers and ZP for 53.3 MHz transmission mode ... 200
Figure 3.104 Format and transmission order of the 128 subcarriers ... 201
Figure 3.105 Control signal for FFT processor and buffers .. 202
Figure 3.106 Output sequences of the FFT processor for proposed MB-OFDM receiver ... 202
Figure 3.107 Data flow for averaging the 100 data subcarriers for 53.3 and 80 Mbps mode ... 203
Figure 3.108 Data flow for averaging data, de-time-domain-spreading, demapper, and deinterleaver process ... 204
Figure 4.1 Co-Design Environment for FPGA development ... 214
Figure 4.2 Design and Implementation workflow of proposed methodology ... 216
Figure 4.3 Simulation environment by combining ModelSim with SIMULINK ... 220
Figure 4.4 Virtual Communication Environment for MB-OFDM system verification ... 224
Figure 5.1 Virtual Communication environment by using CM1-CM4 channel models ... 232
Figure 5.2 OFDM symbols transmitted through CM1 to CM4 ... 233
Figure 5.3 Photograph of FPGA verification prototype ... 235
Figure 5.4 BER performance of proposed MB-OFDM transceiver ... 236
Figure 5.5 Power consumption distribution for proposed Rx system ... 238
Figure 5.6 Hardware cost distribution for proposed Rx system ... 239
Figure 6.1 ASIC for MB-OFDM wireless communication system ... 245
Index of Tables

Table 1-1 Specifications Comparison of MB-OFDM UWB and IR UWB techniques for WPAN... 17
Table 1-2 Comparison summary of MB-OFDM UWB and IR UWB techniques [Nikookar’09] ... 17
Table 3-1 Mapping table for twiddle factor in different region.............. 76
Table 3-2 Scheduling of the twiddle factor, $W64x$, where x is the value shown in the table .. 77
Table 3-3 Scheduling of the twiddle factor after mapping.......................... 77
Table 3-4 Scheduling of the region after mapping 78
Table 3-5 Time Schedule for TCM_1, TCM_2 and TCM_3 79
Table 3-6 Coefficient Table... 79
Table 3-7 Control signals in TCM_1 ... 80
Table 3-8 Control signals in TCM_2 ... 81
Table 3-9 Control signals in TCM_3 ... 82
Table 3-10 Output SQNR summary table .. 95
Table 3-11 8 bits binary of the coefficients and decomposition (for TCM_1 and 3) ... 95
Table 3-12 8 bits Binary value of the coefficients and decomposition (for TCM_2) ... 96
Table 3-13 Decomposition of Twiddle factor $W64p$ in power of 2 97
Table 3-14 Comparison synthesis results of the FFT processor 98
Table 3-15 Comparison of the 128-point FFT architecture 99
Table 3-16 Timing offset MSE of proposed algorithm and its comparison with MSTS [Shahbazian’11] and FTA [Yak’05] in CM1 133
Table 3-17 Timing offset MSE of proposed algorithm and its comparison with MSTS [Shahbazian’11] and FTA [Yak’05] in CM2 133
Table 3-18 Synchronization probability of the proposed timing synchronization scheme in different channels .. 133
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Auto-Correlation</td>
</tr>
<tr>
<td>ACS</td>
<td>Add-Compare-Select</td>
</tr>
<tr>
<td>ACSU</td>
<td>Add-Compare-Select Unit</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter</td>
</tr>
<tr>
<td>ASIC</td>
<td>Application Specific Integrated Circuit</td>
</tr>
<tr>
<td>AWGN</td>
<td>Additive White Gaussian Noise</td>
</tr>
<tr>
<td>BEE</td>
<td>Berkeley Emulation Engine</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>BFP</td>
<td>Block Floating Point</td>
</tr>
<tr>
<td>BM</td>
<td>Branch Metrics</td>
</tr>
<tr>
<td>BMU</td>
<td>Branch Metric Unit</td>
</tr>
<tr>
<td>BT-PD</td>
<td>Band-Tracking Packet Detector</td>
</tr>
<tr>
<td>BU</td>
<td>Butterfly Unit</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>CBFP</td>
<td>Convergent Block Floating Point</td>
</tr>
<tr>
<td>CC</td>
<td>Cross-Correlation</td>
</tr>
<tr>
<td>CFO</td>
<td>Carrier Frequency Offset</td>
</tr>
<tr>
<td>CIR</td>
<td>Channel Impulse Response</td>
</tr>
<tr>
<td>CM</td>
<td>Channel Model</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal-Oxide Semiconductor</td>
</tr>
<tr>
<td>CP</td>
<td>Cyclic Prefix</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CPE</td>
<td>Common Phase Error</td>
</tr>
<tr>
<td>CSI</td>
<td>Channel State Information</td>
</tr>
<tr>
<td>CSS</td>
<td>Chirp Spread Spectrum</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analog Converter</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DCM</td>
<td>Dual-Carrier Modulation</td>
</tr>
<tr>
<td>DFE</td>
<td>Decision Feedback Equalizer</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier Transform</td>
</tr>
<tr>
<td>DIT</td>
<td>Decimation-In-Time</td>
</tr>
<tr>
<td>DSSS</td>
<td>Direct-Sequence Spread Spectrum</td>
</tr>
<tr>
<td>DUT</td>
<td>Design Under Test</td>
</tr>
<tr>
<td>ELA</td>
<td>Embedded Logic Analyzer</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
</tr>
<tr>
<td>FCS</td>
<td>Frame Check Sequence</td>
</tr>
<tr>
<td>FDS</td>
<td>Frequency-Domain Spreading</td>
</tr>
<tr>
<td>FEC</td>
<td>Forward Error Correction</td>
</tr>
<tr>
<td>FFI</td>
<td>Fixed Frequency Interleaving</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>FM-UWB</td>
<td>Frequency Modulation Ultra Wideband</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>FSM</td>
<td>Finite State Machine</td>
</tr>
<tr>
<td>FTA</td>
<td>First significant multipath components via Threshold comparison of Adjacent samples</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GR</td>
<td>Golden Reference</td>
</tr>
<tr>
<td>HCS</td>
<td>Header Check Sequence</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>HDL</td>
<td>Hardware Description Language</td>
</tr>
<tr>
<td>ICI</td>
<td>Inter-Carrier-Interference</td>
</tr>
<tr>
<td>IDFT</td>
<td>Inverse Discrete Fourier Transform</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronic Engineers</td>
</tr>
<tr>
<td>IFFT</td>
<td>Inverse Fast Fourier Transform</td>
</tr>
<tr>
<td>IOWL</td>
<td>Input/Output Word Length</td>
</tr>
<tr>
<td>IR-UWB</td>
<td>Impulse Radio Ultra Wideband</td>
</tr>
<tr>
<td>ISI</td>
<td>Inter Symbol Interference</td>
</tr>
<tr>
<td>JTAG</td>
<td>Joint Test Action Group</td>
</tr>
<tr>
<td>LFSR</td>
<td>Linear-Feedback Shift Register</td>
</tr>
<tr>
<td>LIFO</td>
<td>Last-In First-Out</td>
</tr>
<tr>
<td>LLS</td>
<td>Linear Least Squares</td>
</tr>
<tr>
<td>LO</td>
<td>Local Oscillation</td>
</tr>
<tr>
<td>LOS</td>
<td>Line-of-Sight</td>
</tr>
<tr>
<td>LS</td>
<td>Lease Squares</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
</tr>
<tr>
<td>LSE</td>
<td>Least-Square Error</td>
</tr>
<tr>
<td>LTI</td>
<td>Linear Time-Invariant</td>
</tr>
<tr>
<td>LUT</td>
<td>Look-Up-Table</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Control</td>
</tr>
<tr>
<td>MB-OFDM</td>
<td>Multiband Orthogonal Frequency Division Multiplexing</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>MMSE</td>
<td>Minimum Mean Square Error</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean-Squared Error</td>
</tr>
<tr>
<td>MSTS</td>
<td>Modified Symbol Timing Synchronization</td>
</tr>
<tr>
<td>NBI</td>
<td>Narrowband Interference</td>
</tr>
<tr>
<td>NCO</td>
<td>Numerically Controlled Oscillator</td>
</tr>
<tr>
<td>NLOS</td>
<td>Non-Line-of-Sight</td>
</tr>
<tr>
<td>OFDM</td>
<td>Orthogonal Frequency Division Multiplexing</td>
</tr>
<tr>
<td>P/S</td>
<td>Parallel to Serial</td>
</tr>
<tr>
<td>PARP</td>
<td>Peak-to-Average Power Ratio</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect</td>
</tr>
<tr>
<td>PD</td>
<td>Packet Detector</td>
</tr>
<tr>
<td>PHY</td>
<td>Physical</td>
</tr>
<tr>
<td>PLCP</td>
<td>Physical Layer Service Access Point</td>
</tr>
<tr>
<td>PN</td>
<td>Pseudorandom Noise</td>
</tr>
<tr>
<td>PP</td>
<td>Partial Product</td>
</tr>
<tr>
<td>PPDU</td>
<td>PLCP Protocol Data Unit</td>
</tr>
<tr>
<td>PRBS</td>
<td>Pseudo-Random Binary Sequence</td>
</tr>
<tr>
<td>PSD</td>
<td>Power Spectral Density</td>
</tr>
<tr>
<td>PSDU</td>
<td>PHY Service Data Unit</td>
</tr>
<tr>
<td>Psync</td>
<td>Probability of Timing Synchronization</td>
</tr>
<tr>
<td>PWL</td>
<td>Processing Word-Length</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quaternary Phase Shift Keying</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>ROM</td>
<td>Read Only Memory</td>
</tr>
<tr>
<td>RCFO</td>
<td>Residual CFO</td>
</tr>
<tr>
<td>RE</td>
<td>Register Exchange</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>RTL</td>
<td>Register Transfer Level</td>
</tr>
<tr>
<td>Rx</td>
<td>Receiver</td>
</tr>
<tr>
<td>S/P</td>
<td>Serial to Parallel</td>
</tr>
<tr>
<td>SAP</td>
<td>Service Access Point</td>
</tr>
<tr>
<td>SDF</td>
<td>Single-path Delay Feedback</td>
</tr>
<tr>
<td>SFO</td>
<td>Sampling Frequency Offset</td>
</tr>
<tr>
<td>SFS</td>
<td>Sampling Frequency Synchronization</td>
</tr>
<tr>
<td>SMART</td>
<td>Secure, Mobile visual sensor networks ArchiTecture</td>
</tr>
<tr>
<td>SMU</td>
<td>State Metric Unit</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>SQNR</td>
<td>Signal to Quantization Noise Ratio</td>
</tr>
<tr>
<td>S-V</td>
<td>Saleh-Valenzuela</td>
</tr>
<tr>
<td>SWL</td>
<td>System Word Length</td>
</tr>
<tr>
<td>TB</td>
<td>Trace Back</td>
</tr>
<tr>
<td>TBU</td>
<td>Trace Back Unit</td>
</tr>
<tr>
<td>TDS</td>
<td>Time-Domain Spreading</td>
</tr>
<tr>
<td>TFC</td>
<td>Time-Frequency Code</td>
</tr>
<tr>
<td>TOE</td>
<td>Timing Offset Estimation</td>
</tr>
<tr>
<td>TV</td>
<td>Television</td>
</tr>
<tr>
<td>TW</td>
<td>Twiddle Factors</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>TWL</td>
<td>Twiddle Word Length</td>
</tr>
<tr>
<td>Tx</td>
<td>Transmitter</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>UWB</td>
<td>Ultra Wideband</td>
</tr>
<tr>
<td>VD</td>
<td>Viterbi Decoder</td>
</tr>
<tr>
<td>VHDL</td>
<td>Very High Speed Integrated Circuit Hardware Description Language</td>
</tr>
<tr>
<td>VLSI</td>
<td>Very Large Scale Integration</td>
</tr>
<tr>
<td>WPAN</td>
<td>Wireless Personal Area Network</td>
</tr>
<tr>
<td>WSN</td>
<td>Wireless Sensor Network</td>
</tr>
<tr>
<td>WVSN</td>
<td>Wireless Visual Sensor Networks</td>
</tr>
<tr>
<td>XSG</td>
<td>Xilinx System Generator</td>
</tr>
<tr>
<td>ZF</td>
<td>Zero-Forcing</td>
</tr>
<tr>
<td>ZP</td>
<td>Zero Prefix</td>
</tr>
</tbody>
</table>
1. Introduction

1.1. Motivation and Background

Ultra Wideband (UWB) radio is a fast emerging technology with uniquely attractive features inviting major advances in wireless communications, networking, radar, imaging, and positioning systems. Just as its name, by using a huge bandwidth (3.6 – 10.1 GHz) at the noise floor, UWB radios can operate using low-power ultra-short information bearing pulses. In recent years, due to the advantages of providing satisfactory data transmission rate (from hundreds of Mbps to tens of Gbps) in short range (tens of meters), many researchers has committed to a host of exciting UWB applications, such as short-range very high-speed broadband access to the Internet, covert communication links, localization at centimeter-level accuracy, high-resolution ground penetrating radar, through-wall imaging, precision navigation and asset tracking and so on.

UWB characterizes transmission systems with instantaneous spectral occupancy in excess of 500 MHz or a fractional bandwidth of more than 20% (the UWB systems with center frequency higher than 2.5 GHz need to have a -10 dB bandwidth of at least 500 MHz, while the center frequency lower than 2.5 GHz should have fractional bandwidth of at least 20%). Such systems relay on ultra-short (nanosecond scale) waveforms that can be free of sine-wave carriers and therefore do not require impulse frequency processing because they can operate at baseband. This certain advantage gives us an opportunity to implement and test the UWB system in a less complex method, as baseband system development is usually considered to be much faster and more efficient for implementing and optimizing than impulse processing system development, besides, the development cost for UWB systems is also decreased a lot.

The huge bandwidth and the strong potential for very high speed wireless communications is the most attractive point for UWB. Besides, with the
properties of low cost, low power consumption, and high robustness in different kinds of transmission environments, lots of researchers have pay attention to the development of UWB protocol for the Wireless Personal Area Network (WPAN) applications.

As the UWB bandwidth is very wide, it is possible for the transceiver system to use the “ill-defined” spectral characteristics and frequencies, which do not require excessive calibration and accuracy at the transmitter and the receiver. By minimizing the time needed to calibrate the transceiver, the overall power consumption of the UWB communication system is reduced. Meanwhile, the large bandwidth property allows using of energy efficient resonant circuits and increasing the current consumption to reach sufficient gain for the signal. The communication links are also very robust due to wide bandwidth, especially in dense echoed and interfered communication environments. As frequency is actually the only source of diversity for those applications in small devices by using a single antenna. Multipath fading can be mitigated in communication links using wideband signals and the selection of an appropriate frequency band is a way to avoid interferences. The main limitation of UWB communication is the presence of in-band interferences that can easily saturated the UWB receiver front-end.

Different kinds of standards have been proposed according to several different theories, among which, the Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) standard is considered to be the leading choice for UWB communication system development, as a result of its benefits of power efficient, low design cost, and high transmission data rate (from 55 Mbps to 480 Mbps). It is especially suitable for the research work of this thesis, design of a wireless communication subsystem for the Wireless Sensor Network (WSN) that has the high definition video signal transmission capability. Because almost all of the baseband processing elements of MB-OFDM system are implemented by using basic digital systems that can be efficiently implemented and tested on the FPGA development boards.

But, in order to develop a highly optimized digital baseband structure on the FPGA board, and make it meet the requirement of MB-OFDM UWB
communication standard, there are still lots of challenges that this work should face in this work.

First of all, the power consumption is the main bottleneck for Wireless Sensor Network (WSN) developments, because the lifetime of each node of the WSN should be as long as possible so as to ensure the robustness and coverage of the sensor network. The power consumption of wireless communication subsystem plays a very important role for enhance the lifetime of the networks, because each activity of the sensor network should be carried out by communicating with other nodes, and the commands from the gate nodes are also transmitted through wireless channels. Therefore, in order to get a sensor network that has very long lifetime, the power consumptions of the wireless communication subsystem should be as low as possible.

Secondly, as large bandwidth and very high processing frequency is used for MB-OFDM UWB communication system, lots of processing elements with inherent high complexity are needed for processing the transmitted data sequences and synchronizing the baseband signals. In order to fit the developed system to the FPGA board, the low complex structure of each element is more preferable so as to decrease the hardware resources usage. The implementation complexity also related with power consumption of the whole communication system, basically speaking, the more complex the digital system is, the more power it will consume.

Last, but not the least, a very important index for evaluating a wireless communication system is the robustness and accuracy. A high performance wireless communication system should be firstly very robust in different communication environments, with acceptable high transmission accuracy. Especially for the very high processing frequency of MB-OFDM baseband system, the robustness and the accuracy become more urgent. Improving these two indexes so as to develop a high performance UWB communication system is the other challenge of this thesis. But decreasing the complexity and power consumption of the processing elements often comes with sacrifice the robustness and accuracy, therefore finding the optimal tradeoff point among these three factors is very important for the specified WSN application.
According to the discussion above, this work interests in researching and developing a digital baseband system according to the MB-OFDM UWB wireless communication protocol. The main purpose of this work is to implement a highly optimized, high performance baseband system on the FPGA board that suitable for the WSN application. This work focus on low power, low complex algorithm and structure development, while still maintain the high accuracy and robustness property for the UWB communication protocol.

1.2. Overview of UWB

In this section, a short history of the birth of Ultra Wideband (UWB) technique is introduced first, the advantages of UWB communication technology is also discussed, along with the potential applications for UWB system is given in the following. Then the reason why this PhD thesis select Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) proposal among the two major protocols for UWB will be given. At last, the main challenges for development and optimization for MB-OFDM UWB system will be discussed.

1.2.1 History of UWB

UWB history is generally perceived to start after 1960 with the development of Linear Time Invariant System description via impulse stimuli. On the contrary, UWB transmissions history is much longer and can go back to the end of 19th century, when the wireless communication technology was born [Nikookar’09]. At that time, telegraphy was already wide-spread but it was suffering because of the long wired connections which were difficult to be built and maintained, especially in case of river crossing. Transatlantic cables were settled down using insulation but the maintenance was extremely expensive and time consuming. The history of wireless communications can be considered to start at the end of 19th century with the work carried by Guglielmo Marconi. First wireless transmitters were exploiting spark gaps, resulting in very large bandwidth radio-frequency signals.
From late 19th century, wireless world was about to start. In 1873, James Clerk Maxwell published his pioneering “Treatise on Electricity and Magnetism” reporting the basis equation for the travelling of electromagnetic waves. In 1886, the German physicist Heinrich Rudolf Hertz proved Maxwell’s concept. This is considered to be the start point for radio history. Hertz built two spark gap generators, each one coupled with an antenna. Producing a spark on the first, a gap was created also on the second generator which was at a certain distance. As a physicist, he was only interested in proving Maxwell’s concept and he did not realize the enormous potential of spark gap transmissions.

Then after Hertz, Guglielmo Marconi made a deep study on Hertz’s theory on spark gap oscillator, and he built the first wireless transmitter in the history. Marconi took spark gap transmission from a physicist laboratory to the real world: the first operating radio link was operating in June 1896.

Time went to December of 1901, when the famous “S” transmission across the Atlantic proved the feasibility of the transatlantic wireless link [Nikookar’09].

A new interest in radio technology started again with contributions in the late 1960s with works by Henning F. Harmuth, Paul van Etten, and Robbins. In 1962, Ross begun to describe the response of microwave networks for the transient regime through their response at an impulse stimulus. At that time, Linear Time-Invariant (LTI) systems where characterized by the more conventional mean of a swept frequency response. Ross started to describe an LTI system in terms of its response to an impulse signal. The output signal to any input signal with arbitrary waveform could be uniquely determined via the convolution integral of the input with the impulsive response.

However during this time, the wireless communication systems were still lacking sensible receivers. The invention of a short pulse receiver to replace the time-domain oscilloscopes by Robbins in 1972 has become a turn point. After that, in 1973, Ross filled a patent named “Transmission and reception system for generating and receiving base-band pulse duration pulse signals without distortion for short base-band communication system”, this is considered to be the first modern UWB communication system.
During the 1980s, UWB technology was referred alternately to as impulse carrier-free or baseband. The term “Ultra Wideband” was first used by the U. S. Department of Defense in 1989. At that time, UWB theory and many hardware apparatus had experienced almost 30 years of development. Before 1989, Sperry had filed over 50 patents in the field covering UWB receivers, transmitter and pulse generation. Applications ranged from radars, communication systems to positioning systems, liquid level sensing, altimetry, vehicle collision avoidance and positioning systems. However, much of the early work in the UWB field occurred in the military or was funded by the U. S. government within classified programs. Then by the late 1990s, UWB technology had become more commercialized and its development had greatly accelerated.

Nowadays, UWB signals can be from the original time-domain Impulse Radio (IR-UWB) transceivers to various UWB transmission techniques, among which, the Multi-Carrier UWB (MC-UWB), Multi-Band Orthogonal Frequency Division Multiplexing (MB-OFDM) UWB, and Frequency Modulation UWB (FM-UWB) are the strongest candidates for future UWB communication systems.

A substantial change in UWB history occurred in February 2002, when the U. S. Federal Communications Commission (FCC) issued UWB rulings that provided the first radiation limitations for UWB transmission and permitted the operation of UWB devices on an unlicensed basis [Federal’02]. Figure 1.1 illustrates the UWB spectral mask for indoor communications under Part 15 of the FCC’s rules. According to the spectral mask, the Power Spectrum Density (PSD) of a UWB signal measure in the 1 MHz bandwidth must not exceed -41.3 dBm, which complies with the Part 15 general emission limits for successful control of radio interference. For particularly sensitive bands such as the Global Positioning System (GPS) band (0.96 to 1.61 GHz), the PSD limit is much lower. As shown in Figure 1.2, such ruling allows UWB devices to overlay existing narrowband systems while ensuring sufficient attenuation to limit adjacent channel interference.
A major missed milestone in the standardization process for UWB was on 2006. After nearly three years of wrangling over which physical layer should form the basis of an IEEE standard (802.15.3a), the involved parties have given up. At a meeting in Hawaii on January 19th, 2006, the IEEE committee 802.15.3a, which
was tasked with developing a standard, voted unanimously to disband. The two opposing groups issued a joint statement on January 20th, where they agree to let the market decide which UWB Physical (PHY) layer will become the “de facto” standard.

One group, which is the so called UWB Forum, is proposing the direct-sequence UWB while a second, WiMedia Alliance proposed Multi-Carrier UWB (MC-UWB).

However some important standardization activities did not disband and produced their final output and the following were published: [Batra’04], [ECMA-368’08], [ECMA-369’08], [ISO/IEC 26907’09], [ISO/IEC 26908’09].

1.2.2 Advantages of UWB

Due to its nature, UWB radios come with unique benefits that are attractive for radar and communication applications. The principal advantages of UWB can be summarized as follows [Kaiser’05]:

- Potential for high data rates
- Extensive multipath diversity
- Potential small size and processing power together with low equipment cost
- High-precision ranging and localization at the centimeter level

The extremely large bandwidth occupied by UWB gives the potential of very high theoretical capacity, yielding very high data rates. This can be seen by considering the Shannon’s capacity equation in (1) [Proakis’01].

\[C = B \log \left(1 + \frac{S}{N}\right) \]

(1)

Where \(C \) is the maximum channel capacity, \(B \) is the signal bandwidth, \(S \) is the signal power, and \(N \) is the noise power. Shannon’s equation shows that the capacity can be improved by increasing the signal bandwidth or the signal power. Moreover, it shows that increasing channel capacity requires linear increases in bandwidth, while similar channel capacity increases would require
exponential increases in power. Thus, from Shannon’s equation it can be seen that UWB system has a great potential for high-speed wireless communications.

By transmitting the information with ultrashort-duration waves, UWB signals have low susceptibility to multipath interference. Multipath interference occurs when a modulated signal arrives at a receiver from different paths. Combining signals at the receiver can result in distortion of the signal received. The ultrashort duration of UWB waveforms gives rise to a fine resolution of reflected pulses at the receiver. As a result, UWB transmissions can resolve many paths, and are thus rich in multipath diversity.

The low complexity and low cost of UWB systems arises from the carrier-free nature of the signal transmission. Specifically, due to its ultra wide bandwidth, the UWB signal may span a frequency commonly used as a carrier frequency. This eliminates the need for an additional Radio Frequency (RF) mixing stage as required in conventional radio technology. Such an omission of up/down-conversion processes and RF components allows the entire UWB transceiver to be integrated with a single CMOS implementation. Single-chip CMOS integration of a UWB transceiver contributes directly to low cost, small chip size, and low power consumption.

The ultrashort duration of UWB waveforms gives rise to the potential ability to provide high-precision ranging and localization. Together with good material penetration properties, UWB signals offer opportunities for short-range radar applications such as rescue and anticrime operations as well as in surveying and in the mining industry.

1.2.3 UWB applications

The ability for transmission data at a very high rate of UWB can enable a wide variety of applications in wireless communications, networking, radar imaging, and localization systems. For wireless communications, the use of UWB technology under the FCC guidelines [Federal’02] offers significant potential for the deployment of two basic communications systems:
1) **High-data-rate short-range communications**: high-data-rate wireless personal area networks;

2) **Low-data-rate and location tracking**: sensor, positioning, and identification networks.

The high-data-rate WPANs can be defined as networks with a medium density of active devices per room (around 5 to 10) transmitting at data rates ranging from 100 to 500 Mbps within a distance of 10m. The ultra wide bandwidth of UWB enables various WPAN applications, such as wireless Universal Serial Bus (USB) connectivity for Personal Computers (PCs) and PC peripherals, as shown in Figure 1.3; high-quality real-time video and audio transmission, as shown in Figure 1.4; file exchange among storage systems and cable replacement for home entertainment systems, as shown in Figure 1.5.

![Figure 1.3 Wireless USB application for PCs [Inno-Logic’12]](image-url)
The MB-OFDM physical layer standard [Batra’04_2] that was originally proposed by the IEEE 802.15.3 task group is focused on physical layer concept for high-data-rate WPAN applications. The goal for the IEEE 802.15.3a standard is to provide a higher-speed physical layer for the existing approved 802.15.3 standard for applications that involve imaging and multimedia. The work of the 802.15.3a study group includes standardizing the channel model to be used for UWB system evaluation. The supportive from 55 Mbps to 480 Mbps data rate enables the MB-OFDM system flexible applied to different aforementioned usages.
Besides solutions aiming at transmission rates of hundreds of Mbps over very short distances, UWB is also seen as an interesting technology for emerging communication and location-tracking systems with low-power consumption, low complexity and high-integration levels. UWB transmission can trade a reduction in data rate for an increase in transmission range. Under the low-rate operation mode, UWB technology could be beneficial and potentially useful in sensor, positioning, and identification networks. A sensor network comprises a large number of nodes spread over a geographical area to be monitored. Key requirements for sensor networks operating in challenging environments include low cost, low power, and multifunctionality. With its unique properties of low complexity, low cost, and low power, UWB technology is well suited to sensor network applications [Oppermann’04]. Moreover, due to the fine time resolution of UWB signals, UWB-based sensing has the potential to improve the resolution of conventional proximity and motion sensors. The low-rate transmission, combined with accurate location tracking capabilities, offers an operational mode known as low-data-rate and location tracking. And the body-area-networks based on UWB development are also well researched in recent years.

The IEEE 802.15.4 study group has proposed a new physical layer concept for the low-data-rate application using UWB technology at the air interface. The IEEE 802.15.3a managed to select a dual-PHY baseline standard that includes an UWB Impulse-based Radio UWB (IR-UWB) for communications and ranging and a Chirp Spread Spectrum (CSS) radio for communication only operating in the 2.4 GHz ISM band. This study group addressed new applications which require only moderate data throughput but long battery life, such as low-rate Wireless Sensor Networks (WSNs) and small networks.

To sum up, the recent developments and designs for UWB wireless communication systems are based on two technologies, i.e. MB-OFDM and IR. The MB-OFDM standard is considered the leading choice due to its very high data rate communications, while IR-UWB is applied to low power and low cost sensor networks requiring low data rate. Compared with IR-UWB, the MB-OFDM method not only has reliable high-data-rate transmission in time-
dispersive or frequency-selective channels without having complex time-domain channel equalizer, but also provides high spectral efficiency.

1.2.4 Why MB-OFDM UWB?

The FCC defines UWB as any signal that occupies at least 500 MHz of bandwidth in the 7.5 GHz spectrum between 3.1 and 10.6 GHz. However, there is no restriction on signal generation techniques to occupy the available UWB spectrum. Multiband approaches were proposed in [Batra’04] [Saberinia’03] [Foerster’03] [Batra’04_2], in which the UWB frequency band is divided into several subbands. Each subband occupies a bandwidth of at least 500 MHz in compliance with FCC regulations. By interleaving the symbols across subbands, multiband UWB can maintain the transmitter power as if a large GHz bandwidth were being utilized. The advantage is that the multiband approach allows the information to be processed over a much smaller bandwidth compared to the 7.5 GHz made available to UWB systems, thereby reducing overall design complexity as well as improving spectral flexibility and worldwide compliance. In order to capture the multipath energy efficiently, the OFDM technique has been used to modulate the information in each subband. As introduced above, the MB-OFDM was one of the two leading proposals for UWB physical layer design. One of the remarkable advantages of the MB-OFDM system is that the multiband design of the OFDM systems allows the technology to cope with local regulations by dynamically turning off some carriers to comply with local rules of operation on the allocated spectrum. By avoiding interferer’s bands, it is also possible to simplify the design of the system.

MB-OFDM technology promises to deliver data rates of about 110 Mbps at a distance of 10 m. For the UWB wireless sensor applications, which the required data is often very low, the coverage might be much larger than 10 m for MB-OFDM approach. The MB-OFDM may require higher power levels when compared to the IR technology. MB-OFDM technique is robust to multipath which is present in the wireless channels. By using this technology and limiting the transmitting symbols to QPSK constellation, the resolution of the Analog-to-
Digital Converter (ADC) and Digital-to-Analog Converter (DAC) and the internal precision of the digital baseband, especially the FFT, can be lowered.

In this section, a comparison of the IR-UWB and MB-OFDM UWB techniques will be made in terms of interference from other wireless communication systems, robustness to multipath, performance, and system computational complexity for the WPAN applications is done.

1.2.4.1 Interference

Because the MB-OFDM has the possibility to turn off some carriers that may interfere, or to be interfered, with other systems, the MB-OFDM has the advantages of interference and coexistence with other radio services. Due to this flexibility in spectrum, MB-OFDM also increases the robustness against frequency selective fading. However, MB-OFDM may very sensitive to Inter-Carrier Interference (ICI), and if subcarriers’ orthogonality is lost, it can result in performance degradation.

The spectral densities of IR transmitted signals can be made lower in comparison to MB-OFDM signals, by spreading the information over larger bandwidth. Thus, for the IR signals, the probability of interception decreases, which is useful for military applications, as well as interference to narrowband victim receivers [Molisch’05]. Also, spreading signals over larger bandwidths increases the immunity to narrowband interference and ensures good multiple access capabilities [Zhao’02] [Ramirez’01]. However, compared with MB-OFDM approach, it is difficult for IR based systems to deal with interferers because of the very wide bandwidth. The IR UWB signals are very narrow in time and therefore, very difficult to intercept as they are also “noise-like”.

1.2.4.2 Robustness

MB-OFDM presents high robustness against multipath because of usage of Zero Prefix (ZP, which will be explained later in Chapter 2) in dealing with Inter Symbol Interference (ISI) and Inter-Carrier Interference (ICI). Nonetheless, in
dense multipath environments, when the multipath delay is larger than guard time, orthogonality may be lost resulting in ICI and ISI.

For IR UWB system, it may provide robust communications in harsh multipath environments by using the widest possible bandwidth to produce the shortest possible pulses. However, a disadvantage of the IR UWB technique is that, in the multipath environments, ISI can severely degrade the performance, as the spreading factor is relatively small for high data rates when compared that of the traditional Direct-Sequence Spread Spectrum (DSSS) system [Shin’05].

1.2.4.3 Performance

The two techniques provide similar performance for the Additive White Gaussian Noise (AWGN) channel with ideal channel estimation. The MB-OFDM scheme is slightly outperform the IR UWB. The difference is thought to be a result of the different coding structures employed in the two systems. For the four IEEE 802.15 indoor fading channels [Foerster’03_2], the MB-OFDM system generally outperforms the IR UWB when hard Decision Feedback Equalizer (DFE) is used for the IR UWB system.

Performance of a system based on the MB-OFDM UWB WPANs proposal, over four IEEE 802.15 indoor channels is reported in [Snow’05]. Channel estimation is done by implementing a Least-Square Error (LSE) channel estimator. LSE estimator is chosen against the perfect Channel State Information. A simple LSE estimator has shown a performance within 0.5-0.7 dB of the perfect channel state information case, for the proposed MB-OFDM system.

1.2.4.4 Complexity

As mentioned before, the radio and analog frontend design for MB-OFDM basically is a low-complexity technology. MB-OFDM have the advantages as the OFDM technique has already been implemented and studied in other communication systems for years, although with much narrower bandwidth comparing to the UWB bandwidth. MB-OFDM can capture multipath energy with a single Radio Frequency (RF) chain, and simplified synthesizer
architectures may relax band switching time requirements. Besides, compared to the IR technique, the MB-OFDM systems do not need to process an extremely large bandwidth. Besides, the longer duration of OFDM symbol makes it less sensitive to timing synchronization error than IR UWB.

In the IR, the complexity in antennas design and challenges in building RF circuits, such as achieving high-speed analog-to-digital and digital-to-analog converters, and processing a very large bandwidth, are difficult issues. Compared with MB-OFDM, IR techniques need more complex timing synchronization to achieve an acceptable performance.

However, the complexity of the OFDM system in MB-OFDM varies logarithmically with the FFT size, and thus the MB-OFDM transmitter systems require relatively large computational power due to the use of FFT/IFFT. But as the synchronization blocks are much simpler than that of the IR system, the complexity of the receiver systems is less complex than that of the IR system. Because most of the times, the receiver system plays a more important role in both performance and power consumption, the MB-OFDM transceiver systems has some advantages against the IR UWB systems.

More importantly for this work, as most of the processing elements in MB-OFDM UWB system are implemented by using digital processing blocks, it makes the design of the analog-frontend elements much easier, whereas the IR UWB protocol should deal with the signals more in the analog point. This makes the development and research cost for MB-OFDM system much lower than that of IR system, and the implementation period much shorter. This is because in nowadays system development and research procedure, the digital integrated circuit can be implemented in a more efficient way when compared with analog circuit designs.

1.2.4.5 Conclusion

From the discussion above, a summary of the comparison can be made between IR and MB-OFDM techniques. Table 1-1 summarizes the specifications of MB-
OFDM and IR UWB techniques for WPAN applications, while Table 1-2 illustrates a summary of the comparison of these two technologies.

Table 1-1 Specifications Comparison of MB-OFDM UWB and IR UWB techniques for WPAN

<table>
<thead>
<tr>
<th>Specifications</th>
<th>MB-OFDM UWB [Batra’04]</th>
<th>IR UWB [Fisher’04]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Subbands</td>
<td>3 mandatory, up to 14</td>
<td>2 (3.1-4.85, 6.2-9.7 GHz)</td>
</tr>
<tr>
<td>Subband Bandwidth</td>
<td>528 MHz</td>
<td>1.75 GHz (lower band)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.5 GHz (higher band)</td>
</tr>
<tr>
<td>No. Subcarriers</td>
<td>122</td>
<td>N/A</td>
</tr>
<tr>
<td>Spreading Factor</td>
<td>1, 2</td>
<td>1-24</td>
</tr>
<tr>
<td>Data Rates (Mbps)</td>
<td>55, 80, 110, 160, 220, 320, 480</td>
<td>28, 55, 110, 220, 500, 660, 1000, 1320 (lower band)</td>
</tr>
<tr>
<td>Modulation</td>
<td>QPSK</td>
<td>BPM (mandatory), MBOK</td>
</tr>
<tr>
<td>Multiple Access</td>
<td>Based on time-frequency codes</td>
<td>Based on Pseudorandom Noise (PN) codes</td>
</tr>
</tbody>
</table>

Table 1-2 Comparison summary of MB-OFDM UWB and IR UWB techniques [Nikookar’09]

<table>
<thead>
<tr>
<th></th>
<th>Interference</th>
<th>Robustness to multipath</th>
<th>Performance</th>
<th>Complexity</th>
<th>Achievable Range-Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB-OFDM</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>IR</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

Excellent: +++
Very Good: ++
Good: +
Not Good: -

According to Table 1-2, the MB-OFDM UWB has a better interference performance from other radio communication system, while can provide robust performance to multipath processing. The final transmission performance for MB-OFDM is slightly better than that of IR system due to the low complexity of synchronization systems requirement. But as FFT/IFFT is required for OFDM system implementation, the transmitter complexity may be higher (or the same) than that of IR. Taking the transmission data rate and communication range into consideration, the MB-OFDM can support much higher data rate in a larger communication range that suitable for more different kinds of multimedia transmission applications.
For design and research purpose, the OFDM system has already been studied and applied by other communication system for years, thus makes the MB-OFDM system easier to replace the existing communication systems and easier to understand. This gives the MB-OFDM a higher compatibility with other applications. Besides, the MB-OFDM is more focused on the digital baseband system development when IR is more attractive to the RF and analog researchers. Based on the background of the research interest, along with those advantages that provided by the MB-OFDM UWB system, the MB-OFDM approach becomes the best choice for the required Wireless Visual Sensor Networks (WVSNs) application.

1.2.5 Challenges for MB-OFDM UWB

Although the MB-OFDM UWB technology has several attractive properties that make it a promising technology for future short-range wireless communications and many other applications, some challenges must be overcome to fulfill these expectations.

The transmitter power level of UWB signals is strictly limited for UWB devices coexist peacefully with other wireless systems. Such strict power limitation poses significant challenges when designing UWB systems. One major challenge is to achieve the performance desired at an adequate transmission range using limited transmitter power. Another challenge is to design UWB waveforms that efficiently utilize the bandwidth and power allowed by the FCC spectral mask. Moreover, to ensure that the transmitter power level satisfies the spectral mask, adequate characterization and optimization of transmission techniques (e.g., adaptive power control, duty cycle optimization) may be required.

When taking a close look at the MB-OFDM UWB digital baseband transceiver system implementations, the challenges mainly come from the inherent computational complexity, high processing frequency, and requirements of low cost, low power and good performance. Among which, as mentioned before, the FFT/IFFT processor block, which works as the core processing element for the OFDM modulation system, has brought large design complexity to both the transmitter and receiver systems. In practical systems, the performance and
power consumption of the FFT/IFFT processor will decide the performance of the entire MB-OFDM transceiver system. Because the ultrashort duration of each UWB signals, the traditional FFT/IFFT processor architecture cannot meet the requirements of MB-OFDM system on speed, area, and power consumptions considerations. Moreover, the high processing speed causes the design and realization of other blocks, e.g., Viterbi Decoder (VD) system, very difficult, as for either portable devices or WVSNs application, both the cost and power consumption should be taken into account.

For any OFDM based system, time synchronization is a critical and indispensable step. Timing error can break the orthogonality of the OFDM subcarriers and introduce Inter Symbol Interference (ISI) as well as Inter-Carrier Interference (ICI), which degrade the performance of the system dramatically. MB-OFDM is, however, more sensitive to the timing and frequency offsets and RF phase noise due to its narrowband subcarriers. The accuracy of the synchronization scheme will have a very large effect on the performance of the MB-OFDM receiver system. However, the difficulties on synchronization by using those ultrashort duration signals will lead to high design complexity, thus power consumptions.

Although there are already several communication systems that using the OFDM technology, the MB-OFDM UWB system has some major differences compared with traditional OFDM scheme:

1) MB-OFDM symbols are not continuously sent on one frequency band but interleaved over different subbands across both time and frequency;
2) Multiple access is enabled by the uses of frequency hopping sequences over the set of subbands;
3) MB-OFDM provides both frequency diversity and multiple access capability.

Therefore, in the MB-OFDM UWB system, channel estimation is a critical factor for an OFDM receiver. Generally, the MB-OFDM UWB systems provide relatively high data rates and are considered to save transmission power by implementing continuous modulation rather than differential modulation. Thus,
coherent detection is necessary in receiver, which means, before modulation, an
accurate estimation and compensation of the Channel Impulse Response (CIR) is
required.

Another design challenge in MB-OFDM UWB is the impact of Narrowband
Interference (NBI) to the UWB receiver. This is because UWB is operating in
coeexistence with other licensed users, such as the UWB frequency band overlaps
with that of IEEE 802.11a wireless local area networks (WLANs). Hence, the
interference from the narrowband system will degrade the performance of the
UWB transmission.

Other design challenges include scalable system architecture and spectrum
flexibility. The MB-OFDM UWB potential applications include both high-rate
applications and lower-rate applications. Thus, the UWB transceiver must be
able to support a wide range of data rates. Furthermore, the unlicensed nature of
the UWB spectrum makes it essential for UWB devices to coexist with devices
that share the same spectrum. However, it is challenging to design UWB systems
with spectrum flexibility that allows UWB devices to coexist effectively with
other wireless technologies and to meet potentially different regulatory
requirements in different regions of the world.

According to these, for development and research of the MB-OFDM based UWB
communication system, finding the optimal tradeoff point among the power
consumption, hardware implementation complexity, speed, and transmission
performance will become the main challenge in this work. Figure 1.6 shows the
factors that researchers should take into account when facing the MB-OFDM
UWB system implementations.
1.3. FPGA Design and Validation Methodology

The technological development has produced a significant increase of the integration density that is causing more and more parts of a complex system to be included inside the main core. Traditional approaches to implement and validate a complex function or algorithm on Application Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA) will consume large amount of design effort through the development processing. It is said that during the whole process of FPGA design, verification will take up 70% to 80% of the time in the design cycle [Ding’11]. Things will get even worse for the high complex signal processing system developments, such as digital baseband system of MB-OFDM UWB protocol, because not only the inserting and collecting huge amount of transmission data sequences are not convenient and efficient, but also localization the fail functions inside an entire FPGA implementation is very hard and sometimes not accurate. For system performance analyzing, monitoring the waveforms of the FPGA implementation usually spends lots of effort especially for wireless communication system, and it is also hard for the researchers to detect the errors, not even say calculating the
Bit Error Rate (BER). Therefore, an efficient debugging and validation methodology for complex FPGA system development is high demanded, while this new methodology must have the potential of analyzing the system performance automatically.

Some may say using system level design method (such as using System C or System Verilog) will save lots of design efforts, therefore more efficient for signal processing system development, but this is only suitable for algorithm validation or prototyping. In order to get a highly optimized architecture for system development, optimization should be made through different design levels for a processing element, from algorithm and system level (high level) proposal to Register Transfer Level (RTL) design. Especially for those implementations targeting at low power consumption and low system complexity, which are usually carried out in the RTL rather than system level, a through-level design method will be of great help.

Traditional approaches also involve creating a design and translating between multiple design descriptions: an abstract algorithm is analyzed and optimized in MATLAB or C code; then it is mapped onto an architecture using behavioral or structural description; then those descriptions in MATLAB or C code, as well as the test vectors, are translated for use in a logic analysis system and mapped into an ASIC or FPGA for hardware testing. The problem of this kind of design method involves translating the floating point descriptions of the system to fixed-point descriptions, which has a great possibility to affect the accuracy of the system and may bring further errors for the final hardware implementation. Furthermore, each translating step, whether manual or automated, requires additional verification efforts to confirm that the original design has been preserved [Markovic‘07]. More importantly, the translated descriptions usually are hard to read and understand, not even say to modify if further optimizations are needed. This dramatically reduced the visibility into the basic implementation and architecture of the hardware system. Thus, new design methodology is required to support fully visibility of the hardware implementation, and provide reliable accurate performance for final hardware system.
According to the discussion above, in order to efficiently implement and validate the target MB-OFDM UWB baseband transceiver system, a suitable FPGA design methodology is required so as to face the challenges come from the complex debugging and validation procedure.

1.4. Present work

1.4.1 Main goals

This doctoral thesis aims at designing and implementing a communication subsystem based on the MB-OFDM UWB wireless communication protocol. The target communication system should have the ability to support real-time video signal transmission so as the sensor nodes can be applied to the Wireless Visual Sensor Networks application.

The MB-OFDM UWB wireless communication protocol has been chosen as the best candidate for the design of the communication subsystem, due to the advantages of low-power consumption, high energy efficient, and high transmission data rate properties. Besides, as most of the baseband elements are processed by using digital signals, it is better suited for FPGA development.

However, the natural design complexity of the MB-OFDM UWB caused by Fast Fourier Transform/Inverse Fast Fourier Transform (FFT/IFFT) processor and high processing frequency makes the design and implementation of MB-OFDM baseband system in the FPGA board very difficult compared with other subsystems. Moreover, although the MB-OFDM UWB communication protocol is considered to be a low-power consumption solution, the battery lifetime is still not long enough for wireless sensor nodes applications. Therefore, researching and finding the low-power, low-complexity, while still maintain the high-speed, high-performance algorithms and architectures for each processing element of the MB-OFDM scheme becomes the main goal for this thesis. In order to achieve this goal, several steps need to be followed.

First, before system development, we should first have global knowledge of the MB-OFDM UWB specifications. This requires deep study and analysis of the
OFDM system and UWB technology. Several state-of-the-art theories for digital circuit implementations and system constraints are also important for optimization tasks of the baseband communication system.

Second, based on the knowledge, optimizations and modifications on both algorithm and architecture of the MB-OFDM baseband system should be made according to the specifications. Lots of works have been done related with processing architecture optimization, synchronization, channel estimation and so on. Therefore, those state-of-the-art algorithms and architectures should be analyzed and compared.

Furthermore, the improvement space should be analyzed and the algorithms and architectures for each processing element should be further optimized so as to lower the power and increase the processing speed, more importantly, suitable for the required application and target FPGA platform implementation.

Finally, the optimized elements should be integrated together so as to form an MB-OFDM digital baseband transceiver system that can transmit different kind of signals through the networks.

1.4.2 Design methodology

In order to efficiently debug and validate the MB-OFDM baseband system architecture, this thesis proposed a whole new hardware/software co-design methodology for complex FPGA system development, which is shown in Figure 1.7. Each step of this process is enumerated as:
1) Propose the algorithm and implementation architecture based on the MB-OFDM UWB communication protocol specification

2) Modeling and verifying the proposed algorithm and architecture in MATLAB simulation environment by using SIMULINK blocks. The simulation results of the modeled blocks will be compared with the embedded MATLAB functions so as to estimate and analyze the system's overall performance for different processing elements.

3) The proposed system will then be implemented and realized in the Register Transfer Level (RTL) by using either System Generator from Xilinx or Verilog HDL code, according to the design difficulties. The cross-platform simulation procedure combined with MATLAB and ModelSim will be used for functional verification for the RTL implementation.

4) Finally, the Hardware-in-the-loop co-simulation methodology will be used for real-time FPGA hardware validation and simulation process. The performance of the transceiver is also analyzed during this procedure.
This software/hardware co-design methodology is used for the entire development procedures of the proposed MB-OFDM UWB digital baseband transceiver system, and is proved to be suitable for most of the FPGA based, complex digital system designs.

1.4.3 Contributions

This work focuses on implementing and optimizing the MB-OFDM UWB digital baseband system based on the ISO/IEC 26907:2009(E) standard [ISO/IEC 26907'09]. The main contribution of the work is the implementation of an energy efficient, robust, and high-performance MB-OFDM digital baseband system. And the second contribution of this thesis is validating the proposed transceiver architecture in the FPGA board through an effort-efficient co-design methodology. **With more details, the following list shows the particular contributions of this thesis:**

- A novel mixed radix 128-point FFT algorithm by using multipath pipelined architecture is proposed. The complex multipliers for each processing stage are designed by using modified shift-add architectures. The system word-length and twiddle word-length are compared and selected based on Signal to Quantization Noise Ratio (SQNR) and power analysis.

- IFFT processor performance is analyzed under different Block Floating Point (BFP) arithmetic situations for overflow control, so as to find out the best architecture of IFFT algorithm based on the proposed FFT processor.

- An innovative low complex timing synchronization and compensation scheme, which consists of Packet Detector (PD) and Timing Offset Estimation (TOE) functions, for MB-OFDM UWB receiver system is proposed. By simplifying the cross-correlation and maximum likelihood functions to sign-bit only, the computational complexity is significantly reduced.

- A 64 state soft-decision Viterbi Decoder system by using high speed
radix-4 Add-Compare-Select architecture is proposed. Two-pointer Even algorithm is also introduced into the Trace Back unit in the aim of hardware-efficiency.

- Several state-of-the-art technologies are integrated into the complete baseband transceiver system, in the aim of implementing a highly-optimized UWB communication system.

- An improved design flow is proposed for complex system implementation which can be used for Field-Programmable Gate Array (FPGA) designs. The design method not only dramatically reduces the time for functional verification, but also provides automatic analysis such as errors and output delays for the implemented hardware systems. It allows the reuse of test benches from the algorithm description to the final FPGA implementation.

- A virtual communication environment is established for validating the proposed MB-OFDM transceiver system. This methodology is proved to be easy for usage and convenient for analyzing the digital baseband system without analog frontend under different communication environments.

The transceiver system is implemented in a Xilinx Virtex 5 FPGA integrated in an XUPV5-LX110T board. Experimental results are analyzed under the 53.3 Mbps and 106.7 Mbps data rate modes with very low Bit Error Rate (BER). The proposed design has the potential to be applied for Wireless Visual Sensor Networks.

1.5. Content and organization of the thesis

This document is organized as follows:

In Chapter 0, the general information of MB-OFDM UWB communication protocol is provided. The signal model of MB-OFDM is a combine of OFDM technology and multipath technology, therefore, the OFDM symbols should be transmitted through a frequency selective channel environment. The Physical
Design and Validation of an Optimized High-performance MB-OFDM Ultra Wideband Transceiver System

(PHY) layer and Media Access Control (MAC) layer general information will also be described. As PHY header and MAC header should be encoded and added in front of each transmitted packets, and preamble sequences are necessary for wireless communication systems, the Physical Layer Service Access Point (PLCP) sublayer is also introduced in this chapter.

The transceiver architecture, as well as the optimizations that this work has done that contributes to the implementation of MB-OFDM UWB digital baseband system, is the topic of Chapter 3. The transmission and receiving functions will be described in pair so as to help better understanding of the global structure of the transceiver system. The main contributions of this work are the design and optimization of those critical processing elements, etc., FFT/IFFT processor, synchronization scheme, Viterbi Decoder. Several low-power, low-complex algorithms and architectures have been proposed so as to integrate a highly optimized baseband transceiver system implemented in the FPGA board at the end.

In order to efficiently validate and analyze the proposed baseband structure in the FPGA, a hardware/software co-design methodology is proposed and introduced in Chapter 0. The proposed design flow covers all the steps for a general digital system development based on FPGA, from algorithm/architecture proposal, to hardware validation.

Based on the design and validation method described in Chapter 0, a Virtual Communication environment, by connecting the transmitter and receiver system through the UWB channel models built in MATLAB/SIMULINK, is established for testing the proposed MB-OFDM digital baseband transceiver system in different communication environments. The experimental results from such testing methodology are shown in Chapter 5.

The conclusion of the thesis and future work are drawn in Chapter 6.
2. MB-OFDM UWB System Description

2.1. Introduction

The general knowledge of Multiband Orthogonal Frequency Division Multiplexing Ultra Wideband (MB-OFDM UWB) system is illustrated in this chapter.

The architecture of a complete wireless communication system is shown in Figure 2.1 [ISO/IEC 26907'09]. It generally contains two major layers: Media Access Control (MAC) Layer and Physical (PHY) Layer. MAC layer acts as the interface between the network layer and the PHY layer, while the PHY layer is the lowest layer for communication system, and provides the logical data structure and transmission functions. The MAC layer is usually implemented by using a microprocessor, and it is not the task in this thesis. This document only focuses on the PHY layer design and optimizations, while leaves MAC layer development in the future work.
The MAC and PHY layer structure and basic functions will be explained first in this chapter, and then the signal model of MB-OFDM UWB transmission will be given. At the end of this chapter, the format and structure of each MB-OFDM signal packet, as well as the OFDM modulation for each packet, will be introduced so as to better understand the baseband processing procedure of the MB-OFDM system.

2.2. General description

2.2.1 MAC general description of MB-OFDM standard

The MAC service is provided by means of the MAC Service Access Point (MAC SAP) to a single MAC service client, usually a higher layer protocol or adaptation layer. In the UWB MB-OFDM standard, the MAC sublayer is represented by a device address.

The MAC sublayer in turn relies on the service provided by the PHY layer via the PHY Service Access Point (PHY SAP). The MAC protocol applies between MAC sublayer peers. Each individual MAC sublayer is associated with a volatile abbreviated address called a DevAddr, which is a locally generated 16-bit value.
The MAC sublayer is associated with a single PHY layer via PHY SAP. The MAC sublayer requires the following features provided by the PHY.

- Frame transmission in both single frame and burst mode
- Frame reception for both single frame and burst mode transmission
- PLCP header error indication for both PHY and MAC header structures
- Clear channel assessment for estimation of medium activity
- Range measurement timestamps if MAC range measurement is supported.

The MAC sublayer takes charge of communication between cooperating devices within radio range on a single channel using the PHY, acts like a channel access mechanism, power manager, communication secure system, and measuring the distance between two devices, etc. Coordination of devices within radio range is achieved by the exchange of beacon frames. Periodic beacon transmission enables device discovery, supports dynamic network organization, and provides support for mobility.

2.2.2 **PHY general description of MB-OFDM standard**

The MB-OFDM UWB standard specifies the Physical (PHY) layer for Wireless Personal Area Network (WPAN) which utilizes the unlicensed 3.1-10.6 GHz frequency band [ECMA-368’08]. According to the specification, UWB can support data rate of 53.3 Mbps, 81 Mbps, 106.7 Mbps, 160 Mbps, 200 Mbps, 320 Mbps, 400 Mbps, and 480 Mbps, among which, 53.3 Mbps, 106.7 Mbps, and 200 Mbps transmission mode shall be mandatory.

The UWB spectrum is divided into 14 bands, each with a bandwidth of 528 MHz. The first 12 bands are then grouped into four band groups that consisting of three bands each, while the last two bands are grouped into a fifth band group. The sixth band group is defined within the spectrum of the first four, consistent with usage within worldwide spectrum regulations. For a well developed UWB transmission system, at least one of the band groups shall be supported. The
Design and Validation of an Optimized High-performance MB-OFDM Ultra Wideband Transceiver System

The relationship between centre frequency, \(f_c \), and band number, \(n_b \), is given by the following equation (1).

\[
f_c(n_b) = 2904 + 528 \times n_b \ (MHz) \quad n_b = 1, \ldots, 14.
\] (1)

The six band groups, as well as the center frequency of each band, are defined in Figure 2.2.

For MB-OFDM specification, a total number of 110 sub-carriers, consisting of 100 data sub-carriers and 10 guard sub-carriers, are used per band to transmit the information. In addition, 12 pilot sub-carriers allow for coherent detection. MB-OFDM system uses frequency-domain spreading, time-domain spreading, and Forward Error Correction (FEC) coding to vary the transmission data rates. Convolutional code with coding rates of 1/3, 1/2, 5/8, and 3/4 are used for FEC structure. The various coding rates are derived from the rate \(R=1/3 \) convolutional code by employing “puncturing” methodology.

Time-Frequency Code (TFC) is then used for spreading the coded OFDM data into different frequency bands. The TFC defines the transmission styles, whether to transmit the signal over three bands within one band group, or interleave the data over two bands, or just transmit the information on a signal band. The supportive of two bands and fixed band transmission for MB-OFDM system should be mandatory as required by the standard. Figure 2.3 illustrates this procedure for three of the fourteen possible subbands. Considering transmission over time, the first OFDM symbol is transmitted on subband 1, the second OFDM symbol on subband 2, the third OFDM symbol on the subband 3 and this...
repetition continues over time. In practice, the frequency-time codes that specify the frequency repetition over time may different to the one presented in Figure 2.3. Furthermore, multiple access is specified by different time-frequency codes.

A Zero Prefix (ZP) is inserted before each OFDM symbol. The length of the ZP needs to be chosen to minimize the impact of Inter-Carrier-Interference (ICI) and maximize the collected multipath energy, while keeping the overhead due to the ZP small. For MB-OFDM standard, the Zero Prefix (ZP) is used instead of Cyclic Prefix (CP) as traditional OFDM communication systems, because using ZP the power back off at the receiver can be avoided. The Power Spectral Density (PSD) of OFDM signal using CP has ripples (resulting in transmit power back off of about 1.5 dB). While the ZP provides no ripples in the power spectral density and accordingly no power back off is needed. Figure 2.4 compares the transmitter spectrum for using CP and ZP separately [Gharpurey’08].
As it can be seen in Figure 2.4, the transmitter spectrum shape will be flat by using ZP instead of CP. Therefore, the design of receiver system will be much easier.

2.2.3 Signal model of Multiband OFDM UWB

The Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) is a UWB technology which uses the OFDM method. MB-OFDM combines the OFDM technique with the multi-band approach. The Transceiver architectures for MB-OFDM systems are similar to the conventional wireless OFDM systems, while the main differences for MB-OFDM are in the use of Time-Frequency Codes (TFC) to specify center frequencies for the transmission of each OFDM symbol.

Consider a MB-OFDM UWB system with the available UWB spectrum divided into S subbands. Each subband occupies a Bandwidth (BW) > 500 MHz and the OFDM has N subcarriers, as shown in Figure 2.5. At each OFDM symbol period,
the modulated symbol is transmitted over one of the S subbands. These symbols are time-interleaved across subbands.

Let $d_k(n)$ denote the complex coefficient to be transmitted in subcarrier n during the k-th OFDM symbol period. The coefficient $d_k(n)$ can consist of data symbols, pilots, or training symbols. The baseband signal is constructed similarly to a conventional OFDM system. In particular, each OFDM symbol $x_t(t)$ is constructed using an inverse Fourier transform:

$$x_t(t) = \sum_{n=0}^{N-1} d_k(n) \exp(j2\pi n \Delta f t)$$

Where $\Delta f = BW/N$ is the frequency spacing between the adjacent subcarriers. The resulting waveforms have the period of $T_{FFT} = 1/\Delta f$ (duration of each FFT symbol). The cyclic prefix of length T_{CP} (time period of Cyclic Prefix) is appended in order to mitigate the effects of multipath interference and to transform the multipath linear convolution into a circular convolution. Also, the Guard Interval of length T_{GI} (time period of the Guard Interval) is added at the end of the OFDM block.
The guard interval is used to provide more flexibility in the implementation. For instance, it can be used to provide sufficient time for switching between bands, to relax the analog transmitter and receiver filters, to relax filter specifications for adjacent channel rejection, or to help reduce the Peak-to-Average Power Ratio (PARP). The symbol duration becomes $T_{SYM}=T_{FFT}+T_{CP}+T_{GI}$. The Radio Frequency (RF) signal transmitted can be modeled as:

$$s(t) = \sum_k \text{Re}\{x_k(t - kT_{SYM})\exp(j2\pi f_k t)\}$$

The carrier frequency, f_k, specifies the subband, in which the signal is transmitted during the k-th OFDM symbol duration. These carrier frequency sequences are based on time-frequency codes, which are assigned uniquely to various users so as to minimize the multiple access interference.

2.3. Description of the signals

The transmitted signals can be described using a complex baseband signal notation. The Radio Frequency (RF) transmitted signal is related to the complex baseband signal as shown in (2).

$$s_{RF}(t) = \text{Re}\left\{\sum_{k=0}^{N-1} s_k(t - kT_{SYM})\exp(j2\pi f_k t)\right\} \quad (2)$$

Where $\text{Re}(.)$ represents the real part of a complex variable, $s_k(t)$ is the complex baseband signal of the k-th OFDM symbol and is nonzero over the interval from 0 to T_{SYM}, N is the number of OFDM symbols, T_{SYM} is the symbol interval, and f_k is the center frequency for the k-th band. The exact structure of the k-th OFDM symbol depends on its location within the packet, as in equation (3).

$$s_k(t) = \begin{cases}
 s_{\text{preamble},k}(t) & 0 \leq k < N_{\text{preamble}} \\
 s_{\text{header},k-N_{\text{preamble}}}(t) & N_{\text{preamble}} \leq k < N_{\text{header}} \\
 s_{\text{data},k-N_{\text{preamble}}}(t) & N_{\text{header}} \leq k < N_{\text{data}}
\end{cases} \quad (3)$$

Where $s_{\text{preamble},k}(t)$ describes the k-th symbol of the preamble, $s_{\text{header},k}(t)$ describes the k-th symbol of the header, $s_{\text{data},k}(t)$ is the k-th symbol of the Physical Service Data Unit (PSDU), N_{preamble} is the number of the symbols in the preamble, N_{header} is
the number of symbols contained in the header, and \(N_{\text{data}} = N_{\text{preamble}} + N_{\text{header}} \) is the number of symbols in the payload.

In MB-OFDM UWB protocol, a symbol is defined as an OFDM symbol plus a Zero Prefix (ZP), as it can be seen in Figure 2.6.

![Figure 2.6 Format of one MB-OFDM symbol](image)

The ZP serves two purposes: 1) it provides a mechanism to mitigate the effects of multi-path; 2) it provides a time window (a guard interval) to allow sufficient time for the transmitter and receiver to switch between the different centre frequencies. The greatest advantage of using ZP is that: ZP removes the structure in the transmitted signals, therefore, ZP can eliminate the ripple of the Power Spectral Density (PSD) in the transmitted spectrum.

All the transmitted OFDM symbols \(s_k(t) \) can be constructed using an inverse Fourier transform with a certain set of coefficients \(C_k \), which the coefficients are defined as either data, pilots or training symbols, as it can be seen in (4).

\[
\begin{align*}
 s_k(t) = \begin{cases}
 0 & t \in [0, T_{\text{ZP}}] \\
 \sum_{n=-N_{\text{ST}}/2}^{N_{\text{ST}}/2} C_k \exp(j2\pi n\Delta f)(t - T_{\text{ZP}}) & t \in [T_{\text{ZP}}, T_{\text{FFT}} + T_{\text{ZP}}]
 \end{cases}
\end{align*}
\]

(4)

Where \(\Delta f \) is the subcarrier frequency spacing, \(N_{\text{ST}} \) is defined as the number of total subcarriers. Therefore, the resulting waveform has a duration of \(T_{\text{FFT}} = 1/\Delta f \). \(T_{\text{ZP}} \) is the time duration of ZP.
2.4. Physical Layer Convergence Protocol (PLCP) sublayer

2.4.1 PLCP Protocol Data Unit (PPDU)

During the transmission, the Physical Service Data Unit (PSDU) shall be provided with a Physical Layer Convergence Protocol (PLCP) preamble and PLCP header to create the PLCP Protocol Data Unit (PPDU). At the receiver, the PLCP preamble and PLCP header serve as support in the demodulation, decoding, and delivery of the PSDU.

The PLCP Protocol Data Unit (PPDU) format is defined in Figure 2.7. The three parts are listed in the order of transmission.

![Figure 2.7 PPDU structure](image)

The PLCP preamble is sent first at the transmitter system side, which can be further divided into packet/frame synchronization sequence (time-domain portion), and a channel estimation sequence (frequency-domain portion). The purpose of adding PLCP preamble is to support packet detection, timing synchronization, carrier frequency offset recovery, sampling frequency synchronization, and channel estimation for the MB-OFDM receiver system. A unique preamble sequence shall be assigned to each Time-Frequency Code (TFC).

The PLCP header is used to convey necessary information about both the PHY and the MAC to decode the PSDU at the receiver part. A complete PLCP header includes PHY header, MAC header, Header Check Sequence (HCS), tail bits, and Reed-Solomon parity bits. Additional tail bits are also added between the PHY header and MAC header, HCS and Reed-Solomon parity bits, and at the end of
the PLCP header, by the means of returning the convolutional encoder to the “zero” state.

The Reed-Solomon parity bits are added in order to improve the robustness of the PLCP header. The Reed-Solomon outer code for PLCP header shall use the systematic of (23, 17) to improve upon the robustness of the $R=1/3$, $K=7$ inner convolutional code.

The Reed-Solomon code is defined over Galois Field $GF(2^8)$ with a primitive polynomial $p(z)=z^8+z^4+z^3+z^2+1$, where a is the root of the polynomial $p(z)$. For brevity, this Galois Field is denoted as F. As notation, the element $M=b_7z^7+b_6z^6+b_5z^5+b_4z^4+b_3z^3+b_2z^2+b_1z+b_0$, where M belongs to F and has the following binary representation $b_7b_6b_5b_4b_3b_2b_1b_0$, where b_7 is the Most Significant Bit (MSB) and b_0 is the Least Significant Bit (LSB).

The generator polynomial is obtained by shortening a systematic (255, 249) Reed-Solomon code, which is specified by the generator polynomial of (5) below:

$$g(x) = \prod_{i=1}^{6} (x - a^i) = x^6 + 126x^5 + 4x^4 + 158x^3 + 58x^2 + 49x + 117 \quad (5)$$

where $g(x)$ is the generator polynomial over F, x belongs to F and the coefficients are given in decimal notation. The shortening operation pre-appends 232 zero elements to the incoming 17 octet message. The structure of Reed-Solomon encoder is shown in Figure 2.8.

![Figure 2.8 Systematic Reed-Solomon encoder](image)

The CCITT CRC-16 Header Check Sequence (HCS) shall be the ones complement of the remainder generated by the modulo-2 division of the combined PHY and MAC headers by the polynomial of $x^{16}+x^{15}+x^{2}+1$. The HCS
bits shall be processed in the transmit order. The HCS block is used to protect the PHY header and MAC header, the schematic of the processing order is shown in Figure 2.9, in which, the registers shall be initialized to all ONEs for processing.

![Figure 2.9 CCITT CRC-16 block diagram](image)

The PSDU part is formed by concatenating the frame payload with the Frame Check Sequence (FCS), tail bits, and finally pad bits, which are inserted in order to align the data stream on the boundary of the symbol interleaver. The combined PSDU part should then be scrambled and six tail bits should be produced by replacing the six scrambled “ZERO” bits with six non-scrambled “ZERO bits.”

For transmission the entire PPDU packet, the Least Significant Bit (LSB) of a byte shall be the first bit transmitted.

2.4.2 OFDM modulation

The format of each OFDM symbol for different transmission data rate modes will be described in detail in Section 3.3.4.

An OFDM symbol $r_{data} k(t)$ in MB-OFDM system is defined as
Chapter 2 MB-OFDM UWB System Description

\[r_{data,k}(t) = \sum_{n=0}^{N_{SD}} c_{n,k} \exp \left(j2\pi M_D I \Delta_f (t - T_{CP}) \right) + P_{mod(k,127)} \sum_{n=-N_{ST}/2}^{N_{ST}/2} p_n \exp \left(j2\pi n \Delta_f (t - T_{CP}) \right) \] (6)

Where \(N_{SD} \) is the number of data subcarriers, \(N_{ST} \) is the number of total subcarriers, and the function \(M_D[I] \) defines a mapping from the indices 0 to 99 to the logical frequency offset indices \(-56\) to \(56\), excluding the locations reserved for the pilot subcarriers, guard subcarriers and the DC subcarrier. Function \(P_k \) is a pseudorandom Linear-Feedback Shift Register (LFSR) sequence with the length of 127, \(k=0 \) shall correspond to the first OFDM symbol following the PLCP preamble (i.e., the first OFDM symbol following the channel estimation symbols).

For data rates of 53.3 Mbps, 80 Mbps, 106.7 Mbps, and 200 Mbps, a time-domain spreading operation shall be performed with a spreading factor TSF=2. The time-domain spreading operation consists of transmitting the same information over two OFDM symbols. These two OFDM symbols are transmitted over different sub-bands to obtain frequency diversity format improvements. The repeated version of this OFDM symbol, represented as \(S_k' \), shall be obtained in the time domain as follows:

\[S_k'(n) = \begin{cases} \{\text{Im}(S_k(n)) + j\text{Re}(S_k(n))\}P_{mod(k+6,127)} & \text{no conjugatesymmetry} \\ S_k(n)P_{mod(k+6,127)} & \text{with conjugatesymmetry} \end{cases} \] (7)

Where \(k=0 \) shall correspond to the first OFDM symbol following the PLCP preamble and the values of the index \(k \) are OFDM symbol numbers before time spreading.

2.5. Conclusions

The basic theory of MB-OFDM UWB wireless communication protocol has been introduced in this chapter. The specification, general requirement, and functions of PHY and MAC layers are illustrated according to the UWB standard. The signals of each OFDM symbol can be generated by using IFFT algorithm; ZP
signals are added in front of OFDM symbol to form an entire MB-OFDM packet. The format of each PLCP layer has been explained, and OFDM modulation, as well as the format of each symbol, transmission requirements, time-domain spreading, etc. is also discussed in this chapter. The following sections will focus on the hardware implementation and system modification for the whole MB-OFDM UWB digital baseband system based on the requirement and specifications given by the UWB standard.
3. Transceiver Architecture of MB-OFDM UWB System

3.1. Introduction

As the general information and system specifications for UWB communication protocols have been introduced in the previous chapters, the main original contribution of this work, which is implementing and optimizing the digital baseband transceiver system for MB-OFDM UWB system, is illustrated in this chapter.

The Transmitter (Tx) and Receiver (Rx) digital baseband processing functions as well as the hardware implementation architecture will be described in detail based on the MB-OFDM UWB standard [ISO/IEC 26907’09] in this chapter.

Figure 3.1 shows the framework of the MB-OFDM physical layer. The basic functions for MB-OFDM digital baseband signal processing include scrambling, convolutional encoding, interleaving, constellation mapping, OFDM modulation, and time-domain spreading etc. The preamble sequences, which are used for timing and frequency synchronization at Rx part, will be added in front of each transmitted packet. Frequency hopping techniques are used when transmitting signals among different channels. As it can be seen, MB-OFDM is the combination of OFDM modulation and frequency hopping.
The inherent high complexity, high processing frequency, and requirements of low cost, low power and good performance make the implementation of MB-OFDM baseband transceiver quite a challenging work. The FFT/IFFT processor pair, which is the most complex part, works as the core processing element for the entire MB-OFDM transceiver system. In practical systems, the performance of MB-OFDM physical layer highly depends on the speed and power consumption of the FFT/IFFT processor pair. Therefore, the optimization of the existing FFT/IFFT architecture should be the most critical task for MB-OFDM transceiver system design. Timing synchronization algorithm is another important part for avoiding packet loss and ISI effect, lowering the computational complexity as well as the power consumption, while still maintaining certain value of accuracy becomes a big challenge for synchronization scheme design. At the receiver side, the Viterbe algorithm is recommended to decode the convolutional codes because of its optimal decoding performance. However, the high processing frequency requirement of MB-OFDM baseband system meets the bottleneck imposed by the recursive Add-Compare-Select (ACS) iteration, which prevents conventional pupelining techniques as a result of nonlinear feedback loop. Therefore, the throughput and the ability to support the very high speed transmission of Viterbi Decoder (VD) is other important factor to be taken into consideration.

The first challenge comes from the power consumption caused from the critical processing elements, such as FFT/IFFT processor and Viterbi Decoder. Low-power hardware-efficient algorithms and architectures have been extensively
studied for years in UWB systems regarding the FFT/IFFT model and VD. Several parallel data-path pipelined FFT processors for UWB applications have been developed. Using mixed-radix algorithm and Single-path Delay Feedback (SDF) architecture is the common solution, while trying to reduce and simplify the usage of complex multipliers is the main contribution, but additional optimizations are still necessary, especially for those low power high speed complex multiplier developments. The speed and power consumption bottleneck of Viterbi Decoder related with Add-Compare-Select Units is the other interest point that should pay attention to.

The other big challenge of designing MB-OFDM UWB baseband systems is its sensitivity to the time offset as it has difficulties to meet the strict time limits, which are short due to high data rate. Efficient and accurate packet detection and timing synchronization can avoid or alleviate packet loss and Inter Symbol Interference (ISI), which destroys the orthogonality of the OFDM subcarriers and degrades the system performance. There are several works on timing synchronization systems [Fan’12] [Shahbazian’11] [Yak’05] [Kim’08] [Fan’09], but they either consume large hardware resources or have rather high computational complexity.

The mismatch in local oscillator between transmitter and receiver will cause the effect of Carrier Frequency Offset (CFO), which will lead to Inter Carrier Interference (ICI), Doppler Effect on phase shift and degradation in Signal to Noise Ratio (SNR). Therefore, to ensure performance of the receiver system, CFO estimation and compensation also plays an important role. Traditionally, the work in [Moose’94] used pilot symbols for CFO estimation in frequency domain. The algorithm in [Schmidl’97] estimated CFO by obtaining the phase difference between two halves in a preamble in time domain. The work in [Morelli’99] improved the traditional algorithm by considering a training symbol composed of more than two identical parts, while [Minn’03] extended [Morelli’99] by employing a Best Linear Unbiased Estimator (BLUE) to improve noise performance. However, most of the previous research only focuses on the algorithm aspect for traditional OFDM systems, the performances cannot satisfy the high speed, low power requirements of MB-OFDM system. Furthermore, Sampling Frequency Offset (SFO) and Common Phase Error (CPE) estimation
for frequency synchronization in frequency domain are required by using the pilot subcarrier information added to each transmitted OFDM symbol.

The MB-OFDM UWB systems have the following distinctive characteristics if compared to conventional OFDM systems:

1) Different channel responses and channel energies across different bands
2) Different carrier frequency offsets across different bands
3) The use of ZP instead of conventional CP for saving transmitting power
4) The interplay between the timing and frequency hopping (a mismatched timing point at the receiver will yield a mismatched frequency hopping and hence a significant performance degradation)

These characteristics provide diverse components as well as additional design constraints for the channel estimation and equalization blocks in order to mitigate hostile channel effects on the received signals. The Channel Estimation and Equalization functions will be discussed in this chapter.

According to the discussion above, in this thesis, a low complexity, energy efficient, and robust digital baseband transceiver system for MB-OFDM UWB communication protocol is proposed and tested to be suitable for the MB-OFDM UWB applications. The main objectives for the system architecture implementation can be enumerated as follows:

- Propose a novel 128-point FFT/IFFT algorithm and architecture for MB-OFDM UWB application, in the aim of lowering the power consumption while increasing the system performance.
- Find a low complex synchronization and compensation scheme to ensure robust and accurate packet detection and synchronization for the receiver system.
- Implement a high processing speed Viterbi Decoder system.
- Employ state-of-the-art techniques for high performance frequency synchronization and Channel Estimation/Equalization blocks.
Integrate the complete digital baseband transceiver system based on the MB-OFDM UWB physical standard, design suitable control logics so as to combine all the required processing elements together.

Particularly, the present work aims at the implementation of an entire and standalone transmitter-receiver MB-OFDM digital baseband system with a low-power, high-speed performance, that can be utilized for different transmission data rate modes in different channel models that specified by IEEE 802.15.3a Channel Modeling Sub-committee [Foerster’03_2].

The processing elements will be introduced in pair for both transmitter and receiver system in this chapter, and will be started from those most important elements on both sides. This chapter is organized as follows: The general structures of the transmitter and receiver digital baseband systems, specified by the ISO/IEC standard, are introduced in Section 3.2. The actions of the 128-point FFT/IFFT processor pair, which used as the OFDM modulator in MB-OFDM UWB system, are introduced in Section 3.3, along with the proposed low-power, high-performance FFT/IFFT processor architecture. The synchronization issues related with both timing offset and frequency offset will be discussed in Section 3.4, and then, based on the discussion, the proposed low-complex Timing Synchronization Scheme is explained, flowing the frequency synchronization frames in both time-domain and frequency-domain. The proposed 2-steps radix-4 Viterbi Decoder system that is used for decoding those received signals is introduced in Section 3.5. After that, the integration of a complete MB-OFDM transceiver baseband system by employing several state-of-the-art technologies, as well as design of the control logic, will be given in Section 3.6. Finally, the conclusions and contributions will be drawn in Section 3.7.

3.2. Overview of the MB-OFDM UWB system

In this section, the general signal processing procedure and functions of standard MB-OFDM UWB baseband system is described. The digital baseband system is divided into two different parts: Transmitter (Tx) and Receiver (Rx).
The transmitter functions will be introduced first, and then the receiver processing architecture, along with symbol synchronization scheme and channel estimation/equalization blocks, will be explained later.

The detailed architecture of MB-OFDM transmitter system is shown in Figure 3.2. The Tx architectures for the MB-OFDM system are very similar to that of a conventional wireless OFDM system [Chiueh’07]. The main difference is that the Multiband OFDM system uses a time-frequency kernel to specify the center frequency for the transmission of each OFDM symbol.

![Figure 3.2 Structure of MB-OFDM Transmitter (Tx) system](image)

As shown in Figure 3.2, at the transmitter side, the signals from information sources are firstly whitened by the scrambler (will be introduced in section 3.6.2.1) and then encoded by the convolutional encoder with the code rate of 1/3; puncturing technology is used so as to get different code rate for different transmission data rate according to the MB-OFDM standard. In order to exploit...
time-frequency diversity and combat multi-path fading, the coded bits are further interleaved by using the 3-step interleaver function according to the same preferred time frequency pattern. Then, the resulting binary serial sequence will be mapped into constellation points according to the Gray-coding, where Quadrature Phase-Shift Keying (QPSK) and Dual-Carrier Modulation (DCM) constellation mapper are used according to the data rate mode. Then, the stream of complex symbols is mapped onto the coefficients of IFFT processor with a size of 128 points, which contains 100 data subcarriers; 12 pilots uniformly inserted into the OFDM symbol; 10 guard subcarriers, with 5 on either edge of the OFDM symbol occupied band; and 6 DC signals. After performing the IFFT, a Zero Prefix (ZP) with length of 37 (as specified by the ISO/IEC standard [ISO/IEC 26907’09]) is appended to eliminate Inter Symbol Interference (ISI) and capture sufficient multipath energy to minimize the impact of Inter-Carrier Interference (ICI). A time-frequency kernel is used to specify the centre frequency for transmission of each OFDM symbol [ISO/IEC 26907’09]. Time-domain spreading shall be used for lower data rate transmission modes in order to improve frequency diversity.

Before transmitting each data packet, as in most of the wireless communication protocols, the preamble sequences should be added in front, so as the receiver can detect and estimate the upcoming data packets. Two different kinds of preamble sequence are defined by MB-OFDM standard: standard PLCP preamble and burst PLCP preamble. The preamble is defined to be a real baseband signal, which shall be inserted into the real portion of the complex baseband signal prior to each transmitted packet. The standard preamble contains 21 packet synchronization symbols, 3 frame synchronization symbols and 6 channel estimation symbols. The packet and frame synchronization symbols are transmitted by using time-domain sequences, whereas channel estimation symbols are using frequency-domain sequences, because they are picked up by different elements in the receiver system so as for different usage.

On the other hand, the receiving progress plays the inverse function of transmission, but with additional synchronization and channel estimation blocks, as shown in Figure 3.3.
The upcoming signals will be converted into digital signal by ADC at a very high speed. Then, the timing synchronization function is firstly carried out by using the Packet Detector and Timing Offset Estimation blocks, which is in charge of detecting each packet and estimate the possible timing offset. CFO is also estimated and compensated during this procedure by using those preamble sequences in time-domain. Channel estimation and equalization is carried out by using the channel estimation symbols. Then the pilot subcarriers that been inserted to each OFDM symbol are picked up from the frequency-domain packets, and used for sampling frequency synchronization function for final fine frequency synchronization procedure. As using soft-bits decoding will increase the system SNR performance around 3 dB [Lin’04] [Moon’05], the soft-bit demapping, de-interleaver, de-puncture, and Viterbi decoder will be used for the proposed receiver baseband system. Then, by using the same scrambler element as transmitter, the decoded signals are resumed to the original bit sequences on the receiver side.

As it can be seen from the description above, compared with transmitter, the receiver system is much more complex than the transmitter caused by the additional synchronization elements.

The FFT/IFFT processor pair, which takes charge of transforming the OFDM symbol between time-domain and frequency-domain, works as the core
processing element for the entire MB-OFDM transceiver system, and is usually considered to be the most complex model. In practical systems, the performance of MB-OFDM physical layer will highly depend on the speed and power consumption of the FFT/IFFT processing pair. Therefore, optimization of the existing FFT/IFFT architecture should be the most critical task for MB-OFDM transceiver system design. Efficient and accurate synchronization algorithm is another important issue for avoiding packet loss and ISI effect, lower the computational complexity as well as the power consumption, while still maintaining certain value of accuracy becomes a big challenge for synchronization scheme design. The throughput and the ability to support the very high speed transmission of Viterbi Decoder is another important factor that to be taken into consideration.

Therefore, the sections below will focus on optimization for each processing elements in both algorithm and architecture level, so as to get a power and hardware efficient architecture for MB-OFDM system development at the end. The explanation of each proposed sub-structure will be given below.

3.3. **FFT/IFFT processor**

3.3.1 **Introduction**

As mentioned above, in MB-OFDM systems, FFT and IFFT processors transform the signals between the time-domain and the frequency-domain and occupy a large portion of the circuit area as well as the power consumption. Recent advances in semiconductor processing technology have enabled dedicated FFT processors in applications such as telecommunications, specifically in OFDM communication systems. Conventionally, direct implementation of \(N \)-point Discrete Fourier Transform (DFT) requires a complexity that is \(O(N^2) \). The Cooley-Tukey Fast Fourier Transform (FFT) algorithm [Cooley’65] achieves a huge complexity saving over direct implementation and requires only \(O(N\log N) \) computations. Even with the reduction in complexity, circuit implementation of the Cooley-Tukey FFT algorithm is still both computation and communication intensive, which makes the FFT/IFFT processor one of the models that having
high computational complexity in the physical layer of the MB-OFDM UWB system. Besides, the specified execution time of the 128-point FFT/IFFT in UWB system is only 312.5 ns [ISO/IEC 26907’09], which means a very high speed FFT/IFFT processor should be develop for MB-OFDM application. Therefore, if employing the traditional approach, a great deal of power consumption and hardware resources cost of the FFT/IFFT processor will be needed to meet the strict specifications of the MB-OFDM UWB standard.

In the following, the MB-OFDM modulation method along with subcarrier mapping will be firstly introduced. The basic information of several traditional FFT/IFFT algorithms and architectures are followed. Then a novel mixed radix 128-point FFT/IFFT algorithm, which is one of the main contributions of this thesis, is presented in this thesis, and multipath pipelined 128-point FFT architecture is designed. The proposed FFT/IFFT algorithm will be first introduced and then the proposed FFT/IFFT architectures will be described. Comparisons and analysis of the proposed algorithm will be made at the end of this subsection.

3.3.2 FFT Algorithms

Before implementation of the FFT/IFFT processor for the MB-OFDM UWB communication system, let’s first make a short review of the FFT/IFFT algorithm and architecture.

As it is well known, for a given sequence $x(n)$ with length of N, the Discrete Fourier Transform (DFT) is defined as (1).

$$X(k) = \sum_{n=0}^{N} x(n)W_N^{kn} \quad k = 0, 1, ..., N - 1$$

(1)

Where $x(n)$ is a time-domain sequence and $X(k)$ is a frequency-domain sequence, and both are complex values. And W_N^{kn} is the twiddle factor as (2):

$$W_N^{nk} = e^{-j(2\pi nk/N)} = \cos(2\pi nk/N) - j\sin(2\pi nk/N)$$

(2)

To compute an N-point DFT in a traditional way by definition, the complexity of arithmetic operations is $O(N^2)$. Fortunately FFT algorithms provide more
efficient method to compute DFT. The performance of FFT algorithm depends on the factorization of N. As FFT are widely used in practical applications, many FFT algorithms have been proposed, such as the Cooley–Tukey algorithm, which is by far the most common algorithm, the Prime-factor FFT algorithm, Bruun’s FFT algorithm, Rader’s FFT algorithm, and Bluestein’s FFT algorithm [Rao’10].

3.3.2.1 Radix-2 Algorithms

Twiddle factor has three main properties, which can be expressed by using equation (3), (4), and (5). The FFT algorithm will perform better if these properties can be properly used.

A. Symmetry property:

$$W_N^k = -W_N^{k + \frac{N}{2}}$$ \hfill (3)

B. Periodicity property:

$$W_N^k = W_N^{k + N}$$ \hfill (4)

C. Besides, there is another important property

$$W_N^{km} = W_N^{k/m}$$ \hfill (5)

Radix-2 Decimation-In-Time (DIT) FFT is the simplest and most common form of the Cooley-Tukey algorithm. Radix-2 DIT divides a DFT of size N into two interleaved DFTs (hence the name "radix-2") of size $N/2$ with each recursive stage, this algorithm reduces the complexity of arithmetic operation to a level of $O\left(\frac{N}{2} \log_2 N\right)$. The radix-2 algorithm is defined in (6).

$$X(k) = \sum_{m=0}^{\frac{N}{2} - 1} x(2m)W_N^{2km} + W_N^k \sum_{m=0}^{\frac{N}{2} - 1} x(2m + 1)W_N^{2km} \quad k = 0, 1, \ldots, N - 1$$ \hfill (6)

The two computation function in (6) can be separated to (7) and (8),

$$A(k) = \sum_{m=0}^{\frac{N}{2} - 1} x(2m)W_N^{2km}$$ \hfill (7)
Thus, introducing $A(k)$ and $B(k)$ into (6), it can be rewritten it as (9).

$$X(k) = \begin{cases}
A(k) + W_N^k B(k) & k \leq \frac{N}{2} \\
A \left(k - \frac{N}{2} \right) + W_N^{k-N} B \left(k - \frac{N}{2} \right) & k > \frac{N}{2}
\end{cases}$$

(9)

As a result, the most rudimentary butterfly unit function can be obtained through (9) (Cooley-Tukey butterfly), which is shown in Figure 3.4:

![Figure 3.4 Cooley-Tukey Butterfly processing](image)

One thing that should be noticed is that, the radix-2 algorithm can only be used when the number of samples N can be represented by a power of two. Otherwise, mixed-radix or other algorithms should be used.

However, there is another way to organize the data based on radix-2 algorithm. According to equations (6) and (9), we can obtain (10).

$$X(k) = \sum_{m=0}^{N-1} x(m)W_N^{km} + W_N^k \sum_{m=0}^{N-1} x(m + \frac{N}{2})W_N^{km} \quad k = 0, 1, \ldots, N - 1$$

(10)

And based on this equation, it is noticed that

$$x(2r) = \sum_{m=0}^{N-1} \left(x(m) + x(m + \frac{N}{2}) \right) W_N^{2nm} \quad r = 0, 1, \ldots, \frac{N}{2} - 1$$

(11)
\[
x(2r + 1) = \sum_{m=0}^{N-1} (x(m) - x(m + \frac{N}{2})) W_{N}^{2nm} W_{N}^{m} \quad r = 0, 1, \ldots, \frac{N}{2} - 1
\]

Let
\[
A(r, m) = x(m) W_{N}^{2nm}
\]
\[
B(r, m) = x(m + \frac{N}{2}) W_{N}^{2nm}
\]

According to equation (11), (12) and (13), the modified radix-2 algorithm divides the output results into odd and even number, instead, according to this theory, the modified butterfly function is shown in Figure 3.5.

Figure 3.5 Modified radix-2 butterfly processing

Taking a look at the computation complexity, considering a sequence with the length of \(N\), this radix-2 algorithm requires \(S = \log_2 N\) stages, with \(N/2\) butterflies per stage. Each butterfly requires one complex multiplier and two adders. Therefore, the total cost of the algorithm, is thus the computational cost of radix-2 DIF FFT, will be \((N/2) \log_2 N\) complex multiplies and \(N \log_2 N\) adders.

In order to further speed up the DFT processing, higher radix algorithms have been widely studied. The parallelization strategy is used so as in each processing step, more calculations can be done, thus less stages of computation are needed. This is extremely important for the large points DFT processing. But as a tradeoff, the complexity of each processing stage will increase significantly due to the parallelization. In the following subsections, the radix-4 and radix-2\(^m\) algorithms, which are the most popular algorithms, will be introduced.
3.3.2.2 Radix-4 Algorithms

The radix-4 FFT recursively partitions a DFT into four quarter-length DFTs. Compared with radix-2 algorithms, the radix-4 algorithm has the advantage of greatly reducing the total computational cost. In this section the radix-4 algorithm which employs two radix-2 butterflies to represent one radix-4 butterfly function, called radix-2² algorithm is discussed.

It can be noticed that, in order to employ the radix-4 algorithm, \(N \) should be the power of four instead of two. For example, given a sequence with length \(N \), by using radix-4 algorithm, the shortest FFT in the expression can always be presented as equation (14):

\[
G(k) = \sum_{n=0}^{3} x(n)W_4^{nk} \quad n, k = 0, 1, 2, 3
\]

(14)

According to radix-2² algorithm, parameters \(n \) and \(k \) should be divided into two separate parts as shown in (15) and (16).

\[
n = 2n_1 + n_2 \quad n_1, n_2 = 0, 1
\]

(15)

\[
k = 2k_1 + k_2 \quad k_1, k_2 = 0, 1
\]

(16)

Substitute expression (15) and (16) into (14), we will have (17)

\[
G(2k_1 + k_2) = \sum_{n_2=0}^{1} \sum_{n_1=0}^{1} x(2n_1 + n_2)W_2^{n_1k_1}W_4^{n_2k_1}W_2^{n_2k_2}
\]

(17)

Both stage 1 and stage 2 in equation (17) are 2-point FFT functions. Therefore, the calculation can be represented by using two radix-2 butterflies. The signal flow representing the operation for radix-2² algorithm is depicted in Figure 3.6.
To determine the total computational cost of the radix-4 FFT, it can be seen that there are $S=\log_4 N$ stages for and N-point radix-4 FFT processor, each with $\frac{N}{4}$ butterflies per stage. There are three complex multipliers and eight adders per butterfly unit. Thus, the total computational cost of the radix-22 FFT algorithm is $(\frac{3N}{4})\log_4 N$ complex multiplies and $2N\log_4 N$ adders. Compared with radix-2 FFTs, the radix-4 FFTs require only 75% as many complex multiplies as the radix-2 FFTs while the number of adders is remain the same.

3.3.2.3 Radix-2m Algorithm

As discussed in previous sections, the radix-2 butterfly function has simplified the structure of data flow for calculating FFT. However, simply use radix-2 algorithm will lead to many extra twiddle factor multiplications between each stage. As a result, higher radix can be introduced, such as radix-4, radix-8, and radix-16 algorithms, to reduce the twiddle factor multiplications. Besides, a radix-n algorithm can be represented as radix-2m algorithm if n is a power of two. For example, radix-8 algorithm can be represented by radix-23, Figure 3.7 shows the data flow of the radix-23 algorithm. But it should be noticed that, when the radix is higher than 4, increasing the computational radix will dramatically increase the computational complexity as well as the difficulties for hardware implementation. Because lots of memory resources are required for restoring those partial products within each processing procedure, beside, the control
logics are also difficult to be realized. Therefore, radix-2 and radix-2\(^2\) algorithms are more popular nowadays.

![Radix-2\(^3\) algorithm processing](image)

3.3.3 Different FFT Architectures

A variety of FFT architectures have been studied in the past few years. S. Magar et al. [Magar’88] introduces the Recursive Dual Memory Architecture and Single Memory Recursive systems. The simplest memory-system architecture is the single-memory architecture, as it can be seen in Figure 3.8, in which a memory of at least \(N\) words is connected to a processor by a bidirectional data bus. In general, data are read from and write to the memory once for each stage of the FFT processing.

![Single Memory Architecture](image)

The dual-memory architecture places two memories of size \(N/2\) on separate buses connected to a processor, as shown in Figure 3.9. Data begin in one
memory and transfer from one bank of memory to another several times until the transform comes to the end during the entire process.

![Dual Memory Architecture](image)

Figure 3.9 Dual Memory Architecture

Cached-memory architecture [Bass’99] is similar to the single-memory architecture except that an additional small cache memory resides between the processor and main memory, as shown in Figure 3.10.

![Cached-memory Architecture](image)

Figure 3.10 Cached-memory architecture

According to the results of [He’98], the use of cache architecture have two key advantages over other two approaches:

1) Increased speed: since smaller memories are faster than larger ones (more than 2.6 times greater than the previous ones)

2) Increased energy efficiency: since smaller memories require lower energy per access and typically can be located nearer to the data path (16 times more energy efficient)

Therefore, the cached-memory architecture is considered to be a better option.

In [He’98], pipeline architecture is used for implement the FFT processor. Pipelined FFT processor is a class of architectures for applications of specific real-time DFT computation which utilizing fast algorithms. It is characterized by non-stopping processing on a clock frequency the same as the input data sampling frequency. A lower clock frequency is a clear advantage for pipeline architectures, when either a high throughput processing or a low power solution is sought. In addition, pipeline structure is highly regular, which can be easily scaled and parameterized when Hardware Description Language (HDL) is used in the design. It is also flexible when forward inverse transforms of different lengths are to be computed within one single chip.
There are two types of pipeline architecture for FFT processor implementation: Multi-path Delay Commutator (MDC) pipeline and Single-path Delay Feedback (SDF) structure. L.R. Rabiner et al. [Rabiner’75] introduce MDC pipelined architecture. Radix-2 MDC was probably the most classical approach for pipeline implementation for the FFT algorithm. The input sequence has been divided into two parallel forward data stream, with correct “distance” between the data elements entering the butterfly scheduled by proper delays. Both butterflies and multipliers are in 50% utilization rate for MDC architecture. \(\log_2 N - 2 \) multipliers, \(\log_2 N \) radix-2 butterflies, and \(\frac{3N}{2} - 2 \) registers (delay elements) are required for MDC processing architecture.

E.H. Wold and A.M. Despain [Wold’84] explained the use of SDF pipeline architecture for FFT processor development. Radix-2 Single-path Delay Feedback uses the registers more efficiently by storing one of the butterfly output results in feedback shift registers. Unlike the MDC structure, a single data stream goes through the multiplier in each stage for SDF structure. It has the same number of butterfly units and multipliers as in MDC approach, but with much less memory requirement (\(N - 1 \) registers). The memory requirement is then minimized.

As discussed above, the MDC scheme can achieve a higher throughput rate, while the SDF scheme needs less memory and hardware cost. MDC and SDF pipeline architectures are shown in Figure 3.11 (a) and (b) respectively.

![Figure 3.11 (a) MDC scheme; (b) SDF scheme](image)
3.3.4 MB-OFDM modulation

According to the structure of the OFDM symbols organized for UWB communication [ISO/IEC 26907'09], the discrete-time signal, \(s_n[k] \), shall be created by taking the Inverse Discrete Fourier Transform (IDFT) of the stream of complex frequency values as follows:

\[
\begin{align*}
\hat{s}_n[k] &= \frac{1}{\sqrt{N_{FFT}}} \left\{ \sum_{l=0}^{N_D} C_{D,n}[l] \exp \left(\frac{j2\pi M_D[l]k}{N_{FFT}}\right) + \sum_{l=0}^{N_G} C_{G,n}[l] \exp \left(\frac{j2\pi M_G[l]k}{N_{FFT}}\right) \\
&\quad + \sum_{l=0}^{N_P} C_{P,n}[l] \exp \left(\frac{j2\pi M_P[l]k}{N_{FFT}}\right) \right\} \\
\end{align*}
\]

Where

\[
k = [0, N_{FFT}-1], \quad n = [N_{sync}, N_{packet}-1]
\]

\(N_D \) is the number of data subcarriers, \(N_G \) is the number of guard subcarriers, \(N_P \) is the number of pilot subcarriers, \(N_{FFT} \) is the number of total subcarriers, and \(C_{D,n}[l], C_{G,n}[l], C_{P,n}[l] \) are the complex numbers placed on the \(l^{th} \) data, guard and pilot subcarriers of the \(n^{th} \) OFDM symbol, \(N_{sync} \) is the number of symbols in the PLCP preamble, and \(N_{packet} \) is the total number of symbols in the packet respectively.

The functions \(M_D[l] \), \(M_G[l] \) and \(M_P[l] \) define a mapping from the indexes \([0, N_D-1] \), \([0,N_G-1] \) and \([0, N_P-1] \) to the logical frequency subcarriers \([-N_T/2, N_T/2]\) excluding 0 respectively. The exact definitions for the mapping functions \(M_D[l] \), \(M_G[l] \) and \(M_P[l] \) are given below:
The subcarrier frequency allocation is shown in Figure 3.12. The subcarrier falling at Direct Current (DC) (0th subcarrier) is not used so as to avoid difficulties in Digital to Analog Converter (DAC) and Analog to Digital Converter (ADC) offsets and carrier feed-through in the Radio Frequency (RF) system.

For transmission data rate modes less than 106.7 Mbps, the stream of complex numbers that come from the QPSK modulator is divided into groups of 50 complex numbers. Then these complex numbers (which corresponds to complex number \(n \) in each group) are extended to 100 complex numbers (which corresponds to sub-carrier \(n \) of OFDM symbol \(k \)) so as to map onto the 100 data subcarriers of each OFDM symbol by using conjugate symmetric method as shown below:

\[
M_B[l] = \begin{cases}
1 - 56 & I = 0 \\
I - 55 & 1 \leq I \leq 9 \\
I - 54 & 10 \leq I \leq 18 \\
I - 53 & 19 \leq I \leq 27 \\
I - 52 & 28 \leq I \leq 36 \\
I - 51 & 37 \leq I \leq 45 \\
I - 50 & 46 \leq I \leq 49 \\
I - 49 & 50 \leq I \leq 53 \\
I - 48 & 54 \leq I \leq 62 \\
I - 47 & 63 \leq I \leq 71 \\
I - 46 & 72 \leq I \leq 80 \\
I - 45 & 81 \leq I \leq 89 \\
I - 44 & 90 \leq I \leq 98 \\
I - 43 & I = 99
\end{cases}
\]

\[
M_G[l] = \begin{cases}
-61 + I & I \in [0, \frac{N_G}{2} - 1] \\
52 + I & I \in [\frac{N_G}{2}, N_G - 1]
\end{cases}
\]

\[
M_P[l] = -55 + 10l & I \in [0, N_P - 1]
\]

Figure 3.12 Subcarrier Frequency Allocation [ISO/IEC 26907’09]
Where \(N_{SYM} \) denotes the number of OFDM symbols in the MAC frame body, tail bits, and pad bits.

The main purpose of taking this strategy is to force the IFFT input signals of lower data rate modes to be conjugate symmetric. Besides, by further using Time-Domain Spreading method to spread each symbol by a factor of two, the final transmitted data sequence will get a spreading gain equals to four. Therefore, according to the function of IFFT process, the imaginary part of the output results from IFFT process will stay at ‘0’ for the entire OFDM symbol, which means only the real part of the signals are needed to be transmitted. Then the analog section of transmitter system can be simplified when the input signal just contain real part. Only the “I” portion of DAC and mixers are necessary, furthermore, only half the analog die size of a complete “I/Q” transmitter is required for low data rate transmission modes. On the other hand, for the receiver system, the ADC and the synchronization scheme for each symbol will also be simplified by using this data structure. In addition, less energy is spent for transmitting only the real part of each OFDM symbol.

For transmission data rates that are equal or higher than 106.7 Mbps, the stream of complex number is divided into groups of 100 complex numbers directly to form the data subcarriers for an OFDM symbol.

\[
c_{n,k} = d_{n+50xk} \quad n = 0, 1, ..., 49, k = 0, 1, ..., N_{SYM} - 1
\]

\[
c_{(n+50),k} = d^*_{(49-n)+50xk} \quad n = 0, 1, ..., 49, k = 0, 1, ..., N_{SYM} - 1
\]

Then, the pilot subcarriers are required for estimating the frequency offset at the receiver side. In each OFDM symbol, twelve of the subcarriers are dedicated to pilot signals in order to make coherent detection robust against frequency offsets and phase noise. These pilot signals shall be added in the positions numbered as -55, -45, -35, -25, -15, 5, 15, 25, 35, 45, and 55. The contribution due to the pilot subcarriers for the \(k \)th OFDM symbol is given by the Inverse Fast Fourier Transform (IFFT) of the sequence \(P_n \), below, which is further QPSK modulated by a pseudo-random binary sequence \(p_l \) to prevent the generation of spectral lines.
\[P_n = \begin{cases} \frac{1 + j}{\sqrt{2}} & n = 15, 45 \\ \frac{-1 - j}{\sqrt{2}} & n = 5, 25, 35, 55 \\ 0 & n = \text{other} \end{cases} \]

For transmission modes with data rates less than 106.67 Mbps:

\[P_{n,k} = P^*_{-n,k} \quad n = -5, -15, -25, -35, -45, -55 \]

For 106.7 Mbps and all higher rate transmission modes:

\[P_{n,k} = P_{-n,k} \quad n = -5, -15, -25, -35, -45, -55 \]

Then, besides these 112 samples, ten subcarriers are dedicated to guard subcarriers or guard tones. The guard subcarriers can be used for various purposes, including relaxing the specs on transmit and receive filters. The magnitude level of the guard tones is not specified other than the definition below, and implementations can use reduced power for these subcarriers if desired. The guard subcarriers shall be located in the subcarriers of \(-61, -60, \ldots, -57, 57, 58, \ldots, 61\). The same Linear-Feedback Shift Register (LFSR) sequence \(p_n \), which is used to scramble the pilot subcarriers, will be used to generate the modulating data for the guard subcarriers. The guard subcarrier sample definition for the \(n^{th} \) subcarrier of the \(k^{th} \) symbol is given as follows:

\[P_{n,k} = c_{m,k}, \quad l = 0, 1, 2, 3, 4; n = 57 + l; m = 95 + l \]

\[P_{n,k} = c_{m,k}, \quad l = 0, 1, 2, 3, 4; n = -61 + l; m = l \]

Where \(k = 0 \) shall correspond to the first OFDM symbol following the PLCP preamble (i.e., the first OFDM symbol following the channel estimation sequence).

The mapping of each subcarrier to the 128-point FFT processor can be shown in Figure 3.13.
3.3.5 **Overview of FFT in MB-OFDM UWB**

According to the MB-OFDM UWB standard, each OFDM symbol consists of 128 subcarriers and 37 Zero Prefix samples. Therefore, the FFT processor of the MB-OFDM UWB system conducts a 128-point FFT operation, where the sampling frequency is 528 MHz and the subcarrier frequency spacing is 4.125 MHz. Although the FFT processing period is only 242.42 ns, the 128-point FFT operation is allowed to be performed within 312.5 ns (410 Msps) because a length-37 Zero Prefix duration (70.08 ns) is added after each OFDM symbol.

3.3.5.1 **Evaluations of FFT processor**

The measurements for FFT processor in MB-OFDM UWB system including accuracy, power consumption, processing rate and hardware cost. In this section, the measurements and the conditions which can affect the performance of the FFT processor so as to help us developing a low power and high performance FFT processor for MB-OFDM UWB applications are discussed.
3.3.5.1.1 Accuracy

Besides the communication channel and environments, which have a very strong effects on the accuracy of the FFT performance, the word-length to represent each sample that is used for processing hardware elements will also affect the accuracy of FFT processor a lot.

Many works have been done on discussing the word-length effects on the computational accuracy of UWB system. In [Lin’05] and [Cho’10_2], researchers employ MATLAB fix-point toolbox to simulate the relation between SNR and the internal word-length of the FFT/IFFT processor, both obtain the same decision in choosing internal word-length of 10 bits for both the real and imaginary parts of each OFDM sample. In [Sherratt’05], the authors discuss the bit-length in the aspect of system level, in their opinion, there are two parameters in FFT/IFFT processor that can affect the Bit Error Rate (BER) performance of UWB system. These two parameters are external FFT data and internal FFT precision. The authors simulate the BER by using different external FFT data and different internal precision in 4 Channel models of UWB, and their conclusion is 6-bit external FFT data and 11-bit internal FFT precision gives the same order of performance as implementing floating-point. In [Insalata’07], the authors separate the parameters into Input/Output Word Length (IOWL), System Word Length (SWL), and Twiddle Word Length (TWL). Their final decision is IOWL=6 bits, SWL=8 bits and TWL=4 bits. The output SQNR by doing this is 29.3 dB, which is believed to be satisfied for UWB system application.

As the word-length will also define the power consumption, hardware resources usage, as well as the computational complexity of the whole FFT processor, we will also make a discussion on choosing the most appropriate word length for the proposed algorithm.
3.3.5.1.2

Processing Rate

A minimum processing rate of 410 Msps must be supported by the FFT processor in MB-OFDM UWB system. Processing rate of the FFT processor is often decided by the structure of the processor, such as pipelined or in parallel, multipath delay or singlepath delay. These different structures may result in huge differences in throughput and other performance of the FFT processor. The different structures will be discussed in the following section. Besides, accuracy also affects the processing rate. As the accuracy increases, more bits are needed to represent the data, more calculations are needed, and thus processing time will increase as well. Moreover, the working frequency will decrease.

3.3.5.1.3

Hardware cost and power consumption

Hardware cost is usually measured by number of logic gates and chip area after system synthesis. A well developed FFT algorithm will help to reduce the complexity of computational models and circuits. Besides, even with the same FFT algorithm, hardware cost and power consumptions might be quite different by using different hardware architectures.

Reducing accuracy and processing rate will also reduce the power consumption. If we want to obtain an overall good performance in the FFT processor, carefully trade-off decision between accuracy and hardware cost should be made.

3.3.5.2

Related Works

There are a lot of works focusing on FFT model for MB-OFDM UWB system, therefore variant algorithms and architectures are developed. Since 128 is not a power of 4, 8 or 16, the 128-point FFT is often realized by using mixed-radix algorithms so as to speed up the procedure.

Y. W. Lin et al. [Lin’05] proposed a mixed radix FFT algorithm, which uses radix-2 and radix-64 algorithms. Moreover, they divided the radix-64 FFT into two radix-8 FFT stages, and then realized the radix-8 FFT by using 3 radix-2 stages as discussed in section 3.3.2.3. The authors used four-parallel-path SDF
pipelined architecture for hardware implementation. By using 180 nm CMOS technology library, the maximum processing frequency of the proposed FFT chip reaches 250 MHz, the throughput rate can reach up to 1 Gsample/s with the power dissipation of 175 mW.

S. Cho et al. [Cho’10] used a modified radix-2⁴ algorithm and a radix-2³ algorithm to significantly reduce the numbers of complex constant multipliers. It also uses four-parallel-path pipelined architecture as in [Lin’05]. The simulation results indicate that the FFT processor can also support a throughput up to 1 Gsample/s, but with a power dissipation of 112 mW by using 180 nm CMOS technology library.

Z. Wang et al. [Wang’06] propose a two-stage radix-2² and radix-32 FFT algorithm, they use radix-2⁵ algorithm instead of radix-32, four-parallel-path pipelines are used only for the second processing stage.

S. Qiao et al. [Qiao’07] proposed radix-2 and radix-64 FFT algorithm as [Magar’88], however, they developed a non-Cooley-Tukey radix-8 unit in order to save hardware cost. The experimental result shows the throughput rate is 409.6 Msample/s with area saved by 20% to 63% compared to that of radix-2 SDF architecture.

A. Cortes et al. [Cortes’06] proposed a software for generating the FFT cores for OFDM applications. The presented generator is able to generate different modes of FFT/IFFT processors according to the user’s specifications. The tool is user-friendly and provides the ability to compare and analyze different FFT/IFFT architectures, so as the users can select the most suitable design according to the requirements.

3.3.6 Proposed FFT Processor

In this section, one of the most important original contributions of this thesis, which is design of a low power, high speed FFT processor for MB-OFDM UWB application, will be described in detail. A novel mixed radix 128-point FFT algorithm is presented in this PhD thesis, and multipath pipelined architecture is designed.
Chapter 3 Transceiver Architecture of MB-OFDM UWB System

The bottleneck for high-speed low-power FFT processor design is mainly related with several critical aspects:

1) The number and architecture of complex multipliers in each stage
2) The computational complexity of the mixed-radix algorithm
3) The system word-length for each calculation procedure

Therefore, careful design and optimization the structure of complex multipliers for different stages will not only lower the power, higher the speed, but also guarantee a good level of Signal to Quantization Noise Ratio (SQNR) performance.

3.3.6.1 Proposed mixed-radix FFT algorithm

To drive the proposed algorithm, n and k in (1) are determined by a four-dimensional linear index map:

$$X(k) = \sum_{n=0}^{N} x(n)W_N^{kn} \quad k = 0, 1, \ldots, N - 1 \quad (1)$$

$$n = 64n_1 + 16n_2 + 4n_3 + n_4 \quad \begin{cases} n_1 = 0, 1 \\ n_2, n_3, n_4 = 0, 1, 2, 3 \end{cases} \quad (18)$$

$$k = 32k_4 + 8k_3 + 2k_2 + k_1 \quad \begin{cases} k_1 = 0, 1 \\ k_2, k_3, k_4 = 0, 1, 2, 3 \end{cases} \quad (19)$$

Substitute (18) and (19) into (1), we can obtain (20) as follows

$$X(k) = \sum_{n=0}^{N} x(64n_1 + 16n_2 + 4n_3 + n_4)W_2^{n_1k_1}W_4^{k_1(16n_2+4n_3+n_4)}W_4^{n_2k_2}W_64^{k_2(4n_3+n_4)}W_16^{n_4k_3}W_4^{n_4k_4} \quad (20)$$

As it can be seen in (20), the 128-point FFT is changed into one radix-2 and three radix-4 stages. Therefore, stage-1 can be expressed by $S_1(n_2, n_3, n_4, k_1)$, which contains a radix-2 algorithm and a multiplication of twiddle factor $W_128^{k_1(16n_1+4n_3+n_4)}$, as shown in (21).
Design and Validation of an Optimized High-performance MB-OFDM Ultra Wideband Transceiver System

\[S_1(n_2, n_3, n_4, k_1) = \sum_{n_1=0}^{1} x(64n_1 + 16n_2 + 4n_3 + n_4)W_2^{n_1k_1}W_{128}^{(16n_2+4n_3+n_4)} \quad (21) \]

Further decompose \(n_2 \) and \(k_2 \) by using (22) and (23), stage-2, which can be expressed by \(S_2(n_3, n_4, k_1, k_2) \), can be represented by two radix-2 butterflies multiplied by twiddle factor of \(W_{64}^{k_2(4n_3+n_4)} \) as shown in (24).

\[n_2 = 2\alpha_1 + \alpha_2 \quad \alpha_1, \alpha_2 = 0,1 \quad (22) \]
\[k_2 = 2\beta_2 + \beta_1 \quad \beta_1, \beta_2 = 0,1 \quad (23) \]

\[S_2(n_3, n_4, k_1, k_2) = \sum_{\alpha_2=0}^{1} \sum_{\alpha_1=0}^{1} S_1(2\alpha_1 + \alpha_2, n_3, n_4, k_1)W_2^{\alpha_1\beta_1}W_4^{\alpha_2\beta_1}W_2^{\alpha_3\beta_2}W_{64}^{k_2(4n_3+n_4)} \quad (24) \]

By using the similar method, stage-3 \((S_3(n_4, k_1, k_2, k_3)) \) and stage-4 \((X(k)) \) can be represented as (25) and (26) respectively. Figure 3.14 is the signal flow of the proposed FFT algorithm.

\[S_3(n_4, k_1, k_2, k_3) = \sum_{\alpha_4=0}^{1} \sum_{\alpha_3=0}^{1} S_2(2\alpha_3 + \alpha_4, n_4, k_1, k_2)W_2^{\alpha_3\beta_3}W_4^{\alpha_4\beta_3}W_2^{\alpha_5\beta_4}W_{16}^{k_3n_4} \quad (25) \]

\[X(k) = \sum_{\alpha_6=0}^{1} \sum_{\alpha_5=0}^{1} S_3(2\alpha_5 + \alpha_6, k_1, k_2, k_3)W_2^{\alpha_5\beta_5}W_4^{\alpha_6\beta_5}W_2^{\alpha_6\beta_6} \quad (26) \]

where

\[\begin{align*}
& \{ \alpha_3, \alpha_4, \alpha_5, \alpha_6 = 0,1 \\
& \{ \beta_3, \beta_4, \beta_5, \beta_6 = 0,1 \\
\end{align*} \quad (27) \]
Figure 3.14 Signal Flow of proposed FFT algorithm
3.3.6.2 Architecture of the proposed FFT processor

According to the proposed algorithm, a four-parallel-path SDF pipelined processor architecture is proposed in this thesis. The block diagram of the proposed architecture is given in Figure 3.15.

Module 1 to 4 represents to stage-1 to stage-4 in signal flow respectively. **The function of Module 1 is to realize the radix-2 FFT algorithm, while Modules 2 to 4 realize the radix-2^2 FFT algorithm.**

As discussed above, the processing word length will have a great effect on the accurate of the FFT architecture, therefore, three types of word lengths are defined for the proposed system so as to discuss the word-length effect on the proposed FFT architecture: Input/Output Word-Length (IOWL), System Word-Length (SWL) and Twiddle Word-Length (TWL). The word length selection has been based on a detailed analysis so as to get suitable Signal to Quantization Noise Ratio (SQNR) for the proposed FFT processor, while maintaining the word length for each processing elements in minimum values.
Figure 3.15 Block diagram of proposed four-parallel-path 128-point mix-radix FFT processor
Module 1 architecture

The Module 1 is implemented by using radix-2 butterfly architecture. Module 1 consists of four register files (each can store 16 pieces of complex data), two complex Booth’s multipliers, four radix-2 Butterfly Units (BUs), two Read Only Memory (ROM) and some multiplexers. The function of ROM is to restore the Twiddle Factors (TWs) for $W_k^{(1602+4n_3+n_4)}$. Only 1/8 periods of the cosine and sine waveforms are stored in the ROM for the proposed Module 1 structure, while the other 7/8 values is generated by using these 1/8 values. Because the cosin and sin functions have the periodical property.

During the first 16 clock cycles, the first 64 input data ($x(n)$ to $x(n+63)$) are restored in the register file according to the input order. Then from the 17th clock cycle, the BUs begin to execute the complex addition and subtraction between $x(n)$ and $x(n+64)$ during the next 16 clock cycles. At this point, all the 128 points have been processed by the radix-2 BUs. The results of addition ($x(i)$) will then be fed to Module 2 directly as no multiplications are needed for those signals according to the proposed algorithm, while the results of subtraction ($y(i)$) are firstly multiplied by the corresponding TWs and then stored into the register files before they are sent to Module 2.

Four complex multipliers are needed in the four-parallel-path approach to implement the radix-2 FFT algorithm, thus the utilization rate of the complex multiplier is only 50% because no multiplications are needed for the addition results. However, in the proposed architecture of this thesis, as Module 2 needs 32 clock cycles to process $x(i)$ (will be illustrated later), the complex multiplier can be shared for four paths separately during these 32 cycles by using the folding technology with a folding factor of two. The detailed operation is described below.

When $y(i)$ are generated from BUs, two paths of $y(i)$, $y(0)$ and $y(1)$, are multiplied by the appropriated twiddle factors first, while $y(2)$ and $y(3)$ are feeding to the register files directly. 16 clock cycles later, other two paths, $y(2)$ and $y(3)$, are picked out for multiplication, and then be fed to Module 2 at the same time with the multiplication results of $y(0)$ and $y(1)$. By using this rescheduling
architecture, only two complex multipliers are needed, thus 50% of multipliers are saved and a 100% utilization rate of the multipliers is achieved.

Module 2 architecture

Module 2 is implemented by using radix-2^2 algorithm.

Module 2 consists of four-parallel-path radix-2^2 SDF architectures and one complex multiplier block for the TW of $W_{64}^{^H}$ as shown in Figure 3.16. As it can be seen in Figure 3.15, the output data generated by the BU between the first step and second step should be multiplied by a twiddle factor of j, which can be implemented efficiently by just exchanging the real part and imaginary part with each other. In order to simplify the complexity of the complex multipliers in this stage, a further modification is made based on the approach proposed in [Maharatna’04].

![Figure 3.16 Modified Complex Multiplier](image)

The twiddle factors of the modified complex multiplier are

$$W_{64}^p = \exp\left(-\frac{j2\pi p}{64}\right) = X_p - jY_p$$
Where

\[X_p = \cos \left(\frac{2\pi p}{64} \right) \]
\[Y_p = \sin \left(\frac{2\pi p}{64} \right) \]

and \(p \) is from 0 to 45.

The 64 twiddle factors can be divided into eight regions as shown in Figure 3.17. Region A consists of values with \(p \) from 0 to 8, the values in other seven regions can be represented by transforming the data of region A according to Table 3-1. Therefore, through the mapping method, only nine sets of constant values are needed. In practice, only eight sets of constant values are necessary to be implemented in region A, since the first pair of constant values (1, 0) is trivial. In addition, these constant values can be realized more efficiently by using 8-bit shift-add multipliers [Maharatna’04].

![Figure 3.17 Twiddle factor of 64 can be divided into eight regions](image)

<table>
<thead>
<tr>
<th>Region</th>
<th>Real</th>
<th>Imaginary</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ((p=x^*))</td>
<td>(X_p)</td>
<td>(-Y_p)</td>
</tr>
<tr>
<td>B ((p=16-x))</td>
<td>(Y_p)</td>
<td>(-X_p)</td>
</tr>
<tr>
<td>C ((p=x-16))</td>
<td>(-Y_p)</td>
<td>(-X_p)</td>
</tr>
<tr>
<td>D ((p=32-x))</td>
<td>(-X_p)</td>
<td>(-Y_p)</td>
</tr>
<tr>
<td>E ((p=x-32))</td>
<td>(-X_p)</td>
<td>(Y_p)</td>
</tr>
<tr>
<td>F ((p=48-x))</td>
<td>(-Y_p)</td>
<td>(X_p)</td>
</tr>
</tbody>
</table>
The Table 3-2 shows the schedule of the twiddle factors for the four paths. The table only shows 16 clock cycles because the values of twiddle factors are repeated every 16 cycles for the proposed algorithm. After mapping according to Table 3-1, the results of the coefficient value and corresponding regions are shown in Table 3-3 and Table 3-4. It can be clearly seen from Table 3-3 that the twiddle factor of four paths in each time slot has different values, except for the first 4 cycles, during which no multiplications are needed. As it can be seen from the block diagram of the complex multiplier in Figure 3.16, when the inputs come in the first module of the optimized multiplier, the four paths data are mapped into different complex constant multipliers according to the schedule in Table 3-3. After the multiplications, the regions are selected at the second module according to Table 3-4 and Table 3-1. By using the modified complex multiplier, the system is much simpler, efficient in time and energy as only few registers and adders are needed for hardware implementation according to the structure.

Table 3-2 Scheduling of the twiddle factor, W_{64}^x, where x is the value shown in the table

<table>
<thead>
<tr>
<th>Path No.</th>
<th>Value of x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 0 0 0 0 8 16 24 0 12 24 36 0 4 8 12</td>
</tr>
<tr>
<td>2</td>
<td>0 0 0 0 2 10 18 26 3 15 27 39 1 5 9 13</td>
</tr>
<tr>
<td>3</td>
<td>0 0 0 0 4 12 20 28 6 18 30 42 2 6 10 14</td>
</tr>
<tr>
<td>4</td>
<td>0 0 0 0 6 14 22 30 9 21 33 45 3 7 11 15</td>
</tr>
</tbody>
</table>

Table 3-3 Scheduling of the twiddle factor after mapping

<table>
<thead>
<tr>
<th>Path No.</th>
<th>Schedule of twiddle factor value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 0 0 0 0 8 0 8 0 4 8 4 0 4 8 4</td>
</tr>
<tr>
<td>2</td>
<td>0 0 0 0 2 6 2 6 3 1 5 7 1 5 7 3</td>
</tr>
<tr>
<td>3</td>
<td>0 0 0 0 4 4 4 4 6 2 2 6 2 6 6 2</td>
</tr>
<tr>
<td>4</td>
<td>0 0 0 0 6 2 6 2 7 5 1 3 3 7 5 1</td>
</tr>
</tbody>
</table>
Table 3-4 Scheduling of the region after mapping

<table>
<thead>
<tr>
<th>Path No.</th>
<th>Region No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A A A A A A B C A B C E A A A B</td>
</tr>
<tr>
<td>2</td>
<td>A A A A A B C D A B D E A A B B</td>
</tr>
<tr>
<td>3</td>
<td>A A A A A B C D A C D F A A B B</td>
</tr>
<tr>
<td>4</td>
<td>A A A A A A B C D B C E F A A B B</td>
</tr>
</tbody>
</table>

Compared with the complex multiplier in [Lin’05], the proposed multiplier uses one less constant multiplier. Besides, the constant multipliers can be realized more efficiently by using adders and shifters, which will be discussed later.

Module 3 architecture

Module 3 is implemented by using radix-2^2 algorithm.

Module 3 consists of four-parallel-path radix-2^2 Singlepath Delay Feedback (SDF) pipelined architecture and only three substructure-sharing multiplication units for Twiddle Factor W_{16}^{nk} according to the proposed algorithm, which is one less than that in [Cho’10]. According to (18) and (25),

\[
n = 64n_1 + 16n_2 + 4n_3 + n_4 \quad \quad n_1 = 0, 1; n_2, n_3, n_4 = 0, 1, 2, 3
\]

\[
S_3(n_4, k_1, k_2, k_3) = \sum_{a_4=0}^{1} \sum_{d_3=0}^{1} S_2(2a_3 + a_4, n_4, k_1, k_2) W_2^{a_3b_3} W_4^{a_4b_4} W_4^{a_4b_4} W_4^{k_3n_4}
\]

The variables of twiddle factor are n_4, k_i, and n_4 varies from 0 to 3, the first line are the computation of data expressed by $x(4m)$, in which $n_4=0$. As a result, the first path does not need to be multiplied by any twiddle factor of W_{16}^{nk}, which obviously will reduce the hardware cost as well as the power consumption. Furthermore, as the TWL of the proposed FFT is 2 bits less than that of [Lin’05] and [Cho’10], fewer additions are needed for the shift-add multipliers, the hardware cost is reduced, and the speed is improved.

The three complex multipliers in module 3 are called as TCM_1, TCM_2, and TCM_3 for the lower three paths. Table 3-5 is the time schedule of TCM_1, TCM_2, and TCM_3, the value in the table represents to p in W_{16}^p, the table shows that the values of the twiddle factors repeat every 4 clock cycles. Besides, $W_{16}^0 =$
1, which is trivial multiplication, therefore only 3 twiddle factors should be implemented in each multipliers. According to Table 3-5, the coefficients that are needed to represent all the twiddle factors can be calculated in each multiplier. Table 3-6 is the coefficient table which shows that TCM_1 and TCM_3 require three coefficients, whereas TCM_2 needs only one coefficient.

<table>
<thead>
<tr>
<th>Table 3-5 Time Schedule for TCM_1, TCM_2 and TCM_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM_1</td>
</tr>
<tr>
<td>TCM_2</td>
</tr>
<tr>
<td>TCM_3</td>
</tr>
</tbody>
</table>

Table 3-6 Coefficient Table

TCM_1	$\frac{\pi}{4}$, $\cos\frac{\pi}{8}$, $\sin\frac{\pi}{8}$
TCM_2	$\cos\frac{\pi}{4}$
TCM_3	$\frac{\pi}{4}$, $\cos\frac{\pi}{8}$, $\sin\frac{\pi}{8}$

The architecture of TCM1 is shown in Figure 3.18. TCM1_S1 controls whether to exchange the real part with the imaginary part at the input, acts as the twiddle factor of j. TWD1 in Figure 3.18 is the coefficient multiplier which multipliers the input by $\cos\frac{\pi}{4}, \cos\frac{\pi}{8}, \sin\frac{\pi}{8}$, at the same time, the three outputs are selected by control signal TCM1_S2. Finally, the computed results are selected by TCM1_S3. The control signals corresponding to twiddle values for TCM_1 are listed in Table 3-7. The TWD1 multiplier is realized by using the proposed shift-add sharing architecture, which will be discussed later.
The structure of TCM_2 is presented in Figure 3.19. TWD2 multiplies the inputs by coefficient $\cos \frac{\pi}{4}$. TCM2_S is in charge of selecting the output results based on the twiddle factor schedule. Table 3-8 shows the control signal for TCM2_S. The detailed structure of TWD2 will also be discussed later.
Figure 3.19 Architecture of TCM_2

Table 3-8 Control signals in TCM_2

<table>
<thead>
<tr>
<th>P</th>
<th>TCM2_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

The architecture of TCM_3 at the fourth line is depicted in Figure 3.20, with the structure similar as TCM_1. Three different coefficients are also needed for this path. Table 3-9 shows the assignment of control signals for each multiplexer (TCM3_S1, S2 and S3).

Figure 3.20 Architecture of TCM_3
Table 3-9 Control signals in TCM_3

<table>
<thead>
<tr>
<th>TWD exponent</th>
<th>TCM3_S1</th>
<th>TCM3_S2</th>
<th>TCM3_S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

According to the figures above, it is clear to see that TCM_2 costs less hardware than TCM_1 and TCM_3, as less twiddle factor multiplications are needed.

Module 4 architecture

Module 4 is also implemented by using radix-2^2 algorithm.

The architecture of module 4 is different from that of module 2 and module 3. As the variables of this module are n_4, k_4, the four outputs of module 3 with different n_4 should be reorganized in different data path in order to operate as radix-2^2 algorithm. Therefore, module 4 has two stages of radix-2 Butterfly Units (BUs), only one twiddle factor of ‘j’ is needed which can be implemented by exchanging the real part and imaginary part of the incoming complex data.

3.3.6.3 Architecture Pre-check in SIMULINK

In order to ensure that the proposed algorithm as well as the designed architecture is correct and suitable for MB-OFDM system application, the SIMULINK of MATLAB [MathWorks] is used in this thesis to build and verify the proposed architecture before the final hardware implementation. Figure 3.21 is the system block diagram which consists of a data generator block, module 1, module 2, module 3, module 4 and a check module for verifying the processing results according to the proposed system architecture as illustrated above. Furthermore, all the blocks that used for building this block diagram are using the fixed-point tool box provided by SIMULINK library.
In Figure 3.21, mul_64 and mul_16 are the complex multipliers in module 2 and module 3 respectively. The integer delay modules are the control signals indicate when a module is executed. As it can be seen from the output results, at the 32nd clock cycle, the first group of data is obtained. Then 32 clock cycles later, all the 128 samples within one OFDM symbol are collected, means one entire OFDM symbol has been successfully processed. Thus total 64 clock cycles are necessary to simulate the entire 128-point check sequence.

The four-parallel-path butterfly units that are built for module 1 are shown in Figure 3.22, the structure of radix21, radix22, radix23 and radix24 are the same as radix-2 BU. The BU processing is molded by using the state-flow block provided by SIMULINK library, which is very convenient to use and easy to understand, as it can be seen in Figure 3.23.

When the enable signal is not valid (‘0’ in this situation), the radix-2 BU directly assign the values of inputs to its outputs. Otherwise, it acts as a radix-2 butterfly unit.
The four-parallel-path radix-2^2 modules in module 2 are shown in Figure 3.24, with the detailed structure is shown in Figure 3.25, which is exactly the same as the module 2 in Figure 3.15. Figure 3.26 is the architecture of Module 4.
Figure 3.24 Four parallel radix-2^2 subsystem in Module 2

Figure 3.25 Block diagram of radix-2^2 subsystem
The data generator block in Figure 3.21 takes charge of generating the test sequences for the proposed FFT architecture. In order to ensure that the proposed FFT processor is suitable for the MB-OFDM system, the random OFDM symbol simulation sequence has exactly the same property with that specified by the MB-OFDM UWB standard. Figure 3.27 is a generated OFDM frame of 128 point long. The verification procedure is done by comparing the output results, collected by the ‘check’ block in Figure 3.21, with the results provided by embedded FFT function in MATLAB. Total number of 42 groups of OFDM symbols has been generated automatically for testing the proposed architecture. Once the results of the proposed FFT processor are the same with that of the embedded FFT function, which means the proposed FFT algorithm as well as the architecture is correct. Figure 3.28 (a) is the result computed by embedded FFT function in MATLAB, and (b) is the result computed by the proposed architecture. Figure 3.29 shows the error of the proposed architecture compared with the embedded MATLAB FFT function. Figure 3.29 indicates that the error of the proposed algorithm has an order of 10^{-16}, which is very small. As a result, it’s demonstrated that the proposed FFT architecture in this thesis is correct.
Figure 3.27 Generated Input Sequence

Figure 3.28 (a) Output of Embedded MATLAB FFT function, (b) Output of the proposed FFT architecture
Overflow Control and Word-length Decision

As it has been discussed before, when implementing the 128-point FFT algorithm on hardware, not only the bit length but also the way dealing with overflow will affect the processing accuracy, computing complexity and hardware resource usage of the FFT/IFFT processor. Therefore, proper bit length and overflow arithmetic into account must be taken when making the hardware implementation of the proposed processor. The work in [Lin’05], [Cho’10] and [Sherratt’05] do not mention how to handle overflow problem either the bit-length for integer part and fractional part, while paper [Insalata’07] discusses about Block Floating Point (BFP) and Convergent BFP (CBFP) arithmetic to handle the overflow for the FFT processor. Armstrong, J. et al. [Armstrong’04] propose a novel method to obtain a better accuracy. In this section the overflow control and word-length decision that is made for the proposed FFT processor will be discussed.
3.3.6.4.1 Overflow Control

For the MB-OFDM systems, the OFDM modulation is done by using IFFT processor on the transmitter side, while FFT acts as a de-OFDM-modulator on the receiver side. The data will be transformed through time-domain and frequency-domain through this procedure. Figure 3.30 is the signal flow of transmitter and receiver in view of FFT and IFFT for MB-OFDM system:

\[
\begin{array}{c}
Q(n) \\
\text{IFFT} \\
q(k) \\
\text{CHANNEL} \\
q'(k) \\
\text{FFT} \\
Q'(n)
\end{array}
\]

Figure 3.30 Transmitter to receiver in view of FFT/IFFT

As introduced before, the first stage of FFT processor operates the radix-2 algorithm which can be explained by Figure 3.31.

\[
\begin{array}{c}
q(k) \\
q(k + \frac{N}{2})
\end{array}
\]

Figure 3.31 Radix-2 butterfly unit

Accordingly, we have:

\[
a = q(k) + q\left(k + \frac{N}{2}\right) = \frac{1}{N} \sum Q^*(n)W_N^{nk} + \frac{1}{N} \sum Q^*W_N^{nk}(-1)^n \\
b = q(k) - q\left(k + \frac{N}{2}\right) = \frac{1}{N} \sum Q^*(n)W_N^{nk} - \frac{1}{N} \sum Q^*W_N^{nk}(-1)^n
\]

(28)

(29)

Therefore,

\[
a = \frac{2}{N} \left(\sum Q^*(2n_1)W_N^{2nk} \right)^*, \quad n_1 = 0, 1, ..., \frac{N - 2}{2}
\]

(30)

\[
b = \frac{2}{N} \left(\sum Q^*(2n_1 + 1)W_N^{2nk} \right)^*, \quad n_1 = 0, 1, ..., \frac{N - 2}{2}
\]

(31)

At this point, the maximum value for both real part and imaginary part of \(a\) and \(b\) can be estimated as follows:
\[
\max(Re(a)) = \max(Im(a)) < \frac{2}{N} \sum_{n=0}^{N-2} 1 = 1 \quad (32)
\]

\[
\max(Re(b)) = \max(Im(b)) < \frac{2}{N} \sum_{n=0}^{N-2} 1 = 1 \quad (33)
\]

Therefore, according to the expressions of (32) and (33), overflow will not happen at stage 1 for the proposed FFT algorithm. By using the similar method, it can be concluded that with acceptable AWGN, overflow will not happen in all the stages of the FFT processor for the MB-OFDM receiver system. But on the other hand, IFFT processor will suffer the overflow errors a lot. Therefore, the BFP algorithm for IFFT at transmitter is chosen to control overflow (will be discussed in section 3.3.7), while FFT at the receiver does not need to control overflow.

3.3.6.4.2 Word-Length Decision

To properly choose the word length for the proposed FFT architecture, the fix-point toolbox of MATLAB is used to simulate the already built SIMULINK architecture.

First of all, a data package is generated. It contains 18 different OFDM symbols according to [ISO/IEC 26907’09], and then it is expanded to 36 symbols as time-domain spreading is required, 6 channel estimation symbols are also added in front. To experimental simulate the receiver system, the data packet is computed using the embedded IFFT MATLAB function, then the outputs will be the input stream of the FFT architecture. Secondly, by varying internal word length from 8 to 11 bits, different output SQNR performances for the proposed FFT processor can be obtained. Figure 3.32 to Figure 3.36 show the SQNRs when IOWL=SWL=TWL ranging from 8 to 12.
Chapter 3

Figure 3.32 SQNR of Proposed FFT (IOWL=SWL=TWL=8 bits)

Figure 3.33 SQNR of Proposed FFT (IOWL=SWL=TWL=9 bits)
Figure 3.34 SQNR of Proposed FFT (IOWL=SWL=TWL=10 bits)

Output SQNR of Proposed FFT processor (IOWL=SWL=TWL=10 bits)

Figure 3.35 SQNR of Proposed FFT (IOWL=SWL=TWL=11 bits)

Output SQNR of Proposed FFT processor (IOWL=SWL=TWL=11 bits)
Figure 3.36 SQNR of Proposed FFT (IOWL=SWL=TWL=12 bits)

Figure 3.37 SQNR of Proposed FFT (IOWL=6 SWL=11 TWL=11 bits)
As it can be seen from the figures, the SQNRs are different with each other because the structures of the symbols are different. The average SQNR increases as the word length increases. The simulation result of $\text{IOWL}=6$, $\text{SWL}=\text{TWL}=11$ as [Sherratt’05] is shown in Figure 3.37, the average SQNR is 27.4 dB, which means the BER of UWB communication system is good enough when the SQNR is more than 27.4 dB. This is a trade-off between system accuracy and hardware cost. In [Insalata’07], the SQNR reaches 35 dB when internal bit length equals to 10. According to the simulation based on the proposed architecture, the SQNR will reach up to 36.7 dB when the processing bit length equals to 10 bits. Besides, as discussed by [Sherratt’05], the module next to OFDM requires at least 12 bits to give the same order of performance as implementing of floating-point, keep the IOWL and SWL as 10 bits, but reduce the TWL to 8 bits to lower the SQNR, as it can be seen in Figure 3.38, the average SQNR is then 34.1 dB provided by the proposed FFT processor, which still satisfies the UWB requirement. Table 3-10 summarizes the simulation results for different word lengths.
Table 3-10 Output SQNR summary table

<table>
<thead>
<tr>
<th>IOWL,SWL,TWL(bit)</th>
<th>8,8,8</th>
<th>9,9,9</th>
<th>10,10,10</th>
<th>11,11,11</th>
<th>12,12,12</th>
<th>6,11,11</th>
<th>10,10,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst output SQNR (dB)</td>
<td>23</td>
<td>30.6</td>
<td>35.6</td>
<td>41.5</td>
<td>47.5</td>
<td>26.6</td>
<td>33.3</td>
</tr>
<tr>
<td>Best output SQNR (dB)</td>
<td>24.5</td>
<td>33.1</td>
<td>38.4</td>
<td>44</td>
<td>49.9</td>
<td>27.9</td>
<td>34.7</td>
</tr>
<tr>
<td>Average SQNR (dB)</td>
<td>24.0</td>
<td>30.8</td>
<td>36.7</td>
<td>42.6</td>
<td>48.5</td>
<td>27.4</td>
<td>34.1</td>
</tr>
</tbody>
</table>

Once the word length and overflow control arithmetic are decided, the proposed architecture of the coefficient multipliers (TWD1 and TWD2) can be designed for module 3. The MATLAB fix-point tool box is used to compute the 8 bits binary value for those coefficients in TWD1 and TWD2, Table 3-11 shows the 2’s complement values of the coefficients for TWD1 in TCM_1 and TCM_3. It is noticed that the binary values of a, b and c have some parts in common, that can be used to reduce the hardware cost. The binary values are decomposed to find the sharing parts. The architecture of TWD1 is shown in Figure 3.39. As it can be seen, the sharing architecture in TWD1 uses 6 shifters and 5 adders, however if the coefficient multipliers are built separately, the hardware cost will be twice as much as that of the proposed sharing architecture.

Table 3-11 8 bits binary of the coefficients and decomposition (for TCM_1 and 3)

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>2’s complement</th>
<th>2’s complement decomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a = \cos \frac{\pi}{8}$</td>
<td>01110110</td>
<td>00110110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01000000</td>
</tr>
<tr>
<td>$b = \sin \frac{\pi}{8}$</td>
<td>00110001</td>
<td>00110000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000001</td>
</tr>
<tr>
<td>$c = \cos \frac{\pi}{4}$</td>
<td>01011011</td>
<td>00110111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01000000</td>
</tr>
</tbody>
</table>
As TWD2 only consists of one coefficient multiplier, the decomposition method would be different from that of TWD1, Table 3-12 shows the decomposition for the coefficient of $\cos\frac{\pi}{4}$.

Figure 3.40 is the architecture of TWD2, which is implemented by using 4 shifters and 3 adders.

Table 3-12 8 bits Binary value of the coefficients and decomposition (for TCM_2)

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>2’s complement</th>
<th>2’s complement decomposition</th>
</tr>
</thead>
</table>
| $\cos\frac{\pi}{4}$ | 01011011 | 01011010
| | | 00000001 |

Figure 3.40 Architecture of TWD2

The eight constant multipliers in CM2 are also realized by using shifters and adders, Table 3-13 is the decomposition of those constants in terms of power of 2. Compared with traditional multiplier architecture, the add-shift methodology has the advantage of both low power consumption and high processing speed.
Table 3-13 Decomposition of Twiddle factor W_{64}^{i} in power of 2

<table>
<thead>
<tr>
<th>Const</th>
<th>Real part</th>
<th>Imaginary part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1 - 2^{-7}$</td>
<td>$2^{-4} + 2^{-5} + 2^{-7}$</td>
</tr>
<tr>
<td>2</td>
<td>$1 - 2^{-6}$</td>
<td>$2^{-3} + 2^{-4} + 2^{-7}$</td>
</tr>
<tr>
<td>3</td>
<td>$1 - 2^{-3} + 2^{-6}$</td>
<td>$2^{-2} + 2^{-5} + 2^{-7}$</td>
</tr>
<tr>
<td>4</td>
<td>$1 - 2^{-3} + 2^{-6}$</td>
<td>$2^{-2} + 2^{-3} + 2^{-7}$</td>
</tr>
<tr>
<td>5</td>
<td>$2^{-1} + 2^{-2} + 2^{-3} + 2^{-7}$</td>
<td>$1 - 2^{-1} - 2^{-5}$</td>
</tr>
<tr>
<td>6</td>
<td>$1 - 2^{-1} - 2^{-5} - 2^{-6}$</td>
<td>$2^{-1} + 2^{-5} + 2^{-6} + 2^{-7}$</td>
</tr>
<tr>
<td>7</td>
<td>$2^{-1} + 2^{-2} + 2^{-6} + 2^{-7}$</td>
<td>$2^{-1} + 2^{-3} + 2^{-7}$</td>
</tr>
<tr>
<td>8</td>
<td>$1 - 2^{-2} - 2^{-5} - 2^{-7}$</td>
<td>$1 - 2^{-2} - 2^{-5} - 2^{-7}$</td>
</tr>
</tbody>
</table>

3.3.6.5 Experimental Results of Final Implementation

After the algorithm, architecture proposal, and final word-length decision for each block, a manually optimized implementation in by using Verilog HDL code for the proposed FFT processor has been obtained. By using the proposed Hardware-in-the-loop co-simulation methodology (will be explained in Chapter 0), the hardware model is verified and the output SQNRs of different input data are calculated, with the average SQNR of 34 dB. The SQNR of real FPGA implementation is shown in Figure 3.41.

![Figure 3.41 SQNR of proposed FFT processor for hardware implementation](image.png)
In order to compare the implementation result of proposed FFT processor with previous ones in [Lin’05] and [Cho’10], at the end, by using Synopsys tools, the proposed FFT architecture is synthesized using the UMCL130E 0.13 µm CMOS technology with a supply voltage of 1.32 V. Table 3-14 compares the implementation results of the proposed FFT processor with two of the existing works. It indicates that the proposed FFT processor can support a data processing rate of 1 Gsample/s with power dissipation of only 43.79 mW at 250 MHz processing frequency. In order to compare the power consumption with [Lin’05] and [Cho’10], which use 0.18 µm technology, the power consumption might be multiplied by a factor of around 1.4, thus is 61 mW, which saves around 65% and 50% of energy respectively.

Table 3-14 Comparison synthesis results of the FFT processor

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Proposed algorithm</th>
<th>Y. W. Lin et al. [Lin’05]</th>
<th>Sang-In Cho et al. [Cho’10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS Technology Library (nm)</td>
<td>130</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>Working Frequency(MHz)</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Equivalent 2*1Nand Gate Count</td>
<td>80,424</td>
<td>N/A</td>
<td>80,100</td>
</tr>
<tr>
<td>Dynamic Power (mW)</td>
<td>43.79</td>
<td>175</td>
<td>112</td>
</tr>
</tbody>
</table>

Table 3-15 compares the hardware complexity of the proposed FFT architecture with the architectures proposed in [Lin’05] and [Cho’10]. In the proposed architecture, only 3 trivial multipliers are needed, their complexities are reduced because of the property of data stream and the sharing structure is employed. As a result, the hardware cost of the three trivial multipliers is 40% of [Cho’10] and 63.7% of [Lin’05]. CM2 not only uses less constant complex multiplier than that of [Lin’05], but also the word-length of the twiddle factor is two bits less. Besides, the multipliers at stage 1 employ Booth’s algorithm, thus the hardware cost of nontrivial multipliers is 75% of [Lin’05].
Table 3-15 Comparison of the 128-point FFT architecture

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Proposed algorithm</th>
<th>Sang-In Cho et al. [Cho’10]</th>
<th>Y. W. Lin et al. [Lin’05]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>radix-2, 2×radix-2^2</td>
<td>modified radix-2^4, radix-2^3</td>
<td>radix-2, 2×radix-2^3</td>
</tr>
<tr>
<td>No. of complex registers</td>
<td>124</td>
<td>124</td>
<td>124</td>
</tr>
<tr>
<td>No. of nontrivial</td>
<td>4×0.55+2×0.58</td>
<td>4×0.6</td>
<td>2+4×0.62</td>
</tr>
<tr>
<td>multipliers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of trivial multipliers</td>
<td>2×1.5+1×0.82</td>
<td>4×1.97+2×0.82</td>
<td>6</td>
</tr>
<tr>
<td>No. of complex adders</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Throughput rate (R: clock rate)</td>
<td>4R</td>
<td>4R</td>
<td>4R</td>
</tr>
</tbody>
</table>

3.3.7 Proposed IFFT Processor

3.3.7.1 IFFT Algorithm

As is known to all, the IFFT of an N-point sequence, \(X(k) \), where \(k=0,1, \ldots, N-1 \), is defined as

\[
X(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)W^{-nk}
\]

(34)

If take the complex conjugate of (34) expressed as (35), the equation (36) can be obtained as

\[
X^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X^*(k)W^{nk}
\]

(35)

\[
X(n) = \frac{1}{N} \left\{ \sum_{k=0}^{N-1} X^*(k)W^{-nk} \right\}^*
\]

(36)

According to (36), the IFFT function is the conjugate of the FFT function with the conjugate input sequence of \(X^*(k) \), and then divided by \(N \). Figure 3.42 is the architecture of the IFFT processor by using the FFT processor:
This architecture of IFFT gives us a possibility of design an IFFT processor by using the already designed FFT architecture and adding some simple control logic. However, due to the differences in properties of input data between FFT and IFFT, the BFP algorithm should be used to control the overflow for IFFT processor, as discussed in previous section. The overflow problem for an IFFT processor can be analyzed as follows.

According to the format of OFDM symbols introduced for the input of IFFT, the range of output data can be estimated. In MB-OFDM UWB transmitter system, the QPSK modulator is mostly used for normalizing the amplitude of its output data, therefore, at the input of IFFT we have the input signal with the value for real and imaginary part of:

$$|Re(IFFT(i))| = |Im(IFFT(i))| \leq \frac{1}{\sqrt{2}}$$ \hspace{1cm} (37)

According to the data structure of OFDM symbol, there are 6 zeros in IFFT input, at least two pairs of pilot have the opposite signs in both real and imaginary parts, to find the maximum value for real and imaginary parts for the output results, (38) and (39) can be got.

$$128 \cdot Max(|Re(Out(i))|) = 128 \cdot Max(|Im(Out(i))|) \leq \frac{128 - 6 - 2}{\sqrt{2}}$$ \hspace{1cm} (38)

$$128 \cdot Max(|Re(Out(i))|) = 128 \cdot Max(|Im(Out(i))|) \leq 84$$ \hspace{1cm} (39)

The value of ±84 can be represented in binary by using a 8 bits width signal, which means the output of the IFFT module needs at least 8 integer bits to keep...
a good precision. Then overflow is likely to happen if there isn’t any control for each module in the proposed IFFT processor is made. Besides, it should be noticed that the overflow happens only because of the adders in the IFFT processor. Multiplications will not cause the overflow errors because all the twiddle factors have the values that are less than one.

In order to avoid such kind of errors caused by overflow, while still maintain the IOWL and SWL unchanged, the Block Floating Point (BFP) algorithm is introduced into the proposed IFFT processor. BFP arithmetic associates an exponent to data such that a single System Word-Length (SWL) value can be used for the whole architecture [Insalata’07]. Output data at each stage are scaled down (right shift) by a factor of four in radix-4 stages and by a factor of two in the optional radix-2 stage. The exponent field is implicit because the number of total shifts occurred is known which is related to the number of stages in the architecture.

In the proposed architecture, 7 stages of radix-2 BU are used to calculate IFFT function, the BFP arithmetic can be employed to scale down the results of each stage by a factor of two (right shifting 1 bit). Then at the end, the output results will not need to be divided by 128 again because 128=2^7. By doing this, the overflow problem will also not occur. On the contrary, when the possibility of overflow is low, the BFP will reduce the accuracy of IFFT processing. The work in [Armstrong’04] proposed a new technique to scale results during processing, which is achieved by use scaling factors of 1 and 0.5 at alternate stages, although it obtain better accuracy than BFP algorithm, it is strongly depend on the structure of OFDM symbol. Therefore, based on the proposed IFFT processor in the present work, an analysis on the effect of scaling down the signals on either input or output port, and whether to round up the results after right shifting was made based on the BFP arithmetic.

3.3.7.2 BFP Consideration

When implementing BFP arithmetic into the proposed IFFT processor, several factors should be taken into account. Such as, should shift right the signal before or after each radix-2 Butterfly Unit (BU) procedure? Should rounding up the
number after right shifting be considered? Should these facts be taken into account for all the four steps, or just for some of them? Which factor has strongest effect for IFFT processor? In order to analyze the effects of BFP in different situations, several experimental tests were made for the proposed IFFT hardware implementation. Six different shifting strategies have been considered and simulated, and the experimental results are shown below. The six shifting strategies are listed and named as follows:

1) **Shift right AFTER BU processing**: The processing results of each BU will be shifted right by one bit after each BU computation.

2) **Shift right BEFORE BU processing**: The signals will be shifted right by one bit before each BU function.

3) **Stage 1 BEFORE and other stages AFTER**: The input signals will be shifted right by one bit before the BU elements in stage 1 of the proposed structure; while for the other three stages (stage 2 to stage 4), the results of each BU will be shifted right by one bit after BU processing.

4) **Stage 1 BEFORE and other stages AFTER, ROUNDING the number**: Based on the strategy of (3), all the shifted numbers (no matter before or after BU processing) will be rounded up.

5) **Stage 1 ROUNDING for negative number and other stages AFTER**: Based on the strategy of (3), further testing will be based on rounding up the negative signals after right-shifting only in Stage 1.

6) **Stage 1 ROUNDING for all number and other stages AFTER**: Based on (4), this time all the numbers (both negative and positive) will be rounded up for Stage 1 processing after right-shifting.

The results and discussion of these five strategies are shown below.

3.3.7.2.1 Shift right AFTER BU processing

The first strategy takes into consider is right shift the radix-2 BUs’ output results by one bit (divide by 2) after each BU element. This should be the most common strategy when researchers considering using BFP arithmetic. By using this
strategy for the proposed IFFT processing, all the Processing Word-Length (PWL) for each BU in the proposed system should be 11-bit width, while the Input/Output Word-Length (IOWL) for each BU is still 10-bit width. The theory is to calculate the butterfly by extending the input signal to 11-bit width and then processing this data by using 11-bit adder/subtractor. Then the 11-bit width add/sub results should be shifted right by one bit (divide by 2), transform to 10-bit width again, before they will be feed into the next processing element. By doing so, the other processing element can maintain the same value of System Word-Length (SWL) as the proposed FFT processor, no further modification is needed and the avoid overflow errors for the IFFT processor can still be avoided. The SQNR of the hardware implementation results in this strategy is shown in Figure 3.43, with the output waveform compared with the embedded IFFT function waveform in Figure 3.44.

Figure 3.43 SQNR for shift right AFTER BU
As it can be seen in this two figures, the average SQNR in this processing situation is only 16.25 dB, which is far away from satisfying the UWB requirement, and the output waveform also contains too many errors. Therefore, by this means, other scheme and doing some modification for the proposed architecture should be considered to use so as to increase the SQNR requirement.

3.3.7.2.2 Shift right BEFORE BU processing

Then the strategy of dealing with the input signal for each BU before add/sub calculations is considered. The IOWL and PWL for each BU maintain 10-bit width. Before add/sub processing, firstly shift right of each input signal by one bit, and then extend the sign bit of each signal by one bit so as the proposed architecture can still have a 10-bit width data for BU \((\text{datain}[9:0] \Rightarrow \text{datain}[9, \text{datain}[9:1]]) \). Then, the overflow errors will be avoided according to the analyzing before, an IFFT processor without any further modification and
control for the entire FFT processor can still be got. The SQNR of the proposed IFFT processor is shown in Figure 3.45.

![SQNR for shift right BEFORE BU](image)

Figure 3.45 SQNR for shift right BEFORE BU

The average SQNR has been increased to 26.17 dB in this situation, which already meets the specification of UWB. But it is still not good enough for the MB-OFDM system presented in this thesis, and the present work would like to find out which stage in the proposed architecture has the strongest affect on the performance of SQNR, therefore a future modification was made as follows.

3.3.7.2.3 Stage 1 BEFORE and other stages AFTER

In order to find out which stage has the strongest effect on the performance of the proposed IFFT processor, analyzing the system stage by stage for the proposed architecture is made. In this section the strategy of shifting right before BU for the first stage (Module 1) of IFFT processor, while other stages (Module 2~4) using the shift-after-BU scheme is considered. The method of shifting for either before or after is the same as have been discussed in 3.3.7.2.1 and 3.3.7.2.2.
By doing this, the SQNR performance for the IFFT hardware implementation is shown in Figure 3.46.

As it can be seen in Figure 3.46, by only changing the processing order for stage 1, an average SQNR of 26.79 dB is get, which is also better than the performance in 3.3.7.2.1. This means the proposed architecture strongly depends on the performance of the first stage, other stages have weaker affect on the entire SQNR of the whole system. By this means, if further optimization is needed for the IFFT processor to get a better performance, modifying the first stage should be the main task.

3.3.7.2.4 Stage 1 BEFORE and other stages AFTER, Rounding the number

Then, the next step takes into consideration is whether rounding the results after each right-shift is necessary, and what kind of effect will rounding have for the given architecture. Besides, by only shift right the signal, the results for shifting
the positive number and negative number will be different. For example, representing the decimal number $\frac{\sqrt{6}}{2}$ and $-\frac{\sqrt{6}}{2}$ by using 10-bit width binary number should be 01_0110_1010 and 10_1001_0101 respectively. If shift these two binary number right by one bit, the output results should be 00_1011_0101, which is 181 when represent by 10-bit integer number, and 11_0100_1010, which is -182 represent by 10-bit integer number. Whether this slightly difference between positive number and negative number will affect the performance is also needed to be examined for the proposed IFFT processor.

The first test should be based on the analysis made in 3.3.7.2.2, and then rounding up all the shifted results without considering the sign bit of each input signal. The SQNR under this strategy is shown in Figure 3.47.

![Figure 3.47 SQNR stage 1 BEFORE and other stages AFTER, ROUNDED the number](image)

The average SQNR under this test scheme by using the same test sequence is 26.25 dB, which is less accurate than that of 3.3.7.2.3, but better than that of 3.3.7.2.2, which means rounding for both positive and negative number will
increase the performance of proposed IFFT processor, but still not accurate enough compared with 3.3.7.2.3.

3.3.7.2.5 Stage 1 ROUNDMING for negative number and other stages AFTER

As it has been seen before, the main performance of the IFFT processor will strongly depend on the architecture and processing order of the first stage. Therefore, this section will focus on only modify the first stage and then making analysis based on the experimental results.

The modification in this step will be, instead of rounding for both positive and negative numbers, only rounding the negative numbers. Because based on the simulation waveforms and partial products during processing, rounding the negative number will eliminate the differences between that with positive numbers. The simulation result is shown in Figure 3.48.

![Figure 3.48 Stage 1 ROUNDMING for negative number and other stages AFTER](image)
The average SQNR is 26.81 dB in this simulation strategy, which increases the SQNR performance by a tiny little number when compared with that of 3.3.7.2.3. This also proves the importance of the performance of the first stage for the entire IFFT processor.

3.3.7.2.6 **Stage 1 Rounding for all number and other stages**

The last test and analysis will be based on the results of 3.3.7.2.5, instead, rounding both the positive and negative numbers in the first stage. The simulation result is shown in Figure 3.49.

As it can be seen from this figure, the average SQNR value is 26.82 dB. Although the average SQNR in this situation shows better average results, but compared with Figure 3.48, the maximum SQNR value that can be get in this simulation scheme is lower than that of 3.3.7.2.5, which means for different input sequences with different properties, the IFFT architecture has to be chosen from this two
different schemes so as to get the best performance. This should be a trade-off between performance and computational complexity. The output waveform of the best situation compared with the embedded IFFT function waveform is shown in Figure 3.50.

![Figure 3.50 Waveform of best simulation situation compared with embedded IFFT function](image)

In order to compare the last five strategies of BFP arithmetic in a more obvious way, the five different scale-down strategies are compared by using boxplot in Figure 3.51.
Figure 3.51 SQNR of different scale down method: a. Scale down the signals before calculation; b. Stage 1 scale down before processing, other stages after; c. Round up the results for all stages based on (b); d. Round up the negative signals only for Stage 1 based on (b); e. Round up all signals only for Stage 1 based on (b).

Besides considering the accuracy performance, taking the power consumption and computational complexity into account, scale down the data before calculation will consume less power because less SWL is needed inside each butterfly units; rounding up the results will spend additional logics, which will bring extra costs on both hardware and power.

The Xilinx synthesis report shows that, around 4.5% more power would be cost in choice (e) when compare with choice (d) in Figure 3.51, but with only 0.01 dB increases in the average SQNR. Therefore, according to these analyses as well as the specifications of MB-OFDM UWB standard, the choice (d), which scales down signals at input port and rounds up the negative Partial Products (PPs) for the first stage, whereas the PPs are scaled down after butterfly unit for the rest stages, becomes the best candidate as a result of trade-off among accuracy,
3.3.8 Conclusions and Contributions

In this section a low-power, high-performance 128-point FFT/IFFT architecture for MB-OFDM UWB digital baseband communication system is presented, the architecture employs four-parallel-path SDF pipelined architecture to implement modified mixed-radix algorithms: radix-2 and radix-2\(^2\). Thanks to the algorithm, it is possible to significantly reduce the number (around 25\%) and complexity (around 20\%) of the complex multipliers. The power consumption of the whole system has been reduced by around 50\% compared with that of previous works.

The word lengths for each processing element are chosen carefully, and tested by using fix-point tool box in SIMULINK. Different word lengths for IOWL, SWL and TWL are simulated, so as to help to choose the architecture of complex multipliers properly according to the accuracy and hardware cost.

During the design process, overflow control problem is discussed for both FFT and IFFT architectures. As the IFFT processor in transmitter system requires overflow control, BFP algorithm is employed, and at the receiver part, overflow is not likely to happen. In order to achieve high accuracy for the IFFT processor, six different shift and rounding-number strategies are discussed and compared.

The implementation results indicate that the throughput rate of the proposed FFT processor with 10-bit IOWL, SWL and 8-bit twiddle factor word-length can support 1 Gsample/s with a power consumption of 43.79 mW at 250 MHz by using 0.13 µm CMOS technology. This means that the proposed FFT/IFFT system is suitable for high data rate processing applications with very low power consumption.
3.4. Synchronization

3.4.1 Introduction

The synchronization issue is inevitable in all signal transmission systems. In digital transmission systems, although the bit streams are inherently discrete-time, all physical media, such as radio channels or transmission lines, are continuous-time in nature. In wireless communications, most physical transmission media are inefficient in transmitting baseband signals. Consequently, the digital baseband transmitted signal has to be converted to a continuous-time waveform and then modulated by a higher-frequency carrier signal. After the modulated signal passes through the physical media, several inverse processing procedures, including sampling/digitization and demodulation, are applied.

In wireless communication receivers, coherent demodulation needs to make use of a Local Oscillation (LO) signal that has exactly the same carrier frequency and phase as the carrier signal contained in the received signal. Furthermore, accurate sampling clock frequency and phase allow the demodulator to recover the transmitted digital data more effectively. Unfortunately, the receiver is unsynchronized with the transmitter most of the time and thus does not have matching timing reference from which the carrier signal and the sampling clock signal can be regenerated. As is often the case, the receiver derives its LO and clock signals from a controlled oscillator. As such, oscillator mismatch causes carrier frequency/phase error and clock frequency/phase error. In reality, the controlled oscillator not only cannot maintain a stable frequency/phase in its output signal, but also suffers from time-varying phase noise. Even with perfect oscillator matching, the unknown propagation delay between the transmitter and the receiver introduces additional phase offset in the LO and the clock signals. Besides, the Doppler Effect due to relative motion between the transmitter and the receiver imposes additional frequency shift in the received signal. All these unavoidable impairments undermine the demodulator performance and can even render the demodulator useless if they are not
properly tackled. OFDM communication systems, based on the orthogonality among subcarrier signals, are more vulnerable to these synchronization errors than conventional signal-carrier communications.

Synchronization technique has been extensively studied for years. Although UWB system can leverage on successful experiences of OFDM, it cannot use the traditional synchronization technology directly due to the distinct features. In IEEE 802.15.3a standard, the specified emission power spectral density is -42 dBm/MHz, which is extremely small compared with other wireless systems. It indicates that timing synchronization for UWB system should be robust in high noise environment. In addition, to satisfy 528 Msp throughput, the UWB baseband receiver system should be designed in parallel architecture. The inherent high complexity, the requirements of high performance, high speed, low cost and low power consumption make the design of synchronization blocks for UWB quite a challenge work.

In this section the synchronizations errors will be discussed first and explain of their respective effect on the receiver system performance degradation. Then a proposed low-complexity fine timing synchronization scheme for the MB-OFDM UWB system will be introduced. Finally, the Carrier Frequency Offset (CFO) estimation and Sampling Frequency Synchronization for synchronizing the frequency of received signals in both time and frequency domain will be explained.

3.4.2 **Synchronization Issues**

The possible synchronization errors in OFDM based baseband signals are shown in Figure 3.52, which includes four different errors as follow:

1. *Carrier Frequency Offset* (CFO), Δf, causes the received complex baseband signal to rotate at a frequency of Δf.

2. *Carrier phase error*, $\varphi(t)$, introduces an additional phase rotation term in the received complex baseband signal.
(3) **Sampling Clock Offset (SCO),** δ, results in sampling the received continuous-time waveform at an interval of \((1+\delta)T_s\) instead of the ideal \(T_s\).

(4) **Symbol timing offset,** \(T_d\), refers to the error in the symbol boundary at the receiver from the actual boundary in the received waveform.

Figure 3.52 Synchronization errors in OFDM based baseband signals

3.4.2.1 Effect of timing offset

In the MB-OFDM baseband systems, the received signal without symbol timing offset in frequency domain at subcarrier \(k\) after demodulation is modeled as (40) [Chiueh’07]:

\[
r(k) = s(k)h(k) + v(k)
\]

(40)

Where \(s(k)\), \(h(k)\) and \(v(k)\) are the transmitted signal, Channel Impulse Response (CIR) and White Gaussian Noise of the \(k\)-th subcarrier respectively.
Supposing the channel maximum excess delay is shorter than guard interval, the FFT window adopted in the receiver can have several scenarios as shown in Figure 3.53, where ZP is the Zero Prefix.

When the FFT window is too early (by \(T_d \)) and the signal in the window is not contaminated by the previous symbol, the transformed received signal is still free of Inter Symbol Interference (ISI). Therefore, region B is the safe region. But additional phase shift is introduced in the transformed signal, as expressed in (41).

\[
r(k) = s(k)h(k)e^{-j2\pi T_d/N} + v(k) \tag{41}
\]

where \(N \) is the FFT window size and equal to 128 for MB-OFDM system.

On the other hand, when the FFT window leads or lags by a large degree, such as in region A or C, ISI will be introduced and both the magnitude and phase of \(r(k) \) will be distorted as (42)

\[
r(k) = s(k)h(k)e^{-j2\pi T_d/N} + v(k) + \text{ISI} \tag{42}
\]

Apart from the impacts described above, the channel estimation performance will also be degraded. Therefore, efficient symbol boundary detection and accurate FFT window position estimation play an important role in MB-OFDM baseband signal processing.
3.4.2.2 Effect of Carrier Frequency Offset (CFO)

Defined the normalized CFO, $\epsilon_f=\Delta f/f_s$, as the ratio of CFO to subcarrier frequency spacing, the received signal with CFO in frequency domain can be expressed as (43) [Moose’94].

$$R_{k,l} = S_{k,l}H_{k,l}\frac{\sin(\pi f)}{N\sin(\pi f/N)} e^{-j2\pi f(N-1)/N} + W_{k,l} + W_{ICI}$$ (43)

Where $S_{k,l}$, $H_{k,l}$ and $W_{k,l}$ stands for the transmitted signal, channel impulse response and noise at k-th subcarrier and l-th symbol respectively. W_{ICI} is the noise contributed by Inter Carrier Interference (ICI). ICI will not only destroy the orthogonality of the subcarriers in OFDM-based UWB system, but also degrade SNR. The SNR degradation can be approximated as (44) [Fan’09_2].

$$D_{SNR} \approx \frac{10}{\ln(10)} \left(\pi \epsilon_f\right)^2 \frac{E_s}{N_0}$$ (44)

Where E_s/N_0 is the ratio of symbol energy to noise power spectral density.

3.4.2.3 Effect of Sampling Frequency Offset

As discussed above, the oscillators used to generate the Digital to Analog Converter (DAC) and Analog to Digital Converter (ADC) sampling instants are mostly unsynchronized for Tx and Rx system. Thus, the sampling instants slowly shift relative to each other. The Sampling Frequency Offset (SFO) has two main effects: a slow shift of the symbol timing and a loss of SNR due to the ICI generated by the slightly incorrect sampling instants. The first effect will rotate the subcarriers for each OFDM symbol, while the second will cause loss of the orthogonality of the subcarriers.

Denote the normalized sampling error as $\Delta t=(T’-T)/T$, where T' and T are the sampling periods of receiver and transmitter respectively. The overall effect on the received signal in frequency domain can be expressed as (45).

$$R_{k,l} = S_{k,l}H_{k,l}e^{j2\pi k\Delta t/T_s} \text{sinc}(\pi k\Delta t) + W_{k,l} + N_{at}(k,l)$$ (45)
Where T_s and T_u are the duration of the total symbol and the useful data respectively; $W_{k,l}$ is the Additive White Gaussian Noise (AWGN); and $N_{\Delta t}(k, l)$ is the interference due to the SFO. The power of $N_{\Delta t}(k, l)$ is approximated by (46).

$$P_{\Delta t} \approx \frac{\pi^2}{3} (k\Delta t)^2$$ \hspace{1cm} (46)

As it can be seen, the degradation grows as the square of the product of the sampling frequency offset Δt and the subcarrier index k, which means the outermost subcarriers are most severely affected if sampling frequency offset happens. The degradation can also be expressed directly by SNR loss as (47) [Pollet’95].

$$D_n \approx 10 \log_{10} \left(1 + \frac{\pi^2}{3} \frac{E_s}{N_0} (k\Delta t)^2 \right) (dB)$$ \hspace{1cm} (47)

The MB-OFDM UWB system does not have a large number of subcarriers and the value of Δt is also quite small. So $k\Delta t \ll 1$, and the interference caused by SFO can usually be ignored. However, the term showing the amount of rotation angle experienced by the different subcarriers will lead to serious problems. Since the rotated angle depends on both the subcarrier index and symbol index, the angle is the largest for the outermost subcarrier and increases with the consecutive symbols. Although Δt is very small, with the increasing of the symbol index, the phase shift will eventually corrupt the demodulation. In this case, tracking SFO is necessary for MB-OFDM receiver system design.

3.4.3 Timing synchronization scheme

Timing synchronization scheme can be divided into two parts: packet detection, which takes charge of detecting the upcoming packet through different channels and timing offset estimation/compensation, which is responsible for finding the exact boundary of FFT window for each detected OFDM symbol. Several approaches for both packet detection and timing offset estimation for MB-OFDM based UWB system have been proposed in the literature. The Cross-Correlation (CC) for packet detection has been proposed in [Hazy’97] and [Tufvesson’99], which is known to be more robust in situation of low SNR. But CC is sensitive to frequency offset and multiband. Therefore, for MB-OFDM based UWB system
lots of modified CC algorithms have been proposed. Band-Tracking Packet Detector (BT-PD) algorithm [Lai’07] simplified the CC algorithm by using the sign-bit of preamble coefficients, while in [Fan’09] a more robust packet detector is discussed. The computational complexity is dramatically reduced as only sign bits are used, but the structure in [Fan’09] will cause large hardware resources consumption as a large amount of memory is needed for hardware implementation. Fine timing offset synchronization algorithms are proposed in [Shahbazian’11] [Yak’05] [Suresh’10] [Sen’08], all of them are based on a similar idea, by comparing the correlation energy of received signals with a predetermined threshold, or utilizing a Maximum Likelihood (ML) function to estimate the timing offset. Although they can provide accurate timing offset estimation, the computational complexity is rather high. Besides, none of them mentioned the experimental results based on real hardware implementation.

In this work, an innovative low complexity timing synchronization and compensation scheme for MB-OFDM UWB receiver system is proposed. It contains Packet Detector (PD) and Timing Offset Estimation (TOE) functions. Time domain sequences are used to synchronize the received packets. By simplifying the CC and ML functions to sign-bit only, the computational complexity for timing synchronization is significantly reduced.

3.4.3.1 Traditional timing synchronization algorithms

In resent research, four traditional algorithms are commonly used for both coarse and fine timing synchronization scheme, which includes Auto-Correlation (AC), Maximum Likelihood (ML), Minimum Mean Square Error (MMSE), and Cross-Correlation (CC) algorithm.

3.4.3.1.1 Auto-Correlation

The AC algorithm is proposed in [Schmidl’97], which is used for coarse timing synchronization. This method is considered to be quite straightforward. It searches for the repetition in the received signal with a correlator and a maximum searcher. The timing metric for AC is defined as (48).
Design and Validation of an Optimized High-performance MB-OFDM Ultra Wideband Transceiver System

\[M(n) = \left[\frac{\sum_{k=0}^{L-1} r_{n+k}^* r_{n+k+L}}{(\sum_{k=0}^{L-1} |r_{n+k+L}|^2)^2} \right] \]

(48)

Where \(L \) is the repetition interval length, \(r_n \) is the received signal in time domain, and * is the conjugated operation. The estimated time index of the maximum \(M(n) \) can be expressed as (49).

\[\hat{n} = \arg \max_n M(n) \]

If the maximum \(M(n) \) is over the threshold, the packet is detected and the estimated timing index is the symbol boundary. The function for AC is simple, but with a big disadvantage. When the correlation window moves away from the repeated period, the power of timing metric \(M(n) \) may not fall off as expected, especially in low Signal to Noise Ratio (SNR) situations. Large symbol boundary detection errors may happen according to this fact.

3.4.3.1.2 Maximum Likelihood

The work in [Coulson'01] improves the performance of AC by proposed a ML algorithm, which can be expressed as (50) and (51).

\[M(n) = 2 \left[\sum_{k=0}^{L-1} r_{n+k}^* r_{n+k+L}^2 - \rho \sum_{k=0}^{L-1} (|r_{n+k}|^2 + |r_{n+k+L}|^2) \right] \]

(50)

where

\[\rho \equiv \frac{E[r_{n+k}^* r_{n+k+L}]}{\sqrt{E[|r_{n+k}|^2] E[|r_{n+k+L}|^2]}} = \frac{1}{1 + (\sigma_n^2 / \sigma_s^2)} \]

(51)

And \(\sigma_n^2 / \sigma_s^2 \) is the Signal to Noise Ratio (SNR). The estimated symbol boundary is derived by searching the maximum output of ML function. As it can be seen above, the computational complexity of ML is quite high because of the hardware for estimating \(\rho \). Besides, error in SNR estimation often renders it less reliable than other methods.
3.4.3.1.3 Minimum Mean Square Error (MMSE)

MMSE metric is equivalent to a special case of the ML metric when ρ equals to 1. The timing estimation performance for MMSE is almost the same as ML, which improves the timing uncertainty related to the received signal power fluctuation in the AC algorithm. The principle of MMSE is to search the minimum output of the metric in (52).

$$M(n) = \sum_{k=0}^{L-1} |r_{n+k}|^2 + \sum_{k=0}^{L-1} |r_{n+k+L}|^2 - 2 \left| \sum_{k=0}^{L-1} r_{n+k}^* r_{n+k+L} \right|$$ (52)

3.4.3.1.4 Cross-Correlation

Instead of correlating the noisy received waveform with a delayed version of the noisy received waveform, the receiver can correlate the received noisy signal with the ‘clean’ preamble waveform using a matched filter [Fort’03]. Cross-Correlation (CC) is the mechanism for fine timing synchronization. The optimal timing can be obtained by first computing the CC function as (53).

$$M(n) = \sum_{k=0}^{Q-1} r_n^* c_k$$ (53)

Where Q is the length of the preamble and c_k is the preamble coefficients. Then find the location at which its maximum magnitude occurs as (54).

$$\hat{n} = \arg \max_n |M(n)|$$ (54)

The CC algorithm can fit into the low SNR situation.

According to the introduction above of all those four algorithms, it can be seen that the AC, ML, and MMSE algorithms are just used for coarse detection, while CC is for fine boundary detection. But the first three methods can provide a robust detection in multipath situation, while CC is robust in low SNR situations. By taking all the discussion into the design consideration, a new timing synchronization scheme for MB-OFDM UWB applications is proposed in this thesis.
3.4.3.2 Proposed timing synchronization scheme

Two basic functions are taking into consideration for the proposed fine timing synchronization scheme: Packet Detection (PD) and Timing Offset Estimation (TOE), for the packet-based MB-OFDM system. The periodicity property of the preambles is utilized. A very low complexity and power efficient algorithm is proposed for synchronizing the received time-domain signals, while considering the distinctive features of the MB-OFDM system. This scheme assumes that the receiver knows which preamble the transmitter uses but not the arrival time of the preamble.

The whole timing synchronization scheme has the work flow as shown in Figure 3.54. The PD block will first take charge of detecting the upcoming OFDM symbols that ‘floating’ in the air by detecting the energy of each suspected packet. Although the proposed PD algorithm can provide an accurate starting point for each FFT window, the provided OFDM symbol still may contain a small value of timing offset, T_d, which may cause degradation of the SNR. Thus, in order to further eliminate this timing offset and provide the exact boundary of the OFDM symbol, the TOE function is carried out so as to estimate the value of T_d and compensate for each received symbol. Then the symbols with very accurate starting points will be feed into the FFT processor for further process.
The design challenge for such work mainly comes from finding the perfect trade-off point between the power consumption and the accuracy of detection. Not like other blocks in Rx implementation, the PD element will always be turned on for listening to the channel and waiting for the symbols. Therefore the energy spent on detecting packets should be as low as possible to ensure the low power performance for the whole Rx system. Meanwhile, as discussed above, an accuracy detection and synchronization will affect the Rx system performance a lot in several aspects. To find a low power, while still maintain the high accuracy performance algorithm and structure becomes the main target for the proposed synchronization scheme.

3.4.3.2.1 **Packet Detector (PD)**

As CC is proved to be the most straightforward and low complexity algorithm, the proposed PD structure will be based on the traditional CC algorithm.

The block diagram of proposed packet detector is illustrated in Figure 3.55. In the figure, \(Q_d\) denotes the signs of received signals, while \(C_k\) \((k=0, 1\ldots 127)\) are the signs of preamble coefficients. The whole structure is a modified version of
[Fan’09], in the aim to reduce the hardware resources usage. The algorithm can be expressed as flow.

\[\Lambda_{cc}(d) = \sum_{k=0}^{N-1} Q_{d+k} C_k^* \] \hspace{1cm} (55)

By truncating preamble coefficients and received signal to sign-bit only in the proposed structure, the complex multipliers can be implemented by using a few logic gates. Compared with traditional CC algorithm, the hardware complexity as well as the power consumption will be reduced significantly. Then, in the second stage, instead of calculating the auto-correlation as in [Fan’09], the delay-correlation of each received signal is calculated to accumulate the energy for each received packet in (56).

Figure 3.55 Block diagram of proposed Packet Detector algorithm
$$A_m = \sum_{k=0}^{N-1} (A_{CC}(d) + A_{CC}(d+N))$$ \hspace{1cm} (56)

In order to further make the whole PD system more robust against the noise and increasing the resolution of detected energy in the waveform, the square function is employed as (57) to eliminate the noise interference. The output of the proposed packet detector can be derived as

$$A_d = |A_m(d)|^2$$ \hspace{1cm} (57)

At the output port of PD, if this output energy is over a threshold value T_h defined according to statistic method, the packet is assumed to be detected. Otherwise, the system continues fetching the output of A_d until the conditions are met. The detection waveform of traditional CC algorithm compared with proposed PD algorithm for MB-OFDM symbol in CM1 channel, which is specified by IEEE 802.15.3 channel modeling sub-committee, is shown in Figure 3.56, the SNR for simulation is set to be 10 dB.

![Figure 3.56 Output waveforms of CC and PD algorithms at 10 dB SNR CM1 channel](image)

Figure 3.56 Output waveforms of CC and PD algorithms at 10 dB SNR CM1 channel
As it can be seen in Figure 3.56, although it’s easy to find accurate timing information in the output waveform of CC, there are glitches in CC output waveform which will corrupt the detection of symbol boundary and increase the false alarm probability. The waveform of proposed PD algorithm has a much lower noise floor compared with CC, there are large distance between the energy of packets and that of the noise, which ensures more accurate detection at the end. The hardware implementation simulation waveforms for detecting the standard MB-OFDM preamble sequences are shown in Figure 3.57. As it can be seen in the figure, all the preamble sequences are very well detected, because the accumulation energy of preamble is much higher than that of the noises.

![Waveform of detecting standard MB-OFDM preamble sequences](image)

3.4.3.2.2 Timing Offset Estimation (TOE)

Although CC and PD are considered to be the robust fine detection algorithms for MB-OFDM system, the output sequences from PD may still contain certain values of timing offset. To further estimate the exact boundary of the FFT
window and compensate this timing offset, a modified sign-bit based Timing Offset Estimation (TOE) scheme is proposed based on the ML metric algorithm.

Once the MB-OFDM symbol is detected, the sequences after the detected time instant will be fed into the TOE module. Using the estimated time instant provided by PD as a reference for the detected symbol, TOE responses for finding the exact boundary, which is the first sample, of each symbol. The proposed method is described below.

Compared with that of [Shahbazian’11], the ML estimation method is considered in the present work and derive the following low-complexity cross-correlation function (58) by using only the sign bits of the 128 samples of the received signal and the 128 sign bits of the preamble that are specified by the MB-OFDM standard.

\[
F(T_d) = \sum_{k=0}^{127} sgn(r(k + T_d)) \times sgn(S_p(k))^* \tag{58}
\]

Where \(T_d\) represents the timing offset of the current MB-OFDM symbol and \(^*\) denotes the complex conjugate operation. The peak value of the cross-correlation function (58) can be identified by utilizing the following low-complexity ML-based decision timing metric [Jogansson’00].

\[
\lambda(\theta) = |Re(F(T_d))| + |Im(F(T_d))| \tag{59}
\]

Defining \(symNo\) as the index of a packet/frame synchronization MB-OFDM symbol and \(\omega(symNo)\) as the starting point of that symbol, which is the time instant provided by the PD. The boundary estimation is started from the first sample of the first MB-OFDM symbol, i.e., \(symNo = 1\) and \(\omega(symNo) = 1\). Then, the cross-correlation is performed between the signs of the first 128 samples of the received signal and the 128 signs of the preambles. Due to the modified S-V channel model of MB-OFDM system, the first arriving path may not be the strongest one. As a result, by only using the conventional cross-correlation function, a delayed multipath component with stronger amplitude than the first one will be located and, hence, it will cause misdetection [Shahbazian’11]. To correctly estimate the position of the first arriving path, the moving average of \(\lambda(\omega(symNo))\) over a window of size \(N_c\) is taken, where most of the channel
energy is concentrated. The sum of the first N_C cross correlation values starting from ω(symNo) is calculated below:

$$\lambda'(\omega(symmetric)) = \sum_{w=0}^{N_c-1} \lambda(\omega(symmetric) + w)$$

(60)

This could be replaced by the following recursive equation as given below in (61).

$$\lambda'(\omega(symmetric) + 1) = \lambda'(\omega(symmetric)) + \lambda(\omega(symmetric) + N_c) - \lambda(\omega(symmetric))$$

(61)

In the above equation, N_C is considered as the maximum delay spread of the multipath channel. Equation (61) should be calculated for all the samples in each MB-OFDM symbol. The exact symbol boundary is selected with the maximum value as in (62).

$$\omega^0(symmetric) = \arg \max_{\omega} \{\lambda'(\omega(symmetric)), \lambda'(\omega(symmetric) + 1), ..., \lambda'(\omega(symmetric) + 127)\}$$

(62)

Since transmission channel varies in time, timing offset of each symbol is different from others. To find the more accurate timing offset values for all the received OFDM symbols, the calculated timing offset for N_g symbols should then be averaged. The detailed flowchart of the proposed algorithm is shown in Figure 3.58. If the detected boundary offset $\omega^0(symmetric)$ is within the zero prefix period, the timing offset estimation is done. It means that the estimated symbol boundary offset falls into the Inter Symbol Interference-free (ISI-free) zone, in which all subcarriers experience the same phase shift, which can be easily eliminated at the receiver. Otherwise, the subcarriers will experience the ISI that will significantly degrade the system performance, which means that failed estimation is performed. Once the successful detection and estimation is made, the FFT processor will use the provided information to process each OFDM symbol from the right boundary position.
\[\text{symNo} = 1, \quad \omega(\text{symNo}) = 1 \]

\[\text{Equation (58)-(62)} \]

\[\omega^0(\text{symNo}) \]

\[\text{Symbol Boundary} = \omega^0(\text{symNo}) \]

\[\omega^0(\text{symNo}) \text{ in ISI Free Zone?} \]

- No: False Alarm
- Yes: \[\text{symNo} = \text{symNo} + 1, \quad \omega(\text{symNo}) = \omega(\text{symNo}) + 128 \]

\[\text{symNo} = N_g ? \]

- No: \[T_d = \frac{\omega^0(\text{symNo}) + \omega^0(\text{symNo}+1) + \ldots + \omega^0(\text{symNo}+N_g))}{N_g} \]

- Yes:

Figure 3.58 Proposed Timing Offset Estimation algorithm
3.4.3.2.3 Experimental results of the proposed timing synchronization scheme

In order to implement the proposed scheme in RTL in a time-efficient way, the PD and TOE modules are built by using two different design methods according to the implementation complexity. The PD block is established by using the System Generator blocks as it can be seen in Figure 3.59, while the TOE is implemented by using Verilog HDL code. The Hardware-software co-simulation environment (will be introduced in Chapter 0) for experimental testing the proposed timing synchronization scheme is shown in Figure 3.60, Virtex-5 FPGA board from Xilinx is used as an emulator for the proposed algorithm. The simulation environment contains ModelSim co-simulation block for functional verification, System Generator blocks for RTL implementation, and Joint Test Action Group (JTAG) Co-sim block for downloading the bit-stream to the FPGA while gather the output signals from FPGA at the same time. The ‘data1’ block is in charge of generating input signal for simulation based on the UWB channel standard.

Figure 3.59 RTL implementation for PD by using System generator block
The CM1~CM4 channel modules are used for testing the proposed timing synchronization scheme. The first pattern of Time-Frequency Code (TFC 1) with SNR equals to 0 dB, 5 dB, 10 dB, 17 dB and 25 dB is used, and 2000 payload MB-OFDM symbols are tested under the SIMULINK co-simulation environment. To simplify the evaluation process, perfect channel state information and frequency synchronization are assumed.

The study is carried out in the form of Mean-Squared Error (MSE) of the boundary estimation and Probability of Timing Synchronization (P_{sync}) of the entire timing synchronization scheme and TOE algorithm separately. For TOE
system, N_c and N_e are considered to be 8 and 10 respectively. The performance of proposed TOE algorithm is compared with that of Modified Symbol Timing Synchronization (MSTS) [Shahbazian’11] and First significant multipath components via Threshold comparison of Adjacent samples (FTA) [Yak’05] in Figure 3.61 (CM1) and Figure 3.62 (CM2) at different SNR situations by means of P_{sync}, while the MSE performance comparison in both channels are listed in Table 3-16 and Table 3-17. Numerical results for the P_{sync} metrics of the whole timing synchronization scheme are listed in Table 3-18.

Figure 3.61 Performance comparison in terms of P_{sync} in CM1

Figure 3.62 Performance comparison in terms of P_{sync} in CM2
Table 3-16 Timing offset MSE of proposed algorithm and its comparison with MSTS [Shahbazian’11] and FTA [Yak’05] in CM1

<table>
<thead>
<tr>
<th>SNR (dB)</th>
<th>TOE</th>
<th>MSTS</th>
<th>FAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0.23</td>
<td>0.28</td>
<td>0.36</td>
</tr>
<tr>
<td>10</td>
<td>0.27</td>
<td>0.31</td>
<td>>>10</td>
</tr>
<tr>
<td>0</td>
<td>6.38</td>
<td>7</td>
<td>>>10</td>
</tr>
</tbody>
</table>

Table 3-17 Timing offset MSE of proposed algorithm and its comparison with MSTS [Shahbazian’11] and FTA [Yak’05] in CM2

<table>
<thead>
<tr>
<th>SNR (dB)</th>
<th>TOE</th>
<th>MSTS</th>
<th>FAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>4.16</td>
<td>5.5</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>4.35</td>
<td>6.2</td>
<td>>>10</td>
</tr>
<tr>
<td>0</td>
<td>19.74</td>
<td>23</td>
<td>>>10</td>
</tr>
</tbody>
</table>

Table 3-18 Synchronization probability of the proposed timing synchronization scheme in different channels

<table>
<thead>
<tr>
<th>SNR(dB)</th>
<th>CM1</th>
<th>CM2</th>
<th>CM3</th>
<th>CM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>99.06%</td>
<td>98.01%</td>
<td>98.00%</td>
<td>96.57%</td>
</tr>
<tr>
<td>17</td>
<td>97.60%</td>
<td>94.29%</td>
<td>89.19%</td>
<td>84.98%</td>
</tr>
<tr>
<td>10</td>
<td>93.09%</td>
<td>90.69%</td>
<td>83.53%</td>
<td>75.32%</td>
</tr>
<tr>
<td>5</td>
<td>60.96%</td>
<td>56.76%</td>
<td>46.85%</td>
<td>32.73%</td>
</tr>
<tr>
<td>0</td>
<td>53.45%</td>
<td>52.50%</td>
<td>42.64%</td>
<td>25.39%</td>
</tr>
</tbody>
</table>
Referring to the listed results, it can be observed that the proposed TOE algorithm outperforms the FTA and MSTS algorithm for the entire region of SNR. The MSE performance has also been improved a lot for the proposed scheme, as the detected boundary of PD is already very close to the exact time instance of the starting point for that symbol. But as it can be seen in Table 3-18, the accuracy of the whole timing synchronization scheme dropped a lot when SNR is lower than 5 dB. This is considered to be the main drawback of the proposed scheme. That’s because the base sequence has a more ideal correlation property than the signs of the base sequence, especially in low SNR condition. But the performance still satisfies the requirements of MB-OFDM UWB standard. Taking computational complexity into account, as only sign-bit is used for both proposed PD and TOE algorithms, the complex multipliers and other functions used during calculation can be implemented by using just a few simple logic gates. Therefore, compared with traditional CC and ML algorithms, the computational complexity as well as the power consumption of the proposed timing synchronization scheme is dramatically reduced.

3.4.4 Carrier Frequency Offset (CFO) estimation/correction

3.4.4.1 CFO estimation/correction algorithm

The most straightforward frequency synchronization algorithm for CFO estimation/correction is by using the delay correlation function. CFO can be estimated by the phase difference between two symbols. The most popular algorithm for estimate the offset for each symbol can be derived as (63) [Moose’94].

\[
\hat{\epsilon}_f = \frac{N}{2\pi D}\tan^{-1}\left[\sum_{n=1}^{L} r_{n+D}^* r_n\right] \tag{63}
\]

Where \(D\) is the interval length between two correlated signals, \(L\) is the sliding window length. For MB-OFDM UWB application, there are different CFOs in different bands, so in order to estimate the CFO for each transmission channel, the two delay-correlated symbols should be in the same transmission band.
Accordingly, the value of D should be equal to 165 or 495, which depends on the Time Frequency Code (TFC) that used for transmission. For TFC 1 and 2, D is equal to 495 (165×3), while for TFC 3~7, D is equal to 165. According to the conventional algorithm, the system will have the best estimation performance when L is equal to the FFT window size, which equals to 128 as specified by MB-OFDM standard.

The compensation algorithm for CFO correction can be expressed as flow:

$$\tilde{r}_k = r_k e^{-j2\pi \frac{k}{M}}$$

(64)

Where M is the number of samplers in each OFDM symbol, for MB-OFDM, its value is 165.

3.4.4.2 CFO estimation/compensation architecture and implementation

The design of frequency synchronizer is divided into two parts. The first part is to estimate the phase difference between two preambles by delay correlation and arctangent calculation. The second part is to compensate the signals by multiplying a complex rotation vector. In this part, the phase accumulator and \sin/\cos generator are involved.

The architecture for CFO estimation and compensation that used in this work is shown in Figure 3.63. The Delay_Correlation block takes charge of calculating the delay-correlation between the input data and the old data restored in the memory. The depth of the memory (165 or 495) depends on the TFC used as described above. The Correlation_Accumulation block responsible for summing up the correlation results, and export the accumulation results at specified point. For the proposed MB-OFDM receiver system, the results should be exported every 128 clock cycles, and output the accumulation results of totally 16 OFDM symbols. The accumulation result will then be used for estimating the phase error for each particular channel. The Estimation_Phase block will take the accumulation results and compute the \arctan value for each result, then sum up all the 16 \arctan values and calculate the average phase value for each received sample. After that, the average phase value will be fed into the Coefficient_Estimation module, which is used to calculate the \sin and \cos value for
each input phase. These values will be used by the Compensation block for compensate the rest received data that needs to be compensated.

![Diagram](image)

Figure 3.63 Architecture of CFO estimation and compensation block

For efficiently implemented the CFO estimation/compensation block, the modified complex multiplier and Cordic algorithm [Caro’09] are used for the implementation in this thesis. The complex multiplier that used for calculating the delay-correlation is designed with the schematic as shown in Figure 3.64 (b), while the \(\cos/sin \) and \(\arctan \) processing block is implemented by using the high-speed parallel-processing Cordic processor that provided by Xilinx System Generator (XSG) [Xilinx'09_2] [Xilinx'11_2]. Compared with the traditional architecture of complex multiplier in Figure 3.64 (a), the modified structure uses one less multiplier and three more adders. When taking the word-length of proposed MB-OFDM into consideration (10-bit long), the hardware resources usage as well as the power consumption for the modified structure has been slightly reduced.
3.4.5 Sampling Frequency Synchronization

Although Carrier Frequency Offset (CFO) can be coarsely estimated and compensated by the synchronizer block using preamble sequences in time domain, the Residual CFO (RCFO), the Sampling Frequency Offset (SFO) and the Common Phase Error (CPE) may still exist for each transmitted symbols. These effects will lead to accumulated phase shift over a certain period and degrade the system performance considerably if they are not well tracked and compensated. Besides, the SFO and other effects are very hard to be removed by using the time domain sequence of each received packet. However, the 12 pilot subcarriers that inserted to the OFDM symbol can help to solve the remaining phase error problems easily by using frequency domain sequences. The traditional straightforward solution [Speth’01] for phase tracking requires arctangent operation to compute the phase errors, together with a Numerically Controlled Oscillator (NCO, mainly composed by sine and cosine function blocks) to correct the signal. For the intensive computation feature in hardware, using arctangent operation and NCO is avoided in this work. A highly simplified phase tracking approach for MB-OFDM UWB system is employed from [Fan’10] so as to simplify the proposed MB-OFDM system.
3.4.5.1 SFO compensation algorithm

Conventionally, SFO can be estimated by computing a slope from the plot of pilot subcarrier differences versus pilot subcarrier indices. Recently, joint estimation of CFO and SFO has also been studied extensively, such as the Linear Least Squares (LLS) algorithm [Liu’02] and joint weighted least squares algorithm [Tsai’05]. But all of them have to calculate arctangent, sine, and cosine functions, which are quite complicated in hardware implementation. The algorithm presented in [Troya’07] simplifies the hardware cost significantly compared with the traditional approaches. Based on this, [Fan’10] proposed a novel phase tracking method for UWB system. It not only has low complexity, but also improves the performance. The employed algorithm can be summarized as follow.

The received signal with residual phase distortion in frequency domain after removing the channel noise can be modeled as (65).

\[Z_{k,l} = S_{k,l} P_{k,l} = S_{k,l} \exp(j \phi_{k,l}) = S_{k,l} \exp(j(ak + \beta_l)) \]

(65)

Where \(P_{k,l} \) is the phase distortion vector and \(\phi_{k,l} \) is the residual phase error, \(a \) is the slope of the phase distortion and is contributed by SFO, and \(\beta_l \) is the intercept of phase distortion and is caused by RCFO of symbol number \(l \).

Considering the condition of \(|ak| \ll 1 \), where \(k \) is the subcarrier index and \(k \in [-55, 55] \) as specified by MB-OFDM standard, the first order approximation can be made as

\[\cos(ak) \approx 1, \quad \sin(ak) \approx ak \]

Then the phase distortion in (65) can be written as (66).

\[P_{k,l} = \cos \beta_l - ak \cdot \sin \beta_l + j(\sin \beta_l + ak \cdot \cos \beta_l) \]

(66)

Four parameters are of interests in this equation and should be calculated for sampling frequency synchronization: \(\cos \beta_l, \sin \beta_l, a \cdot \sin \beta_l \) and \(a \cdot \cos \beta_l \). According to the algorithm, the first two parameters can be easily calculated by using (67).
\[
\begin{align*}
\cos \beta_l &= \frac{1}{8} \sum_{k=\pm 25, \pm 35, \pm 45, \pm 55} R(P_{k,l}) \\
\sin \beta_l &= \frac{1}{8} \sum_{k=\pm 25, \pm 35, \pm 45, \pm 55} I(P_{k,l})
\end{align*}
\tag{67}
\]

Where \(R(\cdot) \) and \(I(\cdot) \) denote the real and imaginary part of the pilot subcarriers respectively. Although there’re 12 pilots in each symbol, since \(\frac{1}{8} \) is much easier to implement than \(\frac{1}{12} \), and the pilots near Direct Current (DC) subcarrier suffer more channel noise than the ones far away from DC subcarrier, the pilots outermost should be used as many as possible to estimate the frequency offset.

Approximating the scaling factor \(\frac{1}{260} \) to \(\frac{1}{256} \), this can be easily implemented by just shift the signal to right by 8 bits. The parameters of \(\alpha \cdot \sin \beta_l \) and \(\alpha \cdot \cos \beta_l \) are given by (68).

\[
\begin{align*}
\alpha \cdot \sin \beta_l &\approx \frac{1}{256} \left(\sum_{k=-55, -35, -25, -15} R(P_{k,l}) - \sum_{k=55, 35, 25, 15} R(P_{k,l}) \right) \\
\alpha \cdot \cos \beta_l &\approx \frac{1}{256} \left(\sum_{k=55, 35, 25, 15} I(P_{k,l}) - \sum_{k=-55, -35, -25, -15} I(P_{k,l}) \right)
\end{align*}
\tag{68}
\]

As it can be seen from the equations above, the sine and cosine functions of the employed algorithm for calculation are easily implemented by using just accumulation and shift functions. When compared with traditional algorithms, the computational complex is dramatically reduced. Therefore, according to the used algorithm, the hardware implementation is made and tested in the FPGA board for the proposed MB-OFDM digital baseband receiver system.

3.4.5.2 SFO compensation architecture and implementation

According to the algorithm, the architecture of Sampling Frequency Synchronization block is shown in Figure 3.65.
After going through the FFT processor, the guard subcarriers (10-tones) and DC/NULL tones (6-tones) of each OFDM symbol are removed first. Then the remaining 112 subcarriers, including 12 pilot subcarriers and 100 data subcarriers, are feed into Sampling Frequency Synchronization (SFS) block to estimate and recover the frequency offset for each received symbol in frequency domain.

The Sampling Frequency Synchronization (SFS) block will pick up the 12 pilot subcarriers from the received signals according to the specified position. Then the 12 pilots and 100 data are restored in Pilot Buffer and Data Buffer in the structure separately. According to the used algorithm, the 8 pilot subcarriers at the position of -25, -35, -45, -55, 55, 45, 35, 25, which are the outermost pilots, are summed up and right-shifted (divide by 8 and 256 respectively) so as to get the required four parameters of $\cos \beta_i$, $\sin \beta_i$, $\alpha \cdot \sin \beta_i$ and $\alpha \cdot \cos \beta_i$ in the simplified way.

Then the values of $\cos \beta_i + j \sin \beta_i$ and $4 \alpha \cdot \cos \beta_i - j 4 \alpha \cdot \sin \beta_i$ from Phase Error Estimator are feed into the Accumulator module, which takes charge of calculating the $P_{h,l}$ in (66).
As the values of parameters $\alpha sin\beta_n$ and $\alpha cos\beta_n$ are very small, the frequency offset differences between each received sample are also very small. Hence, the phase errors contributed by SFO on four parallel paths from FFT processor can be approximately considered as the same and rewritten as $a[k/4]sin\beta_n$ and $a[k/4]cos\beta_n$ ($[k/4] \in [-12, 12]$). Calculating the parameters of $4as\beta_n$ and $4acos\beta_n$ instead of $as\beta_n$ and $acos\beta_n$ can further simplify the architecture of phase tracking block, as only 1/4 of the parameters are needed to be computed. This is especially for the four-parallel-path processing method of the proposed MB-OFDM receiver architecture, as all the four paths can share the same parameter value instead of using four different parameters for four different paths.

According to the UWB specification, the first four data subcarrier after pilots is $D(i, 56)$, $D(i, 54)$, $D(i, 53)$, and $D(i, 52)$. Therefore initially, the register Reg in Figure 3.65 contains the estimated value multiplied by -12. After that the value from the adder will be restored in the Reg. By using this method, after 25 clock cycles, all the 100 data subcarriers will be compensated. After this, the left 100 data subcarriers should be free of frequency offset, and hence are ready for the following processing blocks.

3.4.6 Conclusions and contributions

In this work, an innovative timing synchronization scheme for MB-OFDM based UWB system is proposed. The two parts of the proposed scheme, Packet Detector (PD) and Timing Offset Estimation (TOE) algorithm provide a robust detection performance and can complete packet and symbol boundary detection in a short time with high accuracy. When compared with the existing algorithms, only the sign bits of synchronization sequence are utilized for computing the correlations for both PD and TOE blocks. This makes the computational complexity significantly reduced while the performance of synchronization remains at a high level.

The modified Carrier Frequency Offset (CFO) estimation/compensation, as well as an efficient low complexity Sampling Frequency Synchronization (SFS) scheme for MB-OFDM application, is also introduced into the proposed receiver...
baseband system implementation. Compared with the traditional methods, these state-of-the-art technologies are considered to be more suitable for the proposed four-parallel-path receiver architecture, and have the advantages of low power, low computational complexity, and high accuracy, which meet the specifications of MB-OFDM UWB system very well.

The entire synchronization scheme is implemented in the Xilinx Virtex 5 FPGA board. The experimental results from different UWB channel modules indicate that the proposed synchronization scheme is suitable for MB-OFDM system development.

3.5. **Viterbi Decoder**

3.5.1 **Introduction**

In the MB-OFDM UWB system, the rate $R=1/3$ convolutional codes are selected as channel codes. By employing “puncturing” technology, the punctured convolutional codes could correct transmission errors as well as provide various data rates and code rates with different error-correcting capabilities. The Viterbi algorithm is recommended to decode the convolutional codes because of its near optimal decoding performance.

The major challenges of implementing a high-speed Viterbi Decoder (VD) are the fundamental speed bottleneck imposed by the recursive Add-Compare-Select (ACS) iteration, which prevents conventional pipelining techniques. To break the ACS bottleneck, some decoder architectures have been well proposed and studied in [Fettweis’90] [Parhi’04] [Goo’08]. These studies involve solving the timing constraints by retiming the critical path, introducing sliding block architecture, and high-radix algorithms.

In this thesis, a two-step radix-4 architecture, which is responsible for calculating two steps of 64-stage radix-4 Branch Metrics (BM) within one clock cycle, is proposed. The proposed VD system has the four-parallel-path processing architecture, which is more suitable for the proposed MB-OFDM digital baseband system. The working frequency is therefore $528/4=132$ MHz, which
will dramatically reduce the dynamic power consumption for real hardware implementation. By employing those state-of-the-art technologies and radix-4 algorithms, the ACS units and Trace Back (TB) units are well developed to support very high data rate applications. Final implementation result shows that the proposed VD architecture can support a maximum working frequency of 152.5 MHz on the Xilinx XUPV5-LX110T Evaluation Platform.

This section is organized as follows. The coding and puncturing implementation will be described based on the MB-OFDM UWB physical standard. Then the theoretical study of convolutional encoding and Viterbi Decoding will be introduced. Then the propose 64-state soft-decision VD system by using a high speed radix-4 ACS architecture is presented. Experimental results along with the conclusions will be drawn at the end of this subsection.

3.5.2 Convolutional encoding and puncturing for MB-OFDM system

According to the standard, the scrambled data sequence should be feed into the sub-system of convolutional encoder at the transmitter side. All communications channels are subject to errors introduced as a result of additive Gaussian noise in their environment. Data perturbations cannot be eliminated but their effect can be minimized by the use of Forward Error Correction (FEC) techniques in the transmitted data stream and decoders in the receiving system that detect and correct bits in error. The purpose of FEC is to improve the capacity of a channel by adding some carefully designed redundant information to the data being transmitted through the channel. The process of adding this redundant information is known as channel coding. Convolutional coding and block coding are the two major forms of channel coding. The advantages of convolutional codes over block coding for telecom/datacom applications are: [Edwards'90]

- With soft-decision data, convolutionally encoded system gain degrades gracefully as the error rate increases. Block coding correct errors up to a point. After which the gain drops off rapidly.
- Convolutional codes are decoded after an arbitrary length of data, while block coding introduce latency by requiring reception of an entire data block before decoding begins.
- Convolutional codes do not require block synchronization.

Convolutional codes are linear codes that have additional structure in the generator matrix so that the encoding operation can be viewed as a filtering, or convolution, operation. Convolutional codes are widely used in applications that require good performance with low implementation cost. A convolutional encoder may be viewed as nothing more than a set of digital filters, linear, time-invariant systems, with the code sequence being the interleaved data of the filter outputs. The convolutional codes have memory that uses previous bits to encode or decode following bits, and is denoted by \((n, k, L)\), where \(n\) is the length of input bits, \(k\) is the length of output bits, and \(L\) is the code memory depth.

The structure of convolutional encoder is usually a Finite State Machine (FSM) which processing information bits in a serial manner. Thus the generated code is a function of input and the states of the FSM. For MB-OFDM system, the convolutional encoder should use the most common rate of \(R=1/3\) for wireless communication protocols, with the generator polynomials of \(g_0=133_8\), \(g_1=165_8\), and \(g_2=171_8\), as defined in Figure 3.66. The bit denoted as "A" shall be the first bit generated by the encoder, followed by the bit "B", and finally, by the bit denoted as "C". As it can be seen in the figure, total number of 64 different stages would happen, therefore on the contrary, a 64 stages VD system should be implemented on the receiver side.

\[\text{Figure 3.66 Convolutional encoder: rate } R=1/3, \text{ constraint length } K=7\]
According to the MB-OFDM UWB standard, different communication data rate should have different coding rate, as listed in Table 3-19.

<table>
<thead>
<tr>
<th>Data Rate (Mb/s)</th>
<th>Coding Rate (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.3, 106.7</td>
<td>1/3</td>
</tr>
<tr>
<td>80, 160, 320</td>
<td>1/2</td>
</tr>
<tr>
<td>200, 400</td>
<td>5/8</td>
</tr>
<tr>
<td>480</td>
<td>3/4</td>
</tr>
</tbody>
</table>

In order to simply the system and try to make the transceiver structure reusable for all different transmission data rate mode, especially the reusable structure for decoder system, the puncturing technology is introduced into the MB-OFDM digital baseband system. By using puncturing method, the same decoder system can be used for all data rate mode regarding of how many bits have been punctured, thus puncturing considerably increases the flexibility of the communication system without significantly increasing its complexity.

Puncturing is a procedure for omitting some of the encoded bits at the transmitter and inserting a dummy zero metric into the decoder at the receiver in place of the omitted bits. By doing this, the number of transmitted bits is reduced, while increasing the coding rate at the same time. The puncturing pattern for MB-OFDM system has been defined in [ISO/IEC 26907’09]. Because the punctured bits do not provide any information to the decoder, the convolutional code with higher code rate performs poorer in data-correcting capability, so it is employed in more favorable wireless environment to achieve higher coding efficiency and data rates [Xu’07].

3.5.3 Overview of Viterbi Decoder (VD) system

3.5.3.1 Structure of VD system

Given the noisy observations of the encoding finite state process, the Viterbi algorithm is used to estimate the most likely encoding state sequence from which the decoded sequence can be easily derived. Practically, a VD is built up from three subsequent units: a Branch Metric Unit (BMU), a State Metric Unit
Design and Validation of an Optimized High-performance MB-OFDM Ultra Wideband Transceiver System

(SMU), and a Trace Back Unit (TBU). The basic structure of VD system is shown in Figure 3.67.

![Figure 3.67 Block diagram of the Viterbi Decoder system](image)

The BMU calculates the branch metrics of $\lambda_{n}^{s,i}$, which is the metric of the transition from state i to state s at time n. Then the branch metrics are fed into the ACS units to update the state metrics γ_{n}^{s} for state s. At time instance $n+1$, the state metrics can be computed recursively by using (69).

$$
\gamma_{n+1}^{s} = \min_{i} \{\gamma_{n}^{i} + \lambda_{n}^{s,i}\} \quad s = 0, 1, \ldots, 2^{k-1}
$$

(69)

A state metrics is the minimum (for some algorithms is the maximum) of intermediate state metrics, which are the summations of the branch metrics and the state metrics at the previous time instance. This accumulation and comparison process for each state metric is called Add-Compare-Select (ACS) function, which can be shown as Figure 3.68.
For calculating the branch metrics, two different local distances representations are used depending on the received data type. If the data is represented by a signal bit, it is referred to as hard-decision data and the Hamming distance measures are used. When the data is received by multiple bits, it is referred to as soft-decision data and Euclidean distance measures are more frequently used for traditional methods. According to the researches before, the use of soft-decision inputs can provide up to 2.2 dB more SNR at the same bit-error level [Hendrix’02]. This is because the received data contains some information on the reliability of the data. The values of soft-bits and their significance for a 3-bit quantized input data is shown in Table 3-20.

Table 3-20 Soft-bit symbol input representation

<table>
<thead>
<tr>
<th>Soft-bit Value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>011</td>
<td>Strongest “0”</td>
</tr>
<tr>
<td>010</td>
<td>Strong “0”</td>
</tr>
<tr>
<td>001</td>
<td>Weak “0”</td>
</tr>
<tr>
<td>000</td>
<td>Weakest “0”</td>
</tr>
<tr>
<td>111</td>
<td>Weakest “1”</td>
</tr>
<tr>
<td>110</td>
<td>Weak “1”</td>
</tr>
<tr>
<td>101</td>
<td>Strong “1”</td>
</tr>
<tr>
<td>100</td>
<td>Strongest “1”</td>
</tr>
</tbody>
</table>

The actual decoding of symbols into the original data is accomplished by tracing the maximum likelihood path backwards through the trellis. Up to a limit, a
longer sequence results in a more accurate reconstruction of the trellis. After a number of symbols equal to about four or five times the constraint length, little accuracy is gained by additional inputs [Michelson’85]. The trace back function starts from a final state that is either known or estimated to be correct.

3.5.3.1.1 **Radix-2 butterfly**

Based on the trellis diagram, the implementation of VD can be performed by decomposing the trellis into a set of radix-2 butterfly as shown in Figure 3.69. The butterfly contains a pair of origin and destination states, and four state transitions. Each state transition is identified by the origin state yx and the destination state xz, where y denotes the bit shifted out of the shift register; z denotes the current input bit, and x denotes the common state bits. The branch word of the state transition is denoted as b_{xyz}. The radix-2 butterfly has some inherent branch symmetry, which can be used to simplify the implementation of the VD. The branch symmetry of the radix-2 butterfly is:

$$b_{0x0} = b_{0x1} = b_{1x0} = b_{1x1}$$

Figure 3.69 Radix-2 butterfly units

3.5.3.1.2 **Radix-4 butterfly**

The radix-4 butterfly is applied to the VD design to increase the decoding speed of the VD. The two stage radix-2 trellis can be merged to one stage radix-4 trellis by rearranging the states appropriately [Hsu’07]. Notably, each branch of a radix-4 butterfly has 4-bit branch words, and corresponds to two input bits. Merging the trellis does not affect the selection of the most likely path, since a
one-to-one mapping exists between the shortest path in the radix-4 trellis and the original radix-2 trellis. Each radix-4 butterfly in the radix-4 trellis has four origin and destination states, and 16 branches, as shown in Figure 3.70. Each state transition is identified by the origin state y_1y_2x and the destination state xz_1z_2, where y_1y_2 denote the bits shifted out of the shift register, z_1z_2 denote the two input bits, and x denotes the common state bits.

![Figure 3.70 Radix-4 butterfly units](image)

Compared with radix-2 butterfly processing, two iterations of the radix-2 trellis are processed in a single radix-4 trellis iteration. Therefore, the iteration delay can be reduced by a maximum factor of 2. However, the two fold speedup cannot be achieved in practice due to the higher computational complexity of the radix-4 butterfly module. The radix-4 butterfly needs more complicated comparators and more branch metric computation than the radix-2 butterfly unit for hardware implementations. Besides, the power consumption caused by those additional logics is also very high, especially for high frequency VD applications.

3.5.3.2 Related works

Recently, there have been lots of studies on high-speed Viterbi Decoder systems, as well as its application towards the MB-OFDM UWB developments.

In [Fettweis'90], the M-step look-ahead technique is utilized. It is known to be a high speed algorithm for elimination of feedback operation. With the M-step
look ahead, one iteration in the ACS unit is equivalent to \(M \) iterations in the nonlook-ahead implementation. However, as \(M \) is increased, the power consumption will also increase a lot, therefore \(M \) has the limitation to be only two.

Least Significant Bit (LSB) first computation is useful for accumulation operation, but Most Significant Bit (MSB) first computation is more suitable for compare and selection operations in the ACS unit. An ACS structure combining MSB-first compare-select with carry-propagation-free addition was proposed based on redundant number representation in [Parhi’04].

A high-speed low-complexity two bit-level pipelined VD architecture for MB-OFDM UWB system is proposed in [Goo’08]. The MSB-first ACS unit combined with two bit-level structure is used to reduce the critical path of the ACS unit. Although the architecture can support all data rate mode for MB-OFDM system, the architecture is still very complex. Besides, the serial processing architecture cannot be fully implemented for the proposed four-parallel-path digital baseband system.

3.5.4 Proposed Viterbi Decoder architecture

In this thesis, a 64 state soft-decision VD system by using high speed radix-4 ACS unit architecture is presented. The proposed VD system can support different data rate (from 53.5 Mbps to 480 Mbps) for MB-OFDM UWB system when implemented onto the FPGA board. As the bottleneck for high speed VD implementation mainly comes from the ACS units, the work will focus on optimization of the ACS units as well as lower the computational complexity first, then the TB architecture will also be discussed so as to get a power and hardware efficient VD system for MB-OFDM digital baseband system at the end.

3.5.4.1 Branch Metric Unit (BMU)

For the proposed VD system, in order to increase the accuracy against noises, the soft-decision algorithm is used. The 3-bit quantized signals will be feed into the
BMU for calculating the branch metrics for each path. The radix-4 algorithm is used in the aim of further speed up the VD processing.

Although the branch symmetry of a radix-2 butterfly module cannot be applied to a radix-4 butterfly module, the branch symmetry of a radix-4 butterfly still can be obtained by the branch symmetry of a radix-2 butterfly in (70) [Hsu’07].

According to the algorithm, two steps of radix-2 butterfly functions can be combined to form a radix-4 butterfly step, as it can be seen in Figure 3.71.

According to the figure, the branch word b_{00x00} in the radix-4 butterfly is combined from the branch words b_{00x0} at the first stage and b_{0x00} at the second stage in the radix-2 butterfly function, and is given by $b_{00x00} = b_{00x0}b_{0x00}$. Similarly, the branch b_{10x01} in the radix-4 butterfly is combined from the branch b_{10x0} at the first stage and b_{0x01} at the second stage in radix-2 algorithm, and can be expressed by $b_{10x01} = b_{10x0}b_{0x01}$. The branches b_{00x00} and b_{10x01} are taken herein as examples to show how to obtain the branch symmetry in a radix-4 butterfly. As shown in Figure 3.71, the branches b_{00x0} and b_{10x0} in the first stage belong to the same radix-2 butterfly, and have the relationship of $b_{00x0} = \overline{b_{10x0}}$ according to (70). The branches b_{0x00} and b_{0x01} in the second stage belong to the same radix-2 butterfly, and have the relationship of $b_{0x00} = \overline{b_{0x01}}$. Therefore, the relationship between branches b_{00x00} and b_{10x01} can be written by (71), which means that the radix-4 algorithm also has the symmetry property.

$$b_{00x00} = b_{00x0}b_{0x00} = \overline{b_{10x0}}b_{0x01} = \overline{b_{10x01}} \quad (71)$$

![Figure 3.71 A radix-4 butterfly and its corresponding two step radix-2 butterfly](image)
According to the example above, the branch symmetry of each radix-4 butterfly branch can be similarly obtained as (72).

\[
\begin{align*}
 b_{00x00} &= b_{10x01} \\
 b_{01x00} &= b_{11x01} \\
 b_{00x01} &= b_{10x00} \\
 b_{01x01} &= b_{11x00} \\
 b_{00x10} &= b_{10x11} \\
 b_{01x10} &= b_{11x11} \\
 b_{00x11} &= b_{10x10} \\
 b_{01x11} &= b_{11x10}
\end{align*}
\]

(72)

According to the symmetry, only eight branch metrics in radix-4 algorithm need to be computed instead of calculating all the 16 branch metrics, as it can be seen in Figure 3.72. Therefore, compared with traditional radix-4 algorithms, the proposed architecture only contains nearly half of the computational logics, which means nearly half of the hardware resources as well as the power consumptions can be saved by using this radix-4 symmetry property.
Besides taking the advantage of the symmetry property, in order to further simplify the calculations for each branch metric, the uniform distance measurement method is used for the proposed VD system. According to the uniform distance measurement method, the metrics are calculated equal to the symbol itself when compared with logic-0 and equal to its one’s complement when compared with logic-1 [Heller’71]. Compared with calculating the Euclidean distance as traditional, the employed method will significantly reduce the computational complexity as no multiplication functions are needed, only one short word-length adder is needed for each branch metric calculations. Thus the power consumption as well as the hardware resources usage is reduced.

3.5.4.2 Add-Compare-Select Unit (ACSU)

In order to increase the speed and simplify the structure for ACSU, an efficient radix-4 ACS architecture is proposed in this work. Figure 3.73 is the block diagram of the four-way ACSU when taking state 0 as an example.
The $\lambda_n^{s_i}$ (s, i=0, 1, ..., 63) in Figure 3.73 represents the branch metric of the transition from state i to state s at time n, γ_n^s is the state metric of s, and d_n^s denotes the compare decision for updating the state metric. As shown above, the radix-4 algorithm can provide two decision bits, d_{n-1} and d_n for time n and $n-1$ within one clock cycle, which double the processing speed compared with radix-2 method.

As the state metric for each state have to be updated by accumulating the previous state metric with the coming branch metric, overflow errors would happen after certain clock cycles if the accumulation is kept for fixed word length hardware implementations. Therefore, in the realization of VD system with finite precision arithmetic, the values of the state metrics computed by the
ACSU recursion must remain within a finite numerical range to avoid catastrophic overflow and underflow situations. A traditional method to solve this problem is to subtract the minimum state metric value before processing for each state when updating the state metrics. This method will introduce additional subtraction function to the ACSU, which will also cost additional power consumption. Besides, the method to find or estimate the minimum value of the state metrics is also complicated, as if the value is not the minimum one or not accurate enough, additional errors of underflow would happen. Therefore, finding a proper but simply method to avoid overflow and underflow for ACS units would be the main challenge for a high speed ACSU implementation.

In Very Large Scale Integration (VLSI) implementation of the normalization techniques, the two most desirable properties are locality and uniformity. Metric normalization is considered local if it is accomplished within each ACS without information from other ACS. It is considered uniform if the ACS operation is not interrupted to perform metric normalization. Locality minimizes the global signal communications and hence reduces the wiring area. Uniformity not only simplifies the control but also minimizes the variety of required functional units. Moreover, a non-uniform technique usually reduces the achievable data rate. The Modulo Normalization method and Modified Comparison rule proposed in [Shung’90] is introduced into the proposed VD system so as to simplify the architecture of ACSU.

In the modular arithmetic, the metric y^s for state s is replaced by the normalized metric according to (73).

$$\bar{y}^s = \text{mod}(y^s, C) \equiv \left(y^s + \frac{C}{2}\right) \text{mod} \left(\frac{C}{2}\right)$$

(73)

Where C is a chosen modulus value. The procedure to normalize the state metric can be explained by using Figure 3.74.
The quantities $\{\gamma^s\}$ can be put as positions on the circumference of a circle with the diameter of $\frac{C}{\pi}$, with γ^s at the angle of $\frac{2\pi m_s}{C}$. Note that the normalized metrics should satisfy the situation of $-\frac{C}{\pi} \leq \gamma^s \leq \frac{C}{\pi}$, and the difference of the state metrics should satisfy the situation of $|\gamma^1 - \gamma^2| \leq \frac{C}{2}$. The normalized metrics are obtained by wrapping the real line around the circle, with the real number 0 mapped to the point at angle 0 on the circle, and the direction of increasing real numbers corresponding to counterclockwise motion around the circle. Let α be the angle swept out by counterclockwise motion along the arc from the projection γ^1 to γ^2, then $\gamma^1 < \gamma^2$ if and only if $\alpha < \pi$.

The proposition can be interpreted in less mathematical terms by thinking of the state metrics as “runners in a race”. Assuming two different runners, γ^1 and γ^2, are running on the circle in Figure 3.74. Each runner will run a certain distance in a fixed time (one clock cycle), but the difference of distance between them during this fixed time is less than half of the circumference. So at all time, both runners are running in one half of the circumference. Therefore, no matter how long the two runners have run, it is always very obviously to see which runner is in leading position.
By understanding the theory, next step should be how to implement the ACSU. The modular arithmetic can be implemented by using 2’s complementary adders and subtractors. In particular, a subtractor is used in place of a comparator as in a normal ACSU. This is based on the observations that:

1. 2’s complementary subtraction produces the angle between $\overline{y^1}$ and $\overline{y^2}$, which is α

2. $\overline{y^1} - \overline{y^2} = y^1 - y^2$ if $|y^1 - y^2| \leq \frac{c}{2}$

The sign bit (equals to 1 if $\alpha > \pi$, 0 otherwise) can be used to drive the multiplexer to perform the selection. However, the subtractor will limit the processing speed, especially for low word-length calculations, besides, the power consumption is still high. In order to further simplify the compare logic so as to speed up the progress and save power consumptions, the modified comparison rule in [Shung’90] is used for the presented thesis.

The structure of the modified comparator in this thesis is shown in Figure 3.75. As it can be seen, the MSB of each signal is separated from the rest of the bits, then the structure is simplified compared with traditional 2’s complementary subtractors and has a faster processing speed. The function of this comparator is described as follow.

![Figure 3.75 Two-way add-compare subsystem](image-url)
Let $z(y^1, y^2)$ denote the logical result of the comparison of the state metric y^1 and y^2, and have the relation of (74).

$$z(y^1, y^2) = \begin{cases} 1, & y^1 < y^2 \\ 0, & y^1 > y^2 \end{cases}$$ \hspace{1cm} (74)

Let $y^1 = (y^{1p}, ..., y^{10})$ and $y^2 = (y^{2p}, ..., y^{20})$ be the 2’s complementary representations of the normalized metrics y^1 and y^2, or can be expressed by using (75).

$$\overline{y^1} = \sum_{j=0}^{p} \overline{y^1j}2^j$$
$$\overline{y^2} = \sum_{j=0}^{p} \overline{y^2j}2^j$$ \hspace{1cm} (75)

Therefore, $\overline{y^{1p}}$ and $\overline{y^{2p}}$ represent the MSB, which is the sign bit, of $\overline{y^1}$ and $\overline{y^2}$.

Then let $\overline{y^j} = \overline{y^j} \mod \frac{C}{2}$, or can be expressed by using (76), which is the rest of the bits except the MSB.

$$\overline{y^1} = \sum_{j=0}^{p-1} \overline{y^1j}2^j$$
$$\overline{y^2} = \sum_{j=0}^{p-1} \overline{y^2j}2^j$$ \hspace{1cm} (76)

Then y^j satisfy the situation of (77).

$$y^j = \begin{cases} \overline{y^j}, & \overline{y^j} > 0 \\ \overline{y^j} + \frac{C}{2}, & \overline{y^j} < 0 \end{cases}$$ \hspace{1cm} (77)

Given Figure 3.76 as an example, assuming that $\overline{y^1}$ and $\overline{y^2}$ have opposite sign.

Then the function of $y(y^{1}, y^{2})$ has the value of (78).

$$y(y^{1}, y^{2}) = \begin{cases} 1, & y^{1} < y^{2} \\ 0, & y^{1} > y^{2} \end{cases}$$ \hspace{1cm} (78)
Then the output results of the modified comparator can be expressed as (79).

\[z(y^1, y^2) = \overline{y^1} \oplus \overline{y^2} \oplus y\left(\overline{y^1}, \overline{y^2}\right) \tag{79} \]

The comparison result is then given by (80).

\[z(y^1, y^2) = \begin{cases} 1, & y^1 < y^2 \\ 0, & y^1 > y^2 \end{cases} \tag{80} \]

Compared with traditional method to implement the subtractors, the modified comparator consumes less hardware resources and processes faster. In addition, the computation of \(y\left(\overline{y^1}, \overline{y^2}\right) \) and \(\overline{y^1} \oplus \overline{y^2} \) can be performed in parallel, thus the implementation based on the modified comparison rule further removes one clock cycle delay. As a result, the hardware architecture for ACSU based on the modified comparison rule is more efficient in power and speed than the one based on the 2’s complementary subtraction.

For the proposed VD system, the bit width is chosen to be 10 bits long so as to meet the requirement of \(|y^1 - y^2| \leq \frac{C}{2}\), compared with subtracting the minimum state metric method, the modified metric normalization method not only saves additional logic for finding the minimum number and subtraction, but also uses less memory sources to restore each updated state metric.

In order to further speed up the ACS procedure, the two step radix-4 algorithm is used for the proposed ACSU structure. Figure 3.77 gives an example with 4 states VD algorithm, which updates the state metrics from time \(n-2 \) to \(n+2 \)
directly. The two step algorithm supports processing 4 soft-bit input signals within one clock cycle, therefore it’ll reduce the system frequency to 528/4=132 MHz for MB-OFDM application. This solves the problem of high dynamic power consumption and design complexity resulting from high processing frequency. Furthermore, it gives the proposed VD system the possibility of supporting even higher throughput applications. Compared with radix-8 VD algorithm [Nakamura’99], the two-step radix-4 algorithm is much simpler to be implemented and easier to be understood.

![Trellis diagram of two-step radix-4 procedure](image)

Figure 3.77 Trellis diagram of two-step radix-4 procedure

3.5.4.3 Trace Back Unit (TBU)

In the Viterbi Decoder system, there are two known memory organization techniques for the storage of survivor sequences from which the decoded information sequence is retrieved, namely Register Exchange (RE) method and Trace Back (TB) method. In the literature, the RE technique is acceptable for trellises with only a small number of states, whereas the TB approach is
acceptable for trellises with a large number of states. Therefore, the TB method has been widely investigated and implemented for high speed VD system developments.

The TB method stores path information in the form of an array of recursive pointers, and was originally proposed in [Rader’81]. Unfortunately, a direct implementation of the TB method requires further thought, since it treats memory as infinite in size, while any actual implementation contains only finite memory resources with a limited number of address and data ports. Furthermore, the traditional TB method assumes that the ACS decisions have been written into the memory before trace back commences. The challenge of various approaches to simultaneously updating and reading the memory has not been addressed. How to organize the memory more efficiently in both power and hardware resources usage, and how to simultaneously updating and tracing the memory should be the main points that taking into consideration before TBU implementation.

Let’s first assume that the trace back memory has a two-dimensional structure with rows and columns. The rows represent each state, with the number equal to the number of state N, 64 for MB-OFDM UWB system. Each column stores the results of N comparisons corresponding to one symbol interval or one stage in a trellis diagram. Since the stream of symbols is semi-infinite, therefore the storage locations are periodically reused.

The proposed VD system employs the 2-pointer even algorithm for trace-back recursion. Two memory banks and one Last-In First-Out (LIFO) buffer are required to conduct the 2-pointer even algorithm. The trace-back length for the proposed VD system is 32, which actually equals to $32 \times 4 = 128$ length for the proposed two-step radix-4 architecture.

According to [Fetgin’93], the k-pointer even algorithm is a generalization of the implementation of the TB algorithm. The example of a 3-pointer even method is given in Figure 3.78. The operations of read and write proceed in parallel in the memory, which is divided into banks.
The memory is divided into 6 memory banks, each of size $T/2$ columns. Each read pointer is used to perform the trace back operation in 2 memory banks, and the decode read in one memory bank. A new trace back front will start from the fixed state, such as all zeros or the state with the minimum state metric, in each T stages. And a new decode front is started at a locating determined by the trace back pointer derived in the previous stage. Then a simple LIFO structure is sufficient to perform the bit order reversal. Each LIFO stack must be $T/2$ in depth. During the decoding of one memory bank, decoded bits are pushed on one stack, while the bits stored on the other stack are popped. Then with the aim of further simplify the TBU structure, the 2-pointer even algorithm is implemented for the
TBU implementation. Figure 3.79 shows the order of writing and reading memory banks for the employed 2-pointer algorithm.

As it can be seen in Figure 3.79, the writing and reading operations can perform in parallel and no conflict will happen during the whole trace back processing. The 2-pointer even algorithm is considered to be more simple and hardware-efficient than the register exchange algorithm and the 3-pointer algorithm [Fetgin’93].

3.5.4.4 Whole Viterbi Decoder (VD) structure

Figure 3.80 illustrates the whole structure of the proposed two-step radix-4 VD architecture. Four 3-bit soft decision input signals are feed into two Branch...
Metric Units (BMUs) in parallel. By taking the advantages of branch symmetry of radix-4 butterfly, only half of the branch metrics need to be computed, while the other half can be derived from the computed branches. As a result, although one more BMU is implemented in the proposed VD system, the entire power consumption almost remains the same compared with traditional BMU architectures.

The processing flow of the proposed VD system can be explained as follow. The BMU 1 and BMU 2 take charge of calculating the branch metrics for each branch of the trellis diagram. According to Figure 3.80, the BMU1 will provide the branch metric information for the time instance from $n-2$ to n, whereas the BMU 2 will provide the branch metrics from n to $n+2$. Then the two groups of branch metrics will be feed into two different modified 4-way radix-4 ACSUs for updating the state metrics for each state.

ACSU 1 responsible for adding the state metrics with the branch metrics from BMU 1. The updated state metrics at time instance n from ACSU 1 will then be feed into ACSU 2 for calculating state metrics for time instance of $n+2$, while the two bits comparison results (for time $n-3$ and $n-2$) will go to the memory banks waiting for tracing back function. The ACSU 2 operates the same as ACSU 1, but provides the state metrics for time $n+2$ and the decision results for time $n-1$ and n. The new state metric values (γ_{n+2}) during this clock cycle will then be stored.
in the registers and acting as the old state metric values \(\gamma_{n-2} \) for the next clock cycle processing.

Four bits of decision results from both ACSU 1 and ACSU 2 are written into the TBU memory banks. The trace back procedure will be executed after 32 clock cycles, with the starting point fixed at all zero state. As the order of the track back results should be reversed, a simply LIFO structure is added at the end of TBU. Then the decoded output values will be pushed out for the other models of MB-OFDM system to process. The proposed VD structure can provide four bits of decoded results in each clock cycle, which is four times faster than the radix-2 algorithm and twice the speed of radix-4 architecture. Furthermore, the proposed VD system can be fixed into the four-parallel-path structure of proposed MB-OFDM digital baseband system very well.

3.5.4.5 Experimental results

The proposed ACS architecture is implemented and tested on the Xilinx XUPV5-LX110T Evaluation Platform with a Virtex 5 FPGA on it. The hardware performances of proposed two-step radix-4 ACS unit are compared with several different radix ACS implementations in Table 3-21. The number of logic gates is based on the 2×1 NAND gate, and the power consumption of the proposed ACSU is estimated by using xPower Analyzer from Xilinx Tools.

<table>
<thead>
<tr>
<th></th>
<th>Radix-2</th>
<th>Pipelined radix-4</th>
<th>Two-step radix-2</th>
<th>Radix-4</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of gates</td>
<td>31,906</td>
<td>241,410</td>
<td>53,353</td>
<td>83,702</td>
<td>88,070</td>
</tr>
<tr>
<td>Speed (MHz)</td>
<td>528</td>
<td>264</td>
<td></td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Maximum speed (MHz)</td>
<td>277</td>
<td>292</td>
<td>164</td>
<td>244</td>
<td>174</td>
</tr>
<tr>
<td>Power (mW)</td>
<td>106.8</td>
<td>307.2</td>
<td>94.5</td>
<td>172.8</td>
<td>217.2</td>
</tr>
<tr>
<td>Technology</td>
<td>0.18 µm CMOS technology</td>
<td></td>
<td></td>
<td>FPGA</td>
<td></td>
</tr>
</tbody>
</table>
As it can be seen in Table 3-21, compared with traditional radix-4 implementations, the proposed two-step radix-4 architecture consumes 5% more hardware resources, but the throughput rate is doubled. As the proposed ACSU can support the maximum working frequency of 174 MHz, it can be used for MB-OFDM baseband system development, and has the potential to support the even higher data rate applications.

By implementing the VD system on the same FPGA board, it can support maximum 152.5 MHz working frequency, which can be used for 610 Mbps decode mode. Table 3-22 illustrates the system performances based on the synthesis report provided by Xilinx Timing and xPower Analyzer. The power consumption is provided when the proposed VD system is working at 132 MHz clock frequency.

<table>
<thead>
<tr>
<th>FPGA Board</th>
<th>Xilinx Virtex 5 XC5VLX110T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Frequency</td>
<td>132 MHz</td>
</tr>
<tr>
<td>Maximum Working Frequency</td>
<td>152.509 MHz</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>315.53 mW</td>
</tr>
<tr>
<td>No. of 2×1 NAND Gates</td>
<td>127,365</td>
</tr>
</tbody>
</table>

3.5.5 Conclusions and contributions

The convolutional encoder and Viterbi Decoder processing that used for MB-OFDM baseband system implementation has been introduced in this section. In order to improve the speed and power consumption performances, a 64 states soft decision VD system by using high speed radix-4 ACSU architecture is presented. The proposed VD system can support different data rate (from 53.5 Mbps to 480 Mbps) MB-OFDM UWB system when implemented in the FPGA board.

As the bottleneck for high speed VD system development is mainly related with ACSU design, therefore the work presented in this section focuses on the
modification and optimization of high speed radix-4 algorithms. By employing the modified Modulo Normalization algorithm, the VD system is possible to use only a 10-bits width memory banks to restore each of the 64 state metrics, with the advantage of avoiding errors caused by overflow or underflow during the updating process for state metrics. A simplified comparator circuit for the ACS unit is also presented in this work. When compared with other structures, the proposed ACSU has the advantages of high speed processing and low power consumptions.

The Two Pointer Even algorithm is employed for efficiently realizing the Trace Back Unit for the proposed VD system. Compared with traditional register exchange strategy, the 2-pointer even algorithm can be implemented more power and hardware efficiently, while it support writing and reading memory banks in parallel and avoiding the conflicts.

Although two BMUs and ACSUs are used for the proposed VD structure, by taking the advantage of symmetry properties for radix-4 Viterbi algorithm, only half of the branch metrics are needed to be calculated. Thus the entire power consumption almost remains the same compared with traditional BMU architectures.

The experimental result shows the potential of the proposed VD system to be used for any MB-OFDM transmission mode.

3.6. Integrate the complete MB-OFDM transceiver system

3.6.1 Introduction

As presented in Figure 3.2 and Figure 3.3, apart from the blocks presented above, several other functions are still necessary for integration of an entire MB-OFDM UWB digital baseband transceiver system. This section of the paper will give a brief introduction of each function. As several elements are appear in pair for Tx and Rx system with inversed function, such as interleaver/deinterleaver, mapper/demapper, spreading/despreading and so on, thus each element will be introduced in pair for both Tx and Rx system development.
For efficiently implement each function in hardware so as to lower the power consumption, several state-of-the-art algorithms and architectures are employed from other works. The clock island technology and re-timing strategy are used during the integrating of the Tx system, as some part of the system has different working frequency from others. The signal flow after each processing element will also be discussed and demonstrated in this section.

Compared with Tx system, Rx system has more complex architecture due to synchronization and channel estimation functions. Some state-of-the-art techniques for estimating the channel response and equalize the estimated channel will be introduced in this section.

The complete integration of the MB-OFDM transceiver system is given at the end of this section.

3.6.2 Other blocks for MB-OFDM system

3.6.2.1 Data Scrambler/Descrambler

In telecommunication system, the scrambler is a device that transposes or inverts signals or otherwise encodes a message at the transmitter to make the message unintelligible at the receiver. The performance of data transmission systems must be independent of the specific bit sequence being transmitted. If allowed to occur, repeated bit sequences can cause wide variations in the received power level as well as difficulties for adaptive equalization and clock recovery. Besides, the Hamming distance between two strings of bits, generated by the convolutional encoder, is greater if the input sequences are uncorrelated. Since all these problems are eliminated if the bit sequence is “random” (has no discernible pattern), many wireless communication systems employ a data scrambler to produce a pseudorandom sequence for any given input bit sequence. The scrambler usually takes the form of a shift register with feedback connections, while the descrambler is a feed-forward-connected shift register.

In MB-OFDM UWB systems, a side-stream scrambler shall be used to whiten all the transmitted data, and only portions of the Physical Layer Service Access
Point (PLCP) header, i.e., the Media Access Control (MAC) header and Header Check Sequence (HCS). The structure of data scrambler used for MB-OFDM system is presented in Figure 3.81, while according to the theory, the descrambler should use exactly the same structure so as to recover the transmitted data sequences. The scrambler operates in the following fashion. The initial shift register contents are arbitrary but prespecified and fixed to be the same in both the scrambler and descramble systems.

![Figure 3.81 Block diagram of the side-stream scrambler](image)

The polynomial generator, \(g(D) \), for the Pseudo-Random Binary Sequence (PRBS) generator shall be \(g(D) = 1 + D^{14} + D^{15} \), where \(D \) is a single bit delay element. Using this generator polynomial, the corresponding PRBS, \(x[n] \), is generated as (81) [ISO/IEC 26907'09].

\[
x[n] = x[n - 14] \oplus x[n - 15], \quad n = 0, 1, 2, \ldots
\]

Where \(\oplus \) denotes modulo-2 addition. The first bit in input data sequence is summed modulo-2 with the modulo-2 sum of locations 14 and 15 in the shift register. This sum becomes the first bit in output bit sequence. As this bit is presented to the channel, the contents of the shift register are shifted up one stage, while the first bit in output bit sequence is also placed in shift register stage 1. This procedure will be repeated for all the bits that needed to be scrambled.

The initialization vector of the shift register file is determined from the seed identifier contained in the PLCP header of the received frame. The 15-bit initialization vector, or seed value, shall correspond to the seed identifier as defined in Table 3-23. The MAC shall set the seed identifier value to “00” when the Physical (PHY) is initialized and this value shall be incremented in a 2-bit
rollover counter for each frame sent by the PHY. Note that all consecutive packets, including retransmissions, shall be sent with a different initial seed value for MB-OFDM UWB system.

Table 3-23 Scrambler Seed Selection

<table>
<thead>
<tr>
<th>Seed Identifier (S1, S2)</th>
<th>Seed Value $X_{int} = x_{i-1}x_{i-2}...x_{i-15}$</th>
<th>PRBS Output First 16 bits $x[0]x[1]...x[15]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0011 1111 1111 111</td>
<td>0000 0000 0000 1000</td>
</tr>
<tr>
<td>01</td>
<td>0111 1111 1111 111</td>
<td>0000 0000 0000 0100</td>
</tr>
<tr>
<td>10</td>
<td>1011 1111 1111 111</td>
<td>0000 0000 0000 1110</td>
</tr>
<tr>
<td>11</td>
<td>1111 1111 1111 111</td>
<td>0000 0000 0000 0010</td>
</tr>
</tbody>
</table>

The simulation waveform of one testing data input sequence processed by the data scrambler is shown in Figure 3.82. Along with the scrambler output sequence, the shift register contents can also be seen in this figure.

By inspection of the scrambled output sequence, it can be seen clearly that output sequence is very different from data input sequence. Whether output sequence has any special randomness properties is not immediately evident.

The descrambler at receiver side has exactly the same structure as the scrambler, while the seed value for each packet is transmitted as the 23rd and 24th bits in the
PHY Header sequence. By using the seed value from PHY Header, the descrambler block takes charge of recovering the decoded data sequences to the original information that have been transmitted.

3.6.2.2 Interleaver/Deinterleaver

Interleaving is a key component of many digital communication systems involving Forward Error Correction (FEC) coding. Interleaving the encoded symbols provides a form of time diversity to guard against correlated channel noise such as localized corruption or bursts errors or fading. The interleaver rearranges input data such that consecutive data are spaced apart. At the receiver end, the interleaved data is arranged back into the original sequence by the deinterleaver. As a result of interleaving, correlated noise introduced in the transmission channel appears to be statistically independent at the receiver and thus allows better error correction.

For MB-OFDM systems, the coded bits from convolutional encoder are then interleaved prior to modulation by using three steps of interleaving technologies. The three distinct interleaver stages are defined in Figure 3.83.

![Figure 3.83 Various stages of the bit interleaver for MB-OFDM UWB system](image)

The performance of each stage is given as follow:

1) **Symbol Interleaving**, which permutes the bits across 6 consecutive OFDM symbols, enables the PHY to exploit frequency diversity within a band group.

2) **Intra-symbol Tone Interleaving**, which permutes the bits across the data subcarriers within an OFDM symbol, exploits frequency diversity across subcarriers and provides robustness against narrow-band interferers.

3) **Intra-symbol Cyclic Shifter**, which cyclically shift the bits in successive OFDM symbols by deterministic amounts, enables
modes that employ time-domain spreading and the Fixed Frequency Interleaving (FFI) modes to better exploit frequency diversity.

The deinterleaver blocks at the receiver side performs the inverse operations but in inverse order (Cyclic Deshifter, Tone Deinterleaver, Symbol Deinterleaver) after the modulation to obtain the original bit stream.

The additional parameters needed by the interleavers and deinterleavers correspond to the values indicated in ISO/IEC 26907 standard [ISO/IEC 26907’09] are listed in Table 3-24 as a function of the data rate.

<table>
<thead>
<tr>
<th>Data Rate (Mbps)</th>
<th>Time Domain Spreading Factor (N_{TDS})</th>
<th>Coded Bits/OFDM Symbol (N_{CBPS})</th>
<th>Tone Interleaver Block Size (N_{Til})</th>
<th>Cyclic Interleaver Shift (N_{CYC})</th>
<th>Coded Bits/6 OFDM Symbol (N_{CBPS})</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.3</td>
<td>2</td>
<td>100</td>
<td>10</td>
<td>33</td>
<td>300</td>
</tr>
<tr>
<td>80</td>
<td>2</td>
<td>100</td>
<td>10</td>
<td>33</td>
<td>300</td>
</tr>
<tr>
<td>106.7</td>
<td>2</td>
<td>200</td>
<td>20</td>
<td>66</td>
<td>600</td>
</tr>
<tr>
<td>160</td>
<td>2</td>
<td>200</td>
<td>20</td>
<td>66</td>
<td>600</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>200</td>
<td>20</td>
<td>66</td>
<td>600</td>
</tr>
<tr>
<td>320</td>
<td>1</td>
<td>200</td>
<td>20</td>
<td>33</td>
<td>1200</td>
</tr>
<tr>
<td>400</td>
<td>1</td>
<td>200</td>
<td>20</td>
<td>33</td>
<td>1200</td>
</tr>
<tr>
<td>480</td>
<td>1</td>
<td>200</td>
<td>20</td>
<td>33</td>
<td>1200</td>
</tr>
</tbody>
</table>

3.6.2.2.1 Symbol Interleaver/Deinterleaver

The symbol interleaving operation is performed by first grouping the coded bits into blocks of N_{CBPS} bits (corresponding to 6 “on-air” OFDM symbols). By using a block interleaver of size N_{CBPS} by $6/N_{TDS}$, the coded bits are permuted. Let the sequences $a[i]$ and $a_S[i]$ represent the input and output bits of the symbol block interleaver respectively, where $i = 0, \ldots, N_{CBPS}-1$. The output of symbol interleaver is mathematically given by (82).
\[a_s[i] = a \left[\frac{i}{N_{CBPS}} \right] + \left(\frac{6}{N_{TDS}} \right) \times \text{mod}(i, N_{CBPS}) \] \hspace{1cm} (82)

The data flow when taking data rate of 53.3 Mbps as an example is given in Figure 3.84.

\[\text{Read In} \quad \text{Symbol Interleaver} \quad \text{Read Out} \]

\[\text{a[1]a[2]a[3]...a[300]} \]

Figure 3.84 Data flow for Symbol Interleaver

The implementation of Symbol Interleaver module resembles a matrix with \(6/N_{TDS}\) rows. Each symbol is written in a line of the matrix and the output is read by columns as shown in Figure 3.85, therefore, no additional rearrangement logics are needed for implementing such function. The design allows continuous data processing.

\[\begin{array}{ccccccc}
1 & 4 & 7 & 292 & 295 & 298 \\
2 & 5 & 8 & 293 & 296 & 299 \\
3 & 6 & 9 & 294 & 297 & 300 \\
\end{array} \]

Figure 3.85 Implementation of Symbol Interleaver for 53.3 Mbps data rate

For symbol deinterleaver function, the reverse operation is obtained by using (83). Let the sequences \(a'_s[i]\) and \(a'[i]\) represent the input and output bits of the symbol block interleaver respectively

\[a'[i] = a'_s \left[\frac{i}{6/N_{TDS}} \right] + N_{CBPS} \times \text{mod} \left(i, \frac{6}{N_{TDS}} \right) \] \hspace{1cm} (83)
Corresponding to (83), the data flow of symbol deinterleaver is the reverse of Figure 3.84, while the implementation for this deinterleaver has the same architecture as Figure 3.85, but with $NCBPS$ rows instead, or we can just replace the write and read pointer with each other in Figure 3.85 so as to get the symbol deinterleaver implementation.

3.6.2.2.2 Tone Interleaver/Deinterleaver

The output of the symbol block interelaver is then passed through a tone block interleaver. The outputs of the symbol block interelaver are grouped together into blocks of $NCBPS$ bits and then permuted using a regular block interleaver of size $NTint \times 10$. Let the sequences $aS[i]$ and $aT[i]$ represent the input and output bits of the tone interleaver, where $i=0, \ldots, NCBPS-1$. The output sequences of the tone interleaver are given by the relationship of (84).

$$a_T[i] = \frac{i}{NTint} + 10 \times \text{mod}(i, NTint)$$ \hspace{1cm} (84)

Also take the data rate mode of 53.3 Mbps as an example, the data flow for tone interleaver is given in Figure 3.86.

![Figure 3.86 Data flow for Tone Interleaver](image)

Similar to the Symbol Interleaver, the Tone Interleaver implements a matrix to make the operation. Each symbol is written in a line of the matrix and the output is read by columns, as shown in Figure 3.87. As the example is given for 53.3 Mbps transmission mode, the input sequences are divided into 3 groups, with 100 samples each.
The Tone Deinterleaver function is illustrated in (85). And the implementation for Tone deinterleaver is also implemented by replacing the read and write pointer with each other based on the structure in Figure 3.87.

\[
a_s[i] = a_T \left[\frac{i}{10} + N_{Tint} \times \text{mod}(i, 10) \right]
\]

(85)

3.6.2.2.3 Cyclic shifter/desifter

The output results of the tone interleaver will be sent to an intra-symbol cyclic shifter, which consists of a different cyclic shift for each block of \(N_{CBPS}\) bits within the span of the symbol interleaver defined above. Let the sequences \(a_T[i]\) and \(a_C[i]\) represent the input and output bits of the cyclic shifter, where \(i=0, \ldots, N_{CBPS}-1\). The output of the cyclic shifter is given by the following relationship.

\[
a_C[i] = a_T[m(i) \times N_{CBPS} + \text{mod}(i + m(i) \times N_{CYC}, N_{CBPS})]
\]

(86)

Where \(m(i) = \lfloor i/N_{CBPS} \rfloor\).

The cyclic shifter data flow is given in Figure 3.88, the data rate mode of 53.3 Mbps is given as an example.
The resulting operation is illustrated in Figure 3.89, where X corresponded to an index value. For a data rate of 53.3 Mbps, X corresponds to the following values:

- 1st Symbol: $X=0$ (no shift).
- 2nd Symbol: $X=33$.
- 3rd Symbol: $X=66$.

![Figure 3.88 Data flow for Cyclic Shifter](image)

X corresponded to an index value. For a data rate of 53.3 Mbps, X corresponds to the following values:

- 1st Symbol: $X=0$ (no shift).
- 2nd Symbol: $X=33$.
- 3rd Symbol: $X=66$.

![Figure 3.89 Cyclic Shifter Operation](image)

The Cyclic Deshifter function is illustrated in (87) so as to reorganize the received sequence to the original order.

\[
T^{\prime} \left[T \right] = T^{\prime} \left[T \right] + T^{\prime} \left[T \right] + 1,
\]

where

\[
a_T \left[i \right] = \frac{N_{\text{CYC}} \times 2}{m(i)} + 1
\]

(87)

3.6.2.3 Constellation Mapper/Soft Demapper

The constellation mapping is the technique for mapping the coded and interleaved binary data sequence onto a complex constellation. According to the MB-OFDM standard, the data rate modes that lower than 200 Mbps (including 200 Mbps), the binary data shall be mapped onto a Quadrature Phase Shift Keying (QPSK) constellation, whereas the data rates that higher than 320 Mbps
(including 320 Mbps), the binary data shall be mapped onto a multi-dimensional constellation using a Dual-Carrier Modulation (DCM) technique.

3.6.2.3.1 QPSK mapper

QPSK constellation mapping is used when data rate is 200 Mbps or lower combing with Frequency-Domain Spreading (FDS) and Time-Domain Spreading (TDS) techniques. The FDS and TDS modes are not only used to create the varied data rates, but also maximize frequency diversity and improve the performance. The binary coded and interleaved input data are divided into groups of two bits, and then mapped in one of the four Gray coded QPSK constellation points, as shown in Figure 3.90. By mapping two bits per symbol, the output symbol values $d[k]$ are normalized by a normalization factor of $K_{MOD} = 1/\sqrt{2}$ to have constant average symbol power, as given in (88).

$$d[k] = K_{MOD} \times [(2 \times b[2k] - 1) + j(2 \times b[2k + 1] - 1)] \quad (88)$$
Where \(k=0, 1, 2, \ldots, n \). \(n=49 \) is used when FDS is enable, otherwise \(n=99 \). And \(b[2k] \) determines the \(I \) value of the complex data, and \(b[2k+1] \) determines the \(Q \) value.

3.6.2.3.2 Dual QPSK soft-demapper

Soft bit decision is used to demap the QPSK to maximize the post-QPSK baseband processing. However, a soft bit based receiver will consume more memory in the deinterleaver and increase the computational complexity of the Viterbi Decoder. The soft-QPSK demapper process can improve WPAN receiver performance where each input complex number for the demapper outputs two soft bits being the symbol likelihood. The demapping process can be simply the process of outputting real part (\(I \) value) and then the imaginary part (\(Q \) value) of the input symbol for the first and second soft bit respectively. For a given code bit, a positive soft bit with large possible magnitude may indicate more confidence in ‘1’ being sent for the code bit, while a negative soft bit with large possible magnitude may indicate more confidence in ‘0’ being sent for the code bit, and a soft bit of zero may indicate equal likelihood of ‘0’ or ‘1’ being sent for the code bit.

As frequency hopping is defined in MB-OFDM UWB standard, each time diversity pair in the TDS is transmitted over a different frequency band and therefore has independent channel fading characteristics. Therefore, it is a very small possibility that both the main and spread OFDM symbols in different frequency bands have deep fades on the same subcarriers. Thus, the receiver may decide to select and decode one received OFDM symbol or combine the two symbols to maximize performance. Since the duration of an OFDM symbol is fixed, the receiver may implement a single serial decoding path for each symbol pair, or have two parallel decoding paths clocked at half the serial rate. After the equalization, the data from both main and spread OFDM symbols will be sent to be demodulated by QPSK. Since QPSK soft demapper is used for a pair of main and spread QPSK symbols, the receiver must implement soft decision for the soft bit decoding. For two one-dimensional points \((x_1, y_1)\) and \((x_2, y_2)\), traditional, the Euclidean distance should be computed as in (89). Let’s define \(y_{m_k} \) and \(y_{s_k} \) as
the signals after equalization process for the main symbol and spread symbol respectively. The spread decision can be selected from calculating the Euclidean symbol distance between the corresponding QPSK constellation point to a main QPSK symbol, \(y_{mk} \), or a spread QPSK symbol, \(y_{sk} \), and then output the symbol that has the shorter distance. The Euclidean distance for \(y_{mk} \), denote as \(d_m \), and the distance for \(y_{sk} \), denotes as \(d_s \) are calculated in (90) and (91).

\[
d = \sqrt{(x_2 + x_1)^2 + (y_2 - y_1)^2}
\]
\[
d_m = \sqrt{\{Re(y_{mk}) - Re(S_n)\}^2 + \{Im(y_{mk}) - Im(S_n)\}^2}
\]
\[
d_s = \sqrt{\{Re(y_{sk}) - Re(S_n)\}^2 + \{Im(y_{sk}) - Im(S_n)\}^2}
\]

Where \(k = 0, 1, ..., 99 \), and \(S_n \) is the reference signal for one of the four constellation points. Then the soft values of \(y_{mk} \) and \(y_{sk} \) are used as the demapper output results after deciding the Euclidean distance, as given in (92) and (93).

\[
soft(2k) = Re(y_{mk}), \quad soft(2k+1) = Im(y_{mk}), \quad \text{if} \quad (d_m < d_s)
\]
\[
soft(2k) = Re(y_{sk}), \quad soft(2k+1) = Im(y_{sk}), \quad \text{if} \quad (d_s < d_m)
\]

The equal gain combing scheme can be employed to combine the spread sequence whether before the QPSK demapper or after QPSK demapper. Thus, in order to decrease the computational complexity due to Euclidean distance calculation, a simplified dual soft bit QPSK demapper is introduced into the proposed MB-OFDM baseband receiver system as in [Sherratt'07].

The demapping process can be made implicit into the symbol combining scheme such that for soft output \(soft(2k) \) and \(soft(2k+1) \) and input main and spread symbols, then the QPSK decoding and TDS symbol merging process can be simply reduced to (94) and (95). The overall likelihood of a large signal to noise ratio value is increased, thereby increasing more reliability for Viterbi Decoder input. This equal gain combing scheme not only has better soft decoding performance than the spread decision, but also has much lower computation complexity, as no multiplication and comparison functions are needed in this low complexity demapper progress.
As mentioned above, merging the TDS and QPSK soft demapper to one processing step can significantly reduce the computational complexity, therefore power consumption, so as to optimize the receiver performance. The architecture of soft demapper can be efficiently and simply implemented. At the rate where TDS is necessary, i.e., transmission rate that equal or lower than 200 Mbps, the proposed MB-OFDM receiver system process the main and spread OFDM symbols in serial so as to reduce the hardware and power cost due to dual processing elements. Because for parallel processing architecture, two different FFT and Channel Equalization blocks are needed to process the main and spread OFDM symbols in parallel, and higher clock frequency should be used; whereas for serial processing architecture, only one FFT processor and one Channel Equalization block are needed, but with additional memory banks for holding one equalized output symbol before the two equalized symbols are merged into one original OFDM symbol. Besides, the order of the demapped sequence should be rearranged for each OFDM symbol according to the FFT/IFFT data subcarriers allocation. According to this, to implement the demapper and combining processes, the basic operations include fetching and I and Q values, add two different symbols, shift to form the soft bits, and store the results. The processing and block diagram of the dual soft bit QPSK demapper is shown in Figure 3.91.

\[
\text{soft}(b_{2k}) = \sim \text{Re}(y_{m_k}) + \sim \text{Re}(y_{s_k}) \quad (94)
\]
\[
\text{soft}(b_{2k+1}) = \sim \text{Im}(y_{m_k}) + \sim \text{Im}(y_{s_k}) \quad (95)
\]

The output waveforms of the implemented dual soft bit QPSK demapper is shown in Figure 3.92. The simulation is based on the 106.7 Mbps transmission mode. In the figure, the upper two waveforms are the I and Q part of the
equalized main and spread OFDM symbol sequences, it should be noted that after channel equalization, the 12 pilot subcarriers, 10 guard subcarriers, and 6 DC subcarriers that inserted to each OFDM symbol have already been removed or picked out for the usage such as frequency synchronization and channel estimation, therefore only 100 data subcarriers are left for demapping, deinterleaving, and decoding. The lower two waveforms are the soft demapping output result sequence, \textit{soft}(2k) and \textit{soft}(2k+1), by using the dual soft demapper algorithm. The order of the 100 soft bits is rearranged according to the OFDM modulation assignment in the waveform. As shown by the results, most of the soft bits are demapped as strongest ‘1’ or ‘0’, whereas some of them are considered to be weak ‘0’ and ‘1’ as a result of channel fading and the affects of noise.

\textbf{Figure 3.92 QPSK soft demapper output waveforms}
3.6.2.3.3 Dual-Carrier Modulation (DCM)

The DCM modulation is used as a four-dimensional constellation for the transmission rate that higher than 200 Mbps. After coding and interleaving, the binary serial input data are divided into groups of 200 bits and further grouped into 50 groups of 4 reordering bits, then converted into 100 complex numbers by using DCM algorithm. Each group of 4 bits is represented as \((b_{g(k)}, b_{g(k)+1}, b_{g(k)+50}, b_{g(k)+51})\), where \(k \in [0, 49]\)

\[
g(k) = \begin{cases} 2k & k \in [0 \ldots 24] \\ 2k + 50 & k \in [25 \ldots 49] \end{cases}
\]

(96)

These four binary bits can be seen as be mapped to two QPSK symbols, \((x_{g(k)} + jx_{g(k)+50})\) and \((x_{g(k)+1} + jx_{g(k)+51})\), as in (97). Then the DCM mapper uses a matrix \(H\) as in (98) to execute mapping of the two QPSK symbols into two DCM symbols, \((y_{(k)}, y_{(k)+50})\) as in (99), where \(k_{MOD} = 1/\sqrt{10}\) is used as the normalization factor for normalizing the average symbol power to be a constant unit. The resulting DCM symbols are formed into two 16-QAM-like constellations, as in Figure 3.93.

\[
\begin{bmatrix}
x_{g(k)} + jx_{g(k)+50} \\
x_{g(k)+1} + jx_{g(k)+51}
\end{bmatrix} = \begin{bmatrix}
2b_{g(k)} - 1 + j(2b_{g(k)+50} - 1) \\
2b_{g(k)+1} - 1 + j(2b_{g(k)+51} - 1)
\end{bmatrix}
\]

(97)

\[
H = \begin{bmatrix}
2 & 1 \\
1 & -2
\end{bmatrix}
\]

(98)

\[
\begin{bmatrix}
y_{(k)} \\
y_{(k)+50}
\end{bmatrix} = \frac{1}{\sqrt{10}} \begin{bmatrix}
2 & 1 \\
1 & -2
\end{bmatrix} \begin{bmatrix}
x_{g(k)} + jx_{g(k)+50} \\
x_{g(k)+1} + jx_{g(k)+51}
\end{bmatrix}
\]

(99)
Figure 3.93 DCM constellation mapping process: (a) mapping for y_k; (b) mapping for y_{k+50}

Information on a single tone is unreliable if a channel has deep fade. If the tone is completely attenuated by the multipath channel, the information will be completely lost. As it has been discussed above, the probability of two tones experiencing a channel deep fade is extremely small if the two tones with the same information are separated by a large bandwidth. Frequency diversity is used in the DCM by mapping the same information but with different forms onto two different tones at different channel frequencies with a large bandwidth separation. The two resulting DCM symbols are allocated into two individual OFDM data subcarriers with 50 subcarriers separation to achieve frequency diversity. Therefore, 100 DCM symbols are feed into the 128 points IFFT block to form one OFDM symbol with additional pilot, guard, and DC subcarriers. Each OFDM subcarrier occupies a bandwidth of $528/128=4.125$ MHz. Thus, the bandwidth between the two individual OFDM data subcarriers related to the two complex numbers (I_{3k}, Q_{3k}) and (I_{3k+50}, Q_{3k+50}) is at least 200 MHz, which offers good frequency diversity gain against channel deep fading.

3.6.2.3.4 DCM demapping

The DCM demapper uses two separate subcarriers concurrently to decode the symbol pair. If one symbol within one subcarrier is lost or degraded, it can be detected, even recovered by the DCM demapper. It is required to repeatedly
execute demapping of the two received DCM symbols to output groups of 200 soft bits. The soft bits from the DCM demapper are then sent to soft decoding.

The DCM demapper shall demap two equalized complex numbers \((IR(k), QR(k))\) and \((IR(k+50), QR(k+50))\) that previously transmitted on two different subcarriers back to two related DCM symbols by using the DCM mixing matrix. Then the DCM demapper outputs the corresponding real part and imaginary part as a group of 4 soft bits, as described in (100)-(103). However, the performance of DCM demapping can remain the same without using the factor of \(\sqrt{10}/5\), which is hard to be implement for hardware system design. The group of 4 soft bits applying two Channel State Information (CSI) values is from two corresponding data subcarriers in an OFDM symbol, as described in (104)-(107).

\[
\text{soft}(b_{g(k)}) = \frac{\sqrt{10}(2I_{R(k)} - I_{R(k+50)})}{5} \\
\text{soft}(b_{g(k)+1}) = \frac{\sqrt{10}(I_{R(k+50)} - 2I_{R(k)})}{5} \\
\text{soft}(b_{g(k)+50}) = \frac{\sqrt{10}(2Q_{R(k)} - Q_{R(k+50)})}{5} \\
\text{soft}(b_{g(k)+51}) = \frac{\sqrt{10}(Q_{R(k+50)} - 2Q_{R(k)})}{5}
\]

\[
\text{soft}(b_{g(k)}) = (2I_{R(k)} + I_{R(k+50)}) \times \min \{CSI_k, CSI_{k+50}\} \\
\text{soft}(b_{g(k)+1}) = (I_{R(k)} - 2I_{R(k+50)}) \times \min \{CSI_k, CSI_{k+50}\} \\
\text{soft}(b_{g(k)+50}) = (2Q_{R(k)} + Q_{R(k+50)}) \times \min \{CSI_k, CSI_{k+50}\} \\
\text{soft}(b_{g(k)+51}) = (Q_{R(k)} - 2Q_{R(k+50)}) \times \min \{CSI_k, CSI_{k+50}\}
\]

The more reliable soft bit values that are given to Viterbi Decoder system, the more accurately the binary bits can be decoded. The Maximum Likelihood (ML) algorithm offers finding parameters to obtain the most probable emitted symbols [Oberg’01]. The DCM symbols are transmitted at different amplitudes and phases \((I\text{ and } Q\text{ values})\). The real part or the imaginary part in the two DCM symbols is always fixed with data pairs being \(-3\) and \(+1\), \(-1\) and \(-3\), \(+1\) and \(+3\), \(+3\) and \(-1\). In this work, the large probable soft bit value can be obtained from the
two received DCM symbols with an appropriate parameter θ, as described in (105)-(108). The DCM symbol pair, $y_{R(k)}$ and $y_{R(k+50)}$, is received from the channel equalization.

\[
\begin{align*}
\text{soft}(b_{g(k)}) &= 2l_{R(k)}\theta + l_{R(k+50)} \quad (105) \\
\text{soft}(b_{g(k)+1}) &= l_{R(k)} - 2l_{R(k+50)}\theta \quad (106) \\
\text{soft}(b_{g(k)+50}) &= 2Q_{R(k)}\theta + Q_{R(k+50)} \quad (107) \\
\text{soft}(b_{g(k)+51}) &= Q_{R(k)} - 2Q_{R(k+50)}\theta \quad (108)
\end{align*}
\]

In order to find the appropriate parameter θ, two conditions need to be satisfied.

1) In perfect situation, the received I and Q values are feed to the DCM demapper, applying θ to equations (105)-(108) to make the soft magnitude sufficiently large;

2) A symbol in the DCM symbol pair is transmitted with a large magnitude I (or Q), while another symbol in the DCM symbol pair is transmitted with a small magnitude I (or Q). The signal with smaller power can be more easily corrupted. Suppose the small magnitude I (or Q) in a DCM symbol is received as inverted, while the large magnitude I (or Q) in another DCM symbol is received as uncorrupted. In this case, a maximum θ is required to retain the sign of the soft bit value; otherwise using a larger θ can make the sign of the soft bit value inverted, which causes errors for the soft bit decoding.

The θ is set to be 1.5 as a threshold value according to the two conditions above. The ML soft bit is generated with the appropriate factor and CSI aided technique as described in the following:

\[
\begin{align*}
\text{soft}(b_{g(k)}) &= (3l_{R(k)} + l_{R(k+50)}) \times \min\{CSI_{k}, CSI_{k+50}\} \quad (109) \\
\text{soft}(b_{g(k)+1}) &= (l_{R(k)} - 3l_{R(k+50)}) \times \min\{CSI_{k}, CSI_{k+50}\} \quad (110) \\
\text{soft}(b_{g(k)+50}) &= (3Q_{R(k)} + Q_{R(k+50)}) \times \min\{CSI_{k}, CSI_{k+50}\} \quad (111) \\
\text{soft}(b_{g(k)+51}) &= (Q_{R(k)} - 3Q_{R(k+50)}) \times \min\{CSI_{k}, CSI_{k+50}\} \quad (112)
\end{align*}
\]
3.6.2.4 Channel Estimation and Equalization

Channel Estimation system is another important element for baseband receiver system development. In order to mitigate hostile channel effects on the received signal, accurate channel estimation is required to provide information for further processing of the received signals. Two different types of channel estimation algorithm are basically used for nowadays communication systems, i.e., non-data-aided and data-aided. The non-data-aided channel estimators estimate channel response by statistics of the received signals. Thus, no reference or training signals are needed so as to increase the transmission efficiency. However, in this kind of estimation strategies, large scale of data must be collected in order to obtain reliable estimation, because there isn’t any information that can be used on the receiver side related with the transmitted signals before processing. The systems that use data-aided channel estimators will provide defined reference or training signals to the transmitted sequences. Therefore, by comparing the same defined training signals that restored on the receiver side with that of the transmitted training signals, the receiver can estimate the channel response rapidly and accurately. As sufficient number of training signals should be inserted to the transmitted packets, the transmission efficiency will be affected for the data-aided strategies.

OFDM has been known to be quite spectral efficient over frequency-selective fading channels. By dividing a frequency-selective-faded signal band into a large number of narrow-band flat-fading sub channels, high-rate transmission is then achieved by using a compact constellation on each subcarrier. For MB-OFDM UWB communication protocol, the data-aided estimation scheme is used so as to get an accurate estimation on the channel response. For standard PLCP preamble transmission, 6 Channel Estimation Sequences are added in front of each transmitted packet, which are used as reference and training signals for the channel estimator on the receiver system. Then the estimated channel response is sent to the channel equalizer block, so that the fading effect and co-channel interference of each transmitted signal can be removed and the original transmitted signal can be restored.
3.6.2.4.1 Channel Estimation

As defined in MB-OFDM standard, the 6 channel estimating sequences in PLCP preamble are used by the receiver side to estimate impulse response of the transmission channel, commonly termed the Channel State Information (CSI). The estimation process can be executed as a dynamic estimation in the frequency-domain for data reliability in each subcarrier position. The potentially CSI is usually different from each OFDM data subcarriers, thus, the more CSI measurement that can be taken, the more reliable the CSI estimation is in the presence of thermal noise offering better decoding result.

The Least Squares (LS) Estimation algorithm is used for the proposed MB-OFDM baseband communication system implementation. LS channel estimator is a Maximum Likelihood (ML) estimator, which is considered has very low implementation complexity, thus makes LS one of the popular methods for the OFDM based system channel estimation without using any knowledge of the statistics for the channel. Although some reports say that the drawback of LS estimator is that its performance, especially under low SNR situations, is greatly influenced by the noise, the work in [Li’06] has shown that LS estimation has similar performance very close to Minimum Mean Squared Error (MMSE) algorithm.

At the receiver system, the demodulated OFDM signal after FFT, \(Y \), can be expressed in matrix notation as (113).

\[
Y = XFh + I + W
\]
(113)

Where \(X \) is the matrix of transmitted signals, \(h \) is the time domain channel impulse response, \(I \) is the ISI and ICI effects, \(W \) is the Additive White Gaussian Noise (AWGN) with zero mean and variance \(N_0 \), \(F \) is the DFT matrix, and \(H = F \cdot h \) is the channel frequency response. Here,

\[
X = \text{diag}\{X(0), X(1), ..., X(N - 1)\}
\]
(114)

\[
Y = [Y(0), Y(1), ..., Y(N - 1)]^T
\]
(115)

\[
W = [W(0), W(1), ..., W(N - 1)]^T
\]
(116)

\[
H = [H(0), H(1), ..., H(N - 1)]^T
\]
(117)
Design and Validation of an Optimized High-performance MB-OFDM Ultra Wideband Transceiver System

\[
F = \begin{bmatrix}
W_N^{00} & \cdots & W_N^{0(N-1)} \\
\vdots & \ddots & \vdots \\
W_N^{(N-1)0} & \cdots & W_N^{(N-1)(N-1)}
\end{bmatrix}
\] (118)

Where \(W_N^{nk} = \frac{1}{N} e^{-j2\pi (n/N)k} \)

Considering the length of ZP is larger than the maximum delay spread of the UWB channel, the ISI is effectively suppressed. At the same time, assuming perfect frequency synchronization, the ICI is negligible. Then, the received signal in frequency-domain can be written as (119).

\[Y = XFh + W \] (119)

The expression of frequency-domain LS estimation is

\[H_{LS} = X^{-1}Y \] (120)

Which minimizes \((Y-XFh)^H(Y-XFh)\).

The LS channel estimator uses the 6 received CE sequences with the priori CE sequences and TFCs to create 6 received merged and inversed CE sequences by taking the average of each CE sequence sent on the same frequency. The procedure for estimating the impulse response based on the LS estimation algorithm that used for the proposed MB-OFDM receiver system is shown in Figure 3.94.

Figure 3.94 Channel estimation procedure
The simulation waveform for FPGA implementation is shown in Figure 3.95. The estimated channel impulse response will then be used by the Channel Equalization block for compensating and reforming the transmitted signals.

![Figure 3.95 Estimation results of Channel Estimation sequence in frequency-domain](image)

3.6.2.4.2 Channel Equalization

The estimation information, which is the channel impulse response, is then feed into the Channel Equalization block for compensation of each received data subcarriers, so that the fading effect and co-channel interference can be removed. The original transmitted signals can be restored in this step.

The One-tap Zero-Forcing (ZF) Equalizer that proposed in [Li’08] is employed into the proposed MB-OFDM baseband system. Suppose that the m-th OFDM data symbol, no matter time-domain spreading is used or not, is transmitted in the q-th band, and let $\hat{y}_{q,m}(i)$ denote the corresponding received symbol on the i-th subcarrier after Carrier Frequency Offset (CFO) compensation, and FFT
processing. For the transmission mode without time-domain spreading, the frequency-domain one-tap ZF equalizer output decision variable for the i-th data subcarrier of the m-th OFDM data symbol is given by (121).

$$
\hat{y}^{(m)}(i) = \tilde{h}_q(i) * \frac{\tilde{y}_{q,m}(i)}{||\tilde{h}_q(y)||^2}
$$

(121)

On the other hand, for the transmission mode with time-domain spreading, each data symbol is transmitted on two consecutive symbol intervals by using a frequency hopping pattern of $[l_0, n_0, l_1, n_1, l_2, n_2]$, then the ZF equalizer output decision variable for the m-th data before spreading on the i-th subcarrier can be restored as (122).

$$
\hat{y}^{(m)}(i) = \frac{(\tilde{h}_{le}(i) * \tilde{y}_{le,2m}(i) + \tilde{h}_{ne}(i) * \tilde{y}_{ne,2m+1}(i))}{(||\tilde{h}_{le}(i)||^2 + ||\tilde{h}_{ne}(i)||^2)}
$$

(122)

Where \tilde{h}_{le} is the channel impulse response of the first channel that is used for transmitting the original symbol, and \tilde{h}_{ne} is channel impulse response of the second channel that is used for transmitting the spreaded OFDM symbol.

For efficiently implement the One-tap ZF equalizer for the receiver system, the divider block from Xilinx System Generator is used for compensation, as shown in Figure 3.96. The restored frequency-domain received OFDM symbol is shown in Figure 3.97. As it can be seen, most of the data subcarriers have been restored into the original transmitted signals, while others still contain a little bit distortions, this is because the sampling frequency offset still exist. The compensated results will then go through the Sampling Frequency Synchronization block for further process.
Chapter 3
Transceiver Architecture of MB-OFDM UWB System

Figure 3.96 Implementation of one-tap ZF equalizer by using Xilinx System Generator

Figure 3.97 Waveform of restored OFDM symbol after channel equalization
3.6.2.5 Control system and data flow

For the MB-OFDM digital baseband system design, as pilot subcarriers, NULL (DC) subcarriers, and guard subcarriers needed to be inserted into each group of data subcarriers at the transmitter side, and removed at receiver side, the unbalanced data rate at input and output port would happen, i.e., less data is feed into the transmitter system while more data after processing will appear at the output port due to inserting, whereas on the other hand, more data is sent to the receiver side but less processing results at the end due to removing. To properly inserting and removing those subcarriers at the right location and right time so as to flow the OFDM symbol format, several control logics should be added. Besides, the time-domain spreading will further led to more unbalanced data rate for both sides of the transceiver system.

3.6.2.5.1 Retiming and Clock island for Transmitter system

For the proposed MB-OFDM system, the clock island and retiming methodologies are used to solve the unbalance problem results from inserting and removing, besides, as not all the processing elements are working at very high processing speed (frequency), the dynamic power consumptions for the whole system will be reduced as well. Because 53.3 Mbps transmission mode is mandatory for transmitting the PLCP Header packets, the 53.3 Mbps mode will be given as an example for introducing the control logics. The other data rate mode is controlled by using similar strategy but different processing frequency.

According to the MB-OFDM standard, 200 bits data are needed to form each PLCP Header. After HCS processing, encoded by Reed-Solomon encoder, and scrambler, the 200 bits PLCP Header should be send to encoding procedure. Then the data processing flow of the PLCP Header can be given as Figure 3.98.
Figure 3.98 Data processing flow of 200 bits PLCP Header
As it can be seen in the figure, after the convolutional encoder with the code rate of 1/3, 600 bits are formed as coded data subcarriers. Then the 3-step interleaver system will process all these 600 bits by the group of N_{CBPS} (300 for 53.3 Mbps transmission mode), and the QPSK modulator will map these 600 bits into groups of two bits and get 300 complex numbers at the end. For 53.3 Mbps mode, as each OFDM symbol contains 50 data subcarriers, i.e. complex numbers, these 300 complex number will be divided into 6 groups and waiting to insert the pilot, DC, and guard subcarriers to each group. After processing each 128 complex numbers, which is formed of 100 data subcarriers (50 original complex numbers and 50 conjugated numbers), 12 pilot subcarriers, 6 DC subcarriers, and 10 guard subcarriers, the 128 processing results will be added 37 Zero Prefix (ZP) signals so as to form one OFDM symbol of 165 data. Therefore, at this point, 6 OFDM symbols should be formed. Furthermore, as time-domain spreading is necessary for data rate lower or equal to 200 Mbps transmission rate, therefore, totally $6 \times 2 = 12$ OFDM symbols will be transmitted for each 200 bits PLCP Header sequence.

For the proposed MB-OFDM transmitter architecture, the 600 bits encoded bits are throughout by groups of 3 bits, therefore, 200 clock cycles are needed at this stage. Then the interleaver will process all the 600 bits within one clock cycle. 300 clock cycles are needed for the QPSK mapper to form the 300 complex numbers. As the proposed IFFT processor is implemented by using 4-path-parallel architecture, therefore, a Serial to Parallel (S/P) buffer should be added before IFFT processor. Then 32 clock cycles are required by the IFFT processor to deal with each 128 complex numbers, $32 \times 6 = 192$ clock cycles in total are needed for processing all the 200 bits of each PLCP Header packet. Then a Parallel to Serial (P/S) buffer will reform the 4-path-parallel data stream into serial sequences so as for adding ZP conveniently, i.e. $128 + 37 = 165$ clock cycles for each OFDM symbol and $165 \times 6 = 990$ cycles are necessary. Furthermore, after time-domain spreading, the cycles needed are then doubled to 1980 cycles for transmitting each 200 bits PLCP Header packet.

According to the discussion above, if the transmitter system use the same clock frequency, 528 MHz as required, for both input and output signals of the S/P
module before IFFT processor, 50 clock cycles are needed to restore one symbol while 128 clock cycles are needed to feed one symbol out. The unbalance input and output rate will cause a big problem if a very big memory bank is not used to restore all the data subcarrier that waiting to be processed. The procedure of adding ZP will also lead to such problem, as 128 input clock cycles are needed to restore the input whereas 165 cycles are needed to feed them out. The time-domain spreading has the factor of unbalancing the input and output clock cycles from 165 input cycle to 330 output cycles, which means another big memory bank is also necessary to restore each result from the IFFT processor and waiting to be sent out at the right time. The structure of the transmitter system that using an global clock, with the frequency of 528 MHz, is shown in Figure 3.99.

![Figure 3.99 Processing flow when using global clock](image)

As both real part and imaginary part of each complex number are represented by 10 bits, for the architecture above should use two very large memory banks to avoid overflow problems due to unbalanced data flow. This is not so efficient for hardware resource usage, meanwhile, as all processing elements are working at the same frequency, the dynamic power consumption will be also very high. To solve both the above problems, the clock island and retiming methodologies are employed.

As analyzed above, instead of making the already encoded data sequences waiting in the memory banks, they can come to the IFFT processor in a slower speed, and the best situation is that they can come to the IFFT processor at the
precise time when it comes to their turn. This means that those blocks before IFFT processor can be implemented at a very low clock frequency. For the 53.3 Mbps transmission mode, as 50 data subcarriers are needed to form both the original and spreaded OFDM symbol, which is $165 \times 2 = 330$ complex numbers in total, the working frequency for those elements can be decreased to $528 \times 50 / 330 = 80$ MHz. That means the proposed MB-OFDM transmitter system restores the 50 complex numbers at 80 MHz, and after inserting the pilot, DC, and guard subcarriers, as well as time-domain spreading, the S/P buffer will read them out at 528 MHz and then feed them into the IFFT processor. The IFFT processor, on the other hand, will work at the clock frequency of $528/4=132$ MHz to process each OFDM symbol. Then the 37 ZP signals will be added at the end of each 128 IFFT results by take the small period after each processed packet from IFFT processor. By doing this, only 2 or 3 memory banks with the size of 50 (number of data subcarriers) $\times 20$ (both real and imaginary part of each data is 10-bit long, 20 bits in total) = 1000 bits are needed to work as a buffer between each element. The proposed retiming strategy consumes much smaller memory banks when compared with the system that using a global clock. The proposed processing flow for the MB-OFDM transmitter baseband system is shown in Figure 3.100. As each input signal for QPSK mapper is just 1 bit width, therefore, only a very small size of memory bank is enough for avoiding the overflow problem while the size of this memory bank is also much smaller than the global architecture.

![Figure 3.100 Proposed processing flow after retiming](image-url)
The comparison results of the hardware resources usage after synthesis by using Xilinx tools is shown in Table 3-25. According to the synthesis results, the global clock architecture will use 12% more flip flop pairs and 30% more Look-Up-Table (LUT) compared with the proposed retiming architecture. Besides, 3 more Block RAM memory banks should also be used as buffers among those processing elements, while no Block RAM resources are needed for the proposed architecture.

<table>
<thead>
<tr>
<th>Implementation Method</th>
<th>Global Clock</th>
<th>Retiming Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of LUT Flip Flop pairs</td>
<td>19515</td>
<td>17150</td>
</tr>
<tr>
<td>No. with an unused LUT</td>
<td>7092</td>
<td>4972</td>
</tr>
<tr>
<td>No. Block RAM</td>
<td>3</td>
<td>N/A</td>
</tr>
<tr>
<td>FPGA Device</td>
<td>5vlx110ttf1136-3</td>
<td></td>
</tr>
</tbody>
</table>

Therefore, by using this retiming architecture for implementing the transmitter system, the proposed architecture can not only save lots of memory resources usage, but also save some power consumption as several blocks are working at a very low frequency, while it still meets the timing specification provided by the MB-OFDM UWB standard. Moreover, it makes the whole system much easier to be implemented onto the FPGA board used in this work, as the constraint for critical path is much lower and the control logics are also simpler.

Based on the retiming architecture, the proposed transmitted system is implemented by combining all the elements using Verilog HDL code in Register Transfer Level (RTL). The simulation waveforms of the transmitter system are shown in Figure 3.101.
Figure 3.101 Simulation waveforms of the MB-OFDM transmitter system

It can be seen that the processing elements are divided into several islands that use different clock frequencies. Thus, by using the clock island methodology as shown in Figure 3.102, each island can be controlled with unique clock frequency more efficiently and conveniently. By using the clock enable signal to control different island, some part of the system can be put into ‘sleep’ mode or ‘stand by’ mode when they are not called on duty, when still keep the other part at ‘weak up’ mode for processing. The flexible control ability will save the processing power consumption for the proposed MB-OFDM transmitter system when few data is needed for transmission.
3.6.2.5.2 Control system for Receiver system

The receiver system plays the inverse function as transmitter system. The inserted pilot/DC/guard subcarriers, as well as the time-domain spreading symbols, should be removed, because only the data subcarriers in the original OFDM symbols are needed to recover the transmitted data sequences. But not like the transmission function, different subcarriers should be picked up by using different elements at receiver side, because they have different actions on providing information such as frequency offset and channel response. Therefore, removing these subcarriers will involve several other functions, such as compensation and estimation.

Also take the 53.3 MHz transmission mode as example, before the QPSK (or DCM) demapper, all the guard interval, Zero Prefix (ZP), pilot subcarriers and guard subcarriers should be removed, left only the useful data subcarriers. As mentioned before, one MB-OFDM symbol contains 128 subcarriers for FFT/IFFT processor and 37 ZP for eliminating ISI and minimizing the impact of Inter-Carrier-Interference (ICI). The 128 subcarriers consists of 100 data tones, 12 pilot tones, 10 guard tones and 6 NULL (DC) signals. After the removing process, only the 100 data tones should be left for the rest signal processing step.
As mentioned in Section 4.5, the 12 pilot subcarriers are picked up by the Sampling Frequency Synchronization block for estimating the frequency offset and compensate the data subcarriers in frequency-domain. Therefore the pilot subcarriers should be removed after the frequency synchronization. But before the Sampling Frequency Synchronization block, all the other unnecessary sub tones, i.e. guard/DC/ZP, should be removed. The work flow for removing all the subcarriers is shown in Figure 3.103.

Figure 3.103 Procedures for removing pilot/DC/guard subcarriers and ZP for 53.3 MHz transmission mode

Firstly, for the 53.3 MHz mode, two OFDM symbols (consists of 330 samples in total) are restored in a Block RAM memory. One of them is the original OFDM symbol and another one is the spreaded symbol if timing spreading is used. The positions where pilot/DC/guard subcarriers and 37 ZP signals will be ignored when reading those two OFDM symbols out of the memory. The remaining 112 samples will be fed into the Sampling Frequency Synchronization block for synchronize the frequency offset in frequency-domain. A memory bank that restores all those 224 samples for both OFDM symbol will be implemented in this block. The 12 pilot subcarriers of each symbol will be picked up during this procedure for estimate and compensate the frequency offset for the rest 100 data
subcarriers. Then the 100 compensated data subcarriers are gathered. If the conjugate symmetry method is used to form these 100 data subcarriers, then only 50 data signals are transmitted in each OFDM symbol, which means the first 50 data is the original samples while the second 50 data is the conjugate symmetry signals. In order to enhance the accuracy of the proposed receiver system, these two groups of data signals should be averaged and get the original 50 data samples at the end. The data subcarriers will then be used by the demapper and the following sub-modules to recover the transmitted signal sequences. The format of the 128 subcarriers that formed from 50 data samples, as well as the transmission order is shown in Figure 3.104.

Before transform the received signal from time-domain to frequency-domain by using FFT processor, the 37 ZP signals should be removed first. Same like the IFFT processor, the FFT processor also works at the 132 MHz clock frequency, and totally 79 clock cycles are needed for processing each OFDM symbol (32 clock cycles are needed for inserting the 128 subcarriers into the FFT processor, 15 clock cycles for processing each OFDM symbol, the first 4 processing results will be feed out in the 16 clock cycle, the 32 clock cycles are necessary for output the entire 128 samples in frequency domain). Therefore, in order to make the system easier to control, the proposed MB-OFDM system uses a block RAM element to restore 8 OFDM symbols (165×8=1320 samples), then after removing the ZP for all these 8 symbols, a total number of 1024 samples will be fed into the FFT processor continually. The left 296 clock cycles (1320-1024=296), which is caused by removing 8 ZPs and equals to 74 processing cycles for FFT processor

\[
\begin{align*}
1 \text{ DC} & \rightarrow \text{data_buf}_P[1] \sim \text{data_buf}_P[56] \rightarrow 5 \text{ Guard Pilot} \\
5 \text{ DC} & \rightarrow 5 \text{ Guard Pilot} \\
& \rightarrow \text{data_buf}_P[-56] \sim \text{data_buf}_P[-1] \\
\text{data_buf}_P[n] &= \text{data_buf}_P[n]
\end{align*}
\]

Figure 3.104 Format and transmission order of the 128 subcarriers

Before transform the received signal from time-domain to frequency-domain by using FFT processor, the 37 ZP signals should be removed first. Same like the IFFT processor, the FFT processor also works at the 132 MHz clock frequency, and totally 79 clock cycles are needed for processing each OFDM symbol (32 clock cycles are needed for inserting the 128 subcarriers into the FFT processor, 15 clock cycles for processing each OFDM symbol, the first 4 processing results will be feed out in the 16 clock cycle, the 32 clock cycles are necessary for output the entire 128 samples in frequency domain). Therefore, in order to make the system easier to control, the proposed MB-OFDM system uses a block RAM element to restore 8 OFDM symbols (165×8=1320 samples), then after removing the ZP for all these 8 symbols, a total number of 1024 samples will be fed into the FFT processor continually. The left 296 clock cycles (1320-1024=296), which is caused by removing 8 ZPs and equals to 74 processing cycles for FFT processor
Design and Validation of an Optimized High-performance MB-OFDM Ultra Wideband Transceiver System

(295/4=74), are used for collecting the FFT results while mapping all these 128 samples to the correct position. Then the processing results of all these 8 OFDM symbols will go to the Channel Estimation module for estimating the channel response. The control logic for each block during this procedure is shown in Figure 3.105.

Figure 3.105 Control signal for FFT processor and buffers

The output sequences of the FFT processor, with the correct order of each sample, are shown in Figure 3.106. As it can be seen, the received signals are processed in 8 symbols per group, leaving the gap between each group for further procedure usage.

Figure 3.106 Output sequences of the FFT processor for proposed MB-OFDM receiver

Then the samples in frequency-domain will be sent to the Channel Estimation/Equalization elements for eliminating the channel responses. According to the MB-OFDM physical standard, before the Sampling Frequency Synchronization module, the 10 guard subcarriers, as well as 6 NULL/DC subcarriers should be removed, leaving only 112 subcarriers for each OFDM
symbol. These 112 subcarriers consist of 100 data subcarriers and 12 pilot subcarriers. After the Sampling Frequency Synchronization, the 100 data subcarriers are the only information that will be sent to the QPSK block for final decoding process.

For the transmission mode of 53.3 and 80 Mbps, the 100 data subcarriers are formed by using 50 original coded complex numbers and 50 conjugated symmetric complex numbers. In order to get a more accurate result for each received OFDM symbol in the 53.3 and 80 Mbps transmission mode, the proposed receiver system will averaging these two groups of 50 complex numbers instead of cutting off the conjugated part directly. Taking the subcarriers mapping and transmission order into account, the order and method of write the first 50 data into RAM and average the second 50 data is shown in Figure 3.107.

![Figure 3.107 Data flow for averaging the 100 data subcarriers for 53.3 and 80 Mbps mode](image)

As it can be seen in the figure, write the data into RAM is in forward direction, while read the first group of 50 data is in reverse order. The reason of doing this is as follow: in the transmitter side, the order to transmit the first group of 50 data in from data subcarriers 1 to 49, which is the conjugated signal with the data number of 49 to 0; while on the other side, for the second 50 data, the order is data subcarrier -49 to -1, which is the original signal with data number of 0 to 49. Therefore, in the proposed method of writing the reading data into the RAM, the proposed architecture does not need any other blocks to reorder the averaged 50 data subcarriers, which will save some additional power.
consumption and hardware logics. Then the averaged data can be directly sent to the soft demapper block.

As has been introduced in section 6.2.3, the de-time-domain-spreading block is implemented inside the QPSK/DCM demapper module, therefore, no further blocks are need for processing the spreaded OFDM symbols. The order and processing stages from averaging the 50 data subcarriers, de-time-domain-spreading, soft QPSK demapper, and the deinterleaver for each group of 8 OFDM symbols is shown in Figure 3.108.

![Data flow for averaging data, de-time-domain-spreading, demapper, and deinterleaver process](image)

Figure 3.108 Data flow for averaging data, de-time-domain-spreading, demapper, and deinterleaver process

As far as the control logic and systems have been developed for both transmitter and receiver system, the entire MB-OFDM digital baseband transceiver system is integrated by combining all the already implemented sub-system together. The structure of the final developed transceiver system compliances with the MB-
OFDM UWB standard [ISO/IEC 26907’09] strictly. The validation process for the whole system, final implementation in the FPGA board, and the experimental results will be presented in the following chapters.

3.6.3 Conclusions and contributions

In this section, the other elements that are defined by the MB-OFDM standard are discussed and implemented by employing many different state-of-the-art architectures and algorithms. The structure of each element for both transmitter and receiver system is high optimized so as to decrease the cost on either power consumption or hardware resources.

Finally, in order to integrate the entire transceiver digital baseband system, the control logic is discussed and developed by considering the properties of different processing elements. The clock island and retiming methodology is employed which is proved to be both hardware and power efficient.

The final integrated transceiver system has the property of low computational complexity, low power consumption, and high performance, which can be used for MB-OFDM UWB communication applications.

3.7. Chapter final conclusions and original contributions

The proposed architecture for MB-OFDM UWB digital baseband transceiver system is introduced in this chapter. In order to get a highly optimized structure, modifications are made in different processing elements with different technologies. The FFT/IFFT processor, timing synchronization blocks, and Viterbi Decoder systems are taken into consideration, because these subsystems are acting as the core elements for the entire transceiver system.

A novel mixed radix 128-point FFT algorithm by combining modified radix-2 and radix-2² algorithms together is proposed for the MB-OFDM baseband system development. A low-power, high throughput FFT processor is built. Thanks to the algorithm, the number and complexity of the complex multipliers are able to be significantly reduced in different processing stages. The power
consumption of the whole system has been reduced by around 50% compared with that of existing works. The implementation results indicate that the throughput rate of the proposed FFT processor with 10-bit Input/Output Word-Length (IOWL), System Word-Length (SWL) and 8-bit twiddle factor word-length can support maximum 1 Gsample/s with a power consumption of 43.79 mW at 250 MHz processing frequency by using 0.13 μm CMOS technology.

Then, as the MB-OFDM system is sensitive to the timing offset, an innovative timing synchronization scheme is proposed by using the standardized preamble sequences for MB-OFDM system. The two parts of the proposed scheme, Packet Detector (PD) and Timing Offset Estimation (TOE) algorithm provide a robust detection performance and can complete packet and symbol boundary detection in a short time with high accuracy. When compared with the existing algorithms, only the sign bits of synchronization sequence are used for computing the correlations for both PD and TOE blocks. This makes the computational complexity significantly reduced while the performance of synchronization remains at a high level. The low complexity, high accurate frequency synchronization scheme is also introduced into the proposed MB-OFDM system. The frequency synchronization process should be made in both time-domain and frequency-domain, in order to fully eliminate the frequency offset, and increase the robustness and accuracy for the entire receiver system.

In order to speed up the decoding procedure for the receiver system, a power efficient two-stage 64-state radix-4 Viterbi Decoder (VD) architecture is also proposed in this work. The high speed, low complexity 4-way Add-Compare-Select Unit (ACSU) is used so as to increase the throughput of the VD system. The modulo normalization algorithm if employed to further decrease the hardware resources usage for the proposed ACSUs. Then at the output port, 2-pointer even algorithm is implemented for the trace back unit. Implementation results showed that the proposed VD with relatively low hardware complexity and power consumption can support various data rates for the MB-OFDM UWB transmission applications.

Several other state-of-the-art architecture and algorithms for optimization of different subsystems for other processing stages are also discussed and
introduced into the proposed MB-OFDM transceiver system, such as the memory reorder structure for the soft deinterleaver system, soft demapper processor, low complexity Channel Estimation/Equalization system. The design of the control logics are presented according to the different properties of the different elements. The clock island and retiming methodology is used for controlling different processing stages.

Finally, by combing all the processing elements as presented above, the entire MB-OFDM digital baseband transceiver system is integrated according to the ISO/IEC standard.
Chapter 4 Hardware-in-the-loop Co-simulation Methodology

4. Hardware-in-the-loop Co-simulation Methodology

4.1. Introduction

As the entire baseband transceiver system has been proposed and implemented, the next procedure should be validate and analyze and proposed architecture by using real hardware devices, FPGA in this work. But as discussed above, traditional verification process for hardware development will cost lots of design effort. Therefore an efficient hardware validation methodology is highly desired in the presented work. **In this chapter, the other contribution of this work, a hardware/software co-design methodology will be introduced.**

Traditional approaches for implementing digital processing system in a FPGA or ASIC involve creating a design and translating between multiple design descriptions: an abstract algorithm is analyzed and optimized in MATLAB or C, or any other languages; then it is mapped onto an architecture using behavioral or structural description; in the process, a fixed-point description replaces a floating point version of the design; it is partitioned into various design fabrics and mapped into an FPGA or ASIC; the design is checked for equivalence between different descriptions; and the test vectors are once again translated for use in a logic analysis system for final hardware testing. Each translation step, whether manual or automated, requires additional verification to confirm that the original design has been preserved.

In system level design, logic errors need to be eliminated early in the design process to avoid costly hardware re-spins. Unfortunately, logic verification using
simulation is often too slow and not so convenient for complex system development. Monitoring and analyzing the output signals from hardware implementation by using oscilloscope will also cost lots of effort for complex system development, and it is usually hard to debug the system errors. Complex digital system development requires shorter verification time and efficient debug method.

Nowadays, because of the benefits of reduced time-to-market and high reconfigurability, FPGAs have been widely applied in different VLSI systems, used either as emulators for ASIC design or as an important part of the embedded system. Meanwhile, as the FPGA designs are getting more complex, the verification of the design is becoming a great challenge. During the whole process of FPGA development, verification will take up 70% to 80% of the time in the design cycle if using traditional method. Therefore, suitable design methodology for such kind of complex system is highly desired. A good FPGA design verification methodology should have four main benefits:

1) time efficient while maintaining the accuracy of the proposed algorithm
2) widely spread for almost all kinds of FPGA developments
3) covering all steps from algorithm proposal to hardware verification
4) high utilizing rate of hardware resources

Several approaches for FPGA design and verification have been studied by researchers. In [Han’11], a MATLAB based design flow for RTL development is presented. The main idea is to use .m file and C code to implement the algorithm at system level, and then convert them into Hardware Description Language (HDL) code automatically by using Precision-C. Although it is a good methodology for high level system design, it involves data type converting from floating-point to fixed-point during translation from m-code to C-code, which may produce an unpredictable accuracy loss for complex signal processing systems. In [Markovic’07], FPGAs are used as low-cost emulators for testing ASICs. By communicating among PC, FPGA and ASIC, it enables system designer with a visibility through several layers of design hierarchy down to circuit level to select the optimal architecture. Besides, they developed a
Berkeley Emulation Engine (BEE) Platform Studio for in-circuit verification of the algorithm and final ASIC, but the platform is restricted to special Xilinx FPGAs, hence is not useful for low-end FPGA developments. Moreover, the platform is designed for internal use, thus it cannot be widely spread to all designers. [Virjo'07] compares three different abstraction level design approaches for IP core development. A cooperation method between Xilinx System Generator (XSG) and MATLAB is proposed for function and structure verification. However, the development process does not close the hardware loop for final hardware validation. In [Chen'10], a run-time debugging method is introduced for FPGA co-simulation, which provides 100% observability for Design Under Test (DUT) in FPGAs. The method connects the entire probing signal directly to a Peripheral Component Interconnect-extended (PCI-extended) wire bus, which will obviously consume large amount of hardware resources and extend the period for system simulation and synthesize.

In modern FPGA debug method, Embedded Logic Analyzer (ELA) is widely used [Knittel'08] [Mavroidis’09]. ELA samples internal signals if only a predefined condition is met, so controllability is added to FPGA while design still executes at or close to normal speed. However, any modification to selected signals or trigger conditions often needs design recompilation. To avoid recompilation, a bitstream instrumentation method for ELA is described in [Graham’01]. But it requires ELA designed to be bitstream-modifiable, which lacks flexibility. Recently, ELA debug in high-level design, such as for MATLAB SIMULINK, is discussed by researchers in [Camera’08].

Therefore, in our work, in order to verify the proposed algorithms and hardware architectures for the entire MB-OFDM hardware implementation on FPGA board, an improved design flow is proposed for complex FPGA system implementation that can be used for general FPGA designs. The main idea of the proposed design flow is to combine several very powerful digital system development tools together to get a co-design environment, different analysis and verification processes for different design steps will take place in the best suited design environment, but sharing some common elements, such as data generator, output results collection and analysis blocks, data buffers, etc. MATLAB, which is one of the most powerful mathematic tools, is selected for
algorithm proposal and validation step; by using the socket of MATLAB/SIMULINK environment, the SIMULINK can be connected with ModelSim, which is the main simulation tool for HDL code development, so as to see the waveform in both MATLAB and ModelSim environments; then Xilinx System Generator is also connected to SIMULINK simulation environment to execute the communication between host PC and Design Under Test (DUT) that implemented in FPGA boards.

By doing so, the proposed flow ensures to cover every step in system development, which consists of algorithm proposal and validation, architecture proposal and verification, RTL system design and analyzing, functional co-simulation and synthesis, and hardware-in-the-loop co-simulation, debugging and verification. The method has been tested and proved to be efficient and suitable for the MB-OFDM based UWB digital baseband system design and verification. A virtual communication platform and validation framework has been established for verifying the digital baseband communication system based on this proposed hardware-in-the-loop co-simulation methodology.

4.2. Implementation and Verification Process

Teams of engineers are needed to design and develop million-gate FPGA devices with high pin-count packages. These fine-grid components are difficult to fully debug in the laboratory while time-to-market considerations often restrict board test and system verification efforts.

How can the functionality of complex FPGA devices be verified maintaining their time-to-market advantage? For this level of complexity, a new strategy for code verification is required; it is no longer adequate to merely simulate at the module level and inspect the waveforms. A properly-executed, chip level verification strategy will provide maximum code coverage within a minimum amount of time. The goal of the strategy presented below is to provide a simple but thorough chip-level verification process which does not conflict with modern time-to-market requirements.
The most common FPGA verification problem is often lack of planning. If verification is an afterthought or a quick test bench simulation, significant design problems may remain undiscovered until board or system test. The longer problems go undetected, the more time is generally required to resolve them; efforts to recreate and debug a design issue in the lab can result in significant costs and launch delays. Even worse is the discovery of a latent design issue in the field.

It is obviously best to catch these problems during the development stage with a concentrated verification effort. A reasonable benchmark is that the verification effort should be equivalent in time to the design effort. This may be difficult to initially justify, but the delays caused by having to resolve design issues in the lab or field, as well as fine-grid signal accessibility limitations, make it a cost-effective target. The extra benefit of a Hardware Description Language (HDL) test bench written at the chip level is that it can be used for verification at multiple stages: behavioral, post synthesis, and gate simulation. A HDL auto test bench is also easier to control, maintain and reuse, and ultimately offers the best compromise between absolute design integrity and practical time-to-market considerations.

Therefore, the real hardware verification progress after finish writing HDL code is very important for FPGA development. Although you may already get blocks that can perform perfectly according to the simulation results provided by some simulation tools, ModelSim for example, there still going to have some functional errors or problems during the hardware implementation process. For example, the real hardware clock cannot be a perfect one compared with that provided by simulators, a re-timing and re-design of the control logics is usually needed by the fact of this. A good method with an efficient verification tool is needed so as to speed up the whole verification process. In the following paragraphs, an efficient co-simulation method that allows FPGA communicate with the PC will be discussed, so that the designers can directly watch the processing results provided by FPGA on the PC monitors.

In order to efficiently implement complex systems on FPGAs, the co-design environment that is established in this work is shown in Figure 4.1.
The main idea is to connect Host PC with FPGA by using JTAG line or Ethernet, so as the PC can communicate with FPGA directly. In simulation process, PC will automatically generate test data streams and send them to the DUT that is implemented in a FPGA board. Then the Design Under Test (DUT) processing results will be feedback to PC through JTAG or Ethernet. PC will then take charge of automatically collecting the output results from FPGA, and analyze whether the functions that are implemented in the FPGA board meet the requirements, further analyses related with system performance will also take place in the PC co-simulation environment. The detailed workflow is conformed of three steps for the proposed hardware-in-the-loop co-simulation methodology (Figure 4.2).

1) Propose Algorithm and Architecture: algorithm is proposed or chosen in this stage, and then system architecture is designed according to proposed algorithm and given specifications. Modules represent the proposed algorithm and architecture are built and verified by MATLAB/SIMULINK. Functionality analysis should be made in this stage. Golden Reference (GR) module, which can be used as reference for RTL design, is obtained after algorithm verification.

2) Implementation and synthesis: RTL HDL coding is carried out according to the structure of GR. Moreover, the module operation, considering gate delay, is tested in a co-simulation environment by connecting SIMULINK.
with ModelSim (or other HDL simulators supported by SIMULINK). Both function simulation and timing simulation shall be tested by post-P&R (Placement and Routing) simulation through simulator. RTL performance (time delay, errors, etc.) can be analyzed efficiently in this step.

3) **Hardware verification**: the design is then synthesized and downloaded to the configured FPGA. Hardware-in-the-loop co-simulation is carried out by combining SIMULINK with Xilinx System Generator (XSG) so as to execute hardware co-debugging and co-verification. By connecting FPGA to PC, the results generated by real hardware are fully collected by SIMULINK for further analysis. Some probes may also be connected to external buses in order to monitor those critical signals. Coding process will be repeated if any error happens. The hardware performance of proposed system is obtained at the end.
Details of each design step will be described respectively in the following.
4.2.1 Algorithm and architecture proposal and verification

Before start to development any system, we first should have a very clear mind of the target design specifications and applications. Then the most suitable algorithm can be chosen or proposed based on these given requirements. The algorithm for the target design can be either modified from the existing algorithms or proposed all by ourselves, both should go through the verification process to ensure the algorithm that is going to be used is really suitable for the application of this work.

In the proposed design flow, the proposed algorithm is verified by comparing the output results with those of the embedded MATLAB function. Until the error between two functions is zero, the algorithm that is going to be used for the design target is validated. This step is simple to carry out as MATLAB is a very powerful mathematic tool for algorithm validation and calculation.

Then a whole new hardware architecture should be proposed based on the validated algorithm. Several state-of-the-art technologies should be introduced into the system so as to get a highly optimized hardware architecture. Many trade-off factors among system performance, power consumption, computational complexity, hardware resources usage and others should be taken into consideration during this step. Whether to use parallel or serial or pipelined architecture should also be discussed based on certain applications. And the possible critical path length should also be carefully calculated during architecture proposal process in order to increase system performance.

After all these analyses, the system module in SIMULINK can then be built by using fixed-point tool box according to the proposed hardware structure. A test data stream generator block, which take charge of generating input data for the system module according to the design specifications, and an output results check block, which responsible for gathering the output results and analyzes the output error, will also be set in front and at the end of the system module that is built in SIMULINK environment. The results calculated by embedded MATLAB function are then compared with the output of the already built SIMULINK module. When the error between these two modules is zero, the proposed
architecture is well verified. The verified SIMULINK module is called as Golden Reference (GR) for further usage.

Signal word length for different sub-module will also be selected and analyzed during this step. Signal word length in hardware design is quite important, as it not only determines power and hardware resources consumption, but also determines the accuracy of a system. MATLAB provides a fixed-point toolbox, which helps us directly analyze the effects of different word length for the proposed GR module, such as the analyses that we've done for the proposed FFT/IFFT processor design in chapter 3.3.6 and chapter 3.3.7. With the help of GR, it is unnecessarily to waste time generating different versions of HDL modules with different word lengths, as changing the word length in the SIMULINK modules is more conveniently. The comparison and decision are obtained directly and efficiently by using MATLAB/SIMULINK modules. Compared with [Han’11], the proposed method is more accurate in functional analyses.

The usage of GR has several benefits in the following aspects:

1) Time for building the GR is much shorter than HDL coding.
2) It indicates the Minimum Time Delay of each block for the hardware architecture, which can be used later to determine the control system and signals for HDL model.
3) The designers are able to choose internal word lengths properly and efficiently for HDL model.
4) GR provides output results which will be used to compare with those generated by HDL model.

After GR validation and analyzing, the next step in the proposed design flow should be RTL implementation and synthesis.

4.2.2 RTL implementation and synthesis

This step consists of developing the system module at RTL by using Verilog HDL (or VHDL) following the usual methodology for digital system design. Although the HDL code can be generated automatically from SIMULINK
module, the manually written HDL module allows designers to maintain the entire control over the module internal architecture and obtain an efficient structure, which greatly reduces the output error and makes the further optimization much easier. Meanwhile, for the sake of saving modeling period for GR, lots of embedded MATLAB functions are introduced into the state-flow module, it's hard for SIMULINK HDL Coder to convert them into HDL code directly. Besides, in order to make the design of this work more suitable for the target FPGA, some IP cores provided by XILINX tools are introduced, so as to save handwriting time and optimize the whole system in a high level way. In order to lower the power and hardware resources consumption while still maintain the high performance of the proposed hardware implementation, several state-of-the-art technologies should also be introduced into the RTL design process. Such as during the RTL development process for the proposed FFT processor, the Single-path Delay Feedback (SDF) pipelined structure is employed, the substructure-sharing multiplication units and shift-add structure are also used to modify the complex multipliers in different modules. Some others, such as folding and re-timing technologies are used as well. By doing so, a highly modified lower-power, high-performance system is implemented at the end.

The verification process of very complex system design is of great challenge. Traditionally, it's carried out by writing test bench files in simulator environment, such as ModelSim, to support HDL code simulations. However, writing test bench file manually for complex module, especially the wireless communication system and video signal processing system, is a very tough work, because such kind of system usually needs a large scale of test data input streams for simulation and functional analyzing. Moreover, it is difficult to process large quantity of complex output results not even mention observing the system performance holistically by only monitoring the output waveforms provided by simulators such as ModelSim or Isim.

An alternative solution has been explored in this work in order to make functional verification more efficient: SIMULINK provides the interface between SIMULINK and ModelSim by using socket or shared memory with a third-party tool. Therefore, by connecting SIMULINK and ModelSim together, exactly the
same data generate module in GR can be used for HDL system verification process, which makes us free from writing test bench file and ensure us focus on the design and analyze. By connecting SIMULINK and ModelSim together, the output waveforms are shown in the ModelSim simulator and collected by SIMULINK at the same time, as shown in Figure 4.3. By using the same check module as GR, the process results are able to be compared conveniently with those of GR to check whether HDL processing is correct or not. Besides the functional verification, the timing simulation can be also carried out by using ModelSim to make program closer to the true state of running.

![Figure 4.3 Simulation environment by combining ModelSim with SIMULINK](image)

The performance analyses, such as Signal to Quantization Noise Ratio (SQNR), Bit Error Rate (BER), Mean Square Error (MSE) and so on, are also calculated by using the same module as that for the GR, so as to save the efforts to analyze the HDL functions manually. Sometimes it may be found that the performances of HDL model reduced a little bit when compared with GR function, for example, the SQNR performance of HDL module of the proposed FFT processor is 1 dB lower than that of the SIMULINK module. This is reasonable: even though fixed-point tool box of MATLAB is used for determining the word length, it still automatically rounds the results of adders and multipliers when processing the
up-coming signals. For example, in SIMULINK fixed-point rounding system, 3.4 is considered as 3 but 3.6 is rounded to 4, while in HDL block both of them are truncated to 3. This effect results in the HDL module less accurate than the fixed-point GR model, but the accuracy of modeling processing is still high enough to support the proposed system development.

After HDL code functional verification process, the HDL code will be synthesized and transformed into bitstream which can be downloaded to the FPGA board. The final hardware implementation validation process will be carried out at this point.

4.2.3 Hardware co-simulation process

The HDL code is verified for use and the synthesis report is obtained from synthesis tools for certain types of FPGA boards. However, downloading the bitstream to FPGA is often more complex than expected.

Many facts in hardware running process will affect the behavior of the architectures downloaded to FPGA devices. For example, the raising edge of real clock signal may contain jitters, or the rising time of the clock signal may be very slow due to heavy load factors. But most of the time not all the signals inside FPGA can be observed in real time, which makes it difficult to debug and find solutions when certain error happens. How can the functionality of complex FPGA devices be verified while still maintain their time-to-market advantage becomes a big challenge at this step. The hardware-in-the-loop co-simulation methodology presented below is to provide a simple but thorough chip-level verification that fulfills modern time-to-market requirements.

The chip level verification methodology is realized by connecting the SIMULINK models and FPGA board (support almost all Xilinx FPGA families) with the help of Xilinx System Generator (XSG). XSG compilation targets automatically create a bitstream and associate it to a block in SIMULINK [Xilinx'10]. Again the same data-generate module from SIMULINK that being used to verify the HDL code also works as the input signal for this hardware-in-the-loop co-simulation procedure. As mentioned before, the hardware input test
data stream from data-generate module will be sent to the FPGA implementation through JTAG or Ethernet for signal processing, then the hardware output results will be fed back to SIMULINK so as to be compared with the results of the GR on a per clock cycle basis and make further analysis. By doing this, the Host PC and FPGA are connected together and with the ability to communicate with each other.

In order to monitor partially important parameters inside the FPGA, some ‘test’ output ports is assigned in the HDL codes. These ports work like ‘probes’ that fetch output the netlist signals from the FPGA to the ‘scopes’ in the SIMULINK model. By guarding these probes through the whole co-simulation process properly, a very clear idea about what is the possible problem for functional errors in the hardware implementation can be obtained, and then figure out the solutions much more efficiently than traditional method. On the other hand, whenever the probes are required to switch from one signal to another, just simply modify the HDL code on the map of output signals. By using these probes properly, even more information from inside the FPGA, such as real delay time for each processing blocks, processing order for parallel architecture, partial products values, and so on, can be obtained efficiently and conveniently.

The clock frequency of the FPGA board can be changed from one to another, controlled by SIMULINK co-simulation environment, which enables us to analyze the functions and performance inside FPGA in different processing speeds. Compared with [Chen’10], probes are much easier to implement and more flexible. Furthermore, as it’s not necessary to oversee each small signal inside the FPGA, only those very important ones are needed, large hardware resources are saved by doing so.

This hardware-in-the-loop hardware/software co-simulation environment supports simulations where parts of the design are implemented in the hardware and the rest in the software; or executes a complete FPGA emulation in real-time. This flexible simulation approach makes the whole hardware co-simulation easier to control, and allows us to verify each sub-module separately. For example, when just a small subsystem included in one huge development is needed to be verified, just this small part of the system can be synthesized and
downloaded to FPGA, and connect it with other blocks that employed from GR directly. This will give us an opportunity to analyze each small part of the implementation separately. Once each sub-system is validated, all of them can then be combined together to form a whole system, and validate it again on FPGA board. Through this method, the SQNR and other performance of the real hardware are obtained fast and conveniently.

When the hardware module is verified, a final synthesis report for the HDL codes will be generated by the help of Design Compiler and other tools so as to analyze the ASIC performance of the proposed system. Power consumptions and other information for FPGA develop can also be generated by the help of Xilinx tools at the end.

4.3. **Virtual Communication environment**

Another big advantage of employing the aforementioned fast co-simulation methodologies for a MB-OFDM UWB digital baseband system design is: once both the Receiver (Rx) and Transmitter (Tx) blocks are verified, they can virtually communicate with each other through a transmission channel model built in SIMULINK. The virtual communication environment is shown in Figure 4.4.
Figure 4.4 Virtual Communication Environment for MB-OFDM system verification

The verification flow for such Virtual Communication Environment can be explained as this: the MATLAB will first generate test data sequences according to the MB-OFDM UWB wireless communication standard; these test sequences will then go through the Tx system that is already implemented in one FPGA board; the Tx processing results will be feedback to Host PC, four different UWB communication channel models (CM1~CM4) according to UWB channel protocol [Foerster’03_2] are built, the results of channel response will add noises, IQ mismatch, phase noise and carrier frequency offset to the Tx signals; all these signal will go through the Rx system that is implemented in another FPGA board; the Rx processing results are collected by the hardware-in-the-loop co-simulation environment again and compared with the test data sequences that generated for Tx system for output equivalency on a per clock cycle basis, hence closing the loop of the entire MB-OFDM digital baseband system final FPGA verification. The detailed procedure of Virtual Communication process, as well as the channel models, will be explained in chapter 5.2.

As a result, without plugging real analog front-end, antenna, and Radio Frequency (RF) elements to the proposed hardware model, the Bit Error Rate
(BER) is still be able to be estimated, speed, etc. of the whole MB-OFDM system performance. As all the process can be performed in MATLAB/SIMULINK environment, the developing cost for the digital baseband system is reduced while large amount of develop time is saved.

4.4. Chapter final conclusions and original contributions

In this chapter, a whole new hardware validation methodology for complex FPGA system development has been introduced. The proposed Hardware/Software co-simulation environment combines several power design tools, such as MATLAB, ModelSim, Xilinx tools, together to ensure the proposed methodology always uses the most suitable and efficient tools for each step during complex system implementations. Generally, the proposed method can be summarized as:

1) Given an algorithm, verify it in MATLAB/SIMULINK or other high level design tools
2) Design hardware architecture based on the algorithm and verify the design by using SIMULINK block sets
3) Build the HDL architecture and co-simulate the HDL code running between SIMULINK and HDL simulators
4) Synthesis the HDL code and download it to FPGA devices, the execute hardware-in-the-loop co-debugging processing

The introduced methodology contains verifications from algorithm level to hardware level. The methodology has been employed into the design process of FFT/IFFT processor, timing synchronization block, Viterbi Decoder and other blocks, as well as the verification and debugging step for the entire MB-OFDM digital baseband system, indicates it facilitates the design and verification of very complex hardware architecture. The design method not only dramatically reduces the time for verification, but also provides other information such as the errors, output delays, etc. Thus, this efficient method ensures designers focus on the design and optimization of the algorithms and architectures, rather than waste time on system debugging process, which is usually
considered to be the most time-consuming step for hardware system development.

Based on this hardware-in-the-loop design methodology, a Virtual Communication Environment is established for validating only the digital baseband system of wireless communication protocols without using any analog frontend. The automatic generating and gathering signals for both Tx and Rx digital baseband systems make the whole verification process much easier and more efficiently.
Chapter 5

5. Experimental Results

5.1. General introduction

The proposed MB-OFDM UWB digital baseband system has been implemented, and the introduced hardware-in-the-loop co-design methodology will be used for debugging and analyzing the aforementioned transceiver architecture.

Since the transmitter and receiver implementation covered in Chapter 3 consists only the digital baseband system of the Physical (PHY) layer, analysis of their performance under wireless communication environments requires modeling of the wireless channels, so as the experimental tests can be carried out in different communication situations. These channel models will be used by the Virtual Communication simulation process, and will act as the transmission medium between the transmitter and receiver baseband system.

In this chapter, the information on the test channel environment will be provided first, and then the performance of the proposed MB-OFDM baseband system will be discussed and analyzed under different channel models, the implementation results and synthesis reports of the transceiver system based on FPGA implementation will also be shown, and finally the conclusions are drawn at the end.

5.2. UWB wireless channel models

The goal of the channel model is to capture both the path loss and multipath characteristics of typical environments where the UWB communication devices are expected to operate.

The IEEE 802.15.3a task group has produced a set of statistical UWB channel models [Foerster’03_2] based on the Saleh-Valenzuela (S-V) approach [Saleh’87]. An S-V channel model is often used in UWB studies since the tremendous bandwidth of an UWB signal means that environmental reflections will not
necessarily result in Rayleigh fading at the receiver since the individual paths can be recovered.

Several parameters have to be taken into account for modeling the UWB channel environments. The multipath components arrive at the receiver in groups, which are called clusters, with Poisson distribution. The path, or called ray by some researchers, within each cluster also arrives with Poisson distribution. The channel impulse response is given by (1).

\[
h(t) = X \sum_{l=1}^{L} \sum_{n=1}^{M} \alpha_{nl} \delta(t - T_l - \tau_{nl})
\]

where

- \(L \) is the number of clusters
- \(M \) is the number of paths within a cluster
- \(\alpha_{nl} \) is the multipath gain of the \(n \)-th path corresponding to \(l \)-th cluster
- \(T_l \) is the delay of \(l \)-th cluster
- \(\tau_{nl} \) is the time delay of \(n \)-th ray of the \(l \)-th cluster

The amplitude fading is defined as

\[a_{nl} = P_{nl} \zeta_l \beta_{nl}\]

where

- \(P_{nl} \) is the sign of the coefficient, and takes \(\pm 1 \) with equal probability and accounts for signal inversions due to reflections
- \(\zeta_l \) is the fading associated with the \(l \)-th cluster
- \(\beta_{nl} \) is the fading associated with the \(n \)-th ray of the \(l \)-th cluster

The envelope of amplitude fading \(a_{nl} \) is lognormally distributed with the mean \(\mu_{nl} \) and the variance \(\sigma_{nl}^2 \). Using the model defined in (2).

\[
E \left\{ \left| \zeta_l \beta_{nl} \right|^2 \right\} = \Omega_0 e^{-\Gamma / \gamma} e^{-\tau_{nl} / \gamma}
\]

where \(\Omega_0 \) is the mean power of the first path of the first cluster at delay 0 of the first cluster. Parameters \(\Gamma \) and \(\gamma \) are the cluster and ray decay constants.
respectively. According to this model, the mean of the channel fading is given by (3).

\[\mu_{n,l} = \frac{10 \ln \Omega_0 - \frac{10 T_l}{\Gamma} - 10 \tau_{n,l}/\gamma}{\ln 10} - \frac{\ln 10}{20} (\sigma_1^2 + \sigma_2^2) \]

(3)

where \(\sigma_1 = \sigma_2 = 3.3941 \text{ dB} \). Since the clusters and rays within each cluster arrive according to Poisson process, the inter arrival times of the clusters and rays follow the exponential distributions as (4).

\[
Prob(T_l|T_{l-1}) = \Lambda e^{-\Lambda(T_l-T_{l-1})} \\
Prob(\tau_{n,l}|\tau_{n-1,l}) = \lambda e^{-\lambda(\tau_{n,l}-\tau_{n-1,l})}
\]

(4)

where \(\Lambda \) is the cluster arrival rate and \(\lambda \) is the ray arrival rate.

Parameter \(X \) in (1) is the shadowing which can be modeled by lognormal distribution. The IEEE 802.15.3a research group considers 4 different channel models, called CM1~CM4, for UWB communication environment [Foerster’03_2]. The existence of such standard channel models allows different UWB proposals to be evaluated against a common set of conditions that include both Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) cases.

In CM1, the transmit-receive antenna separation is 0-4 m and the situation is LOS. The CM2 is NLOS, and the transmit-receive separation is within 4 m. The channel model CM3 is for NLOS, with the transmit-receive separation of 4-10 m. The channel model CM4 is for NLOS extreme multipath with Root Mean Square (RMS) delay spread above 25 ns [Foerster’03_2].

The parameters defined in above equations are found by trying to match important characteristics of the channel. Since it’s difficult to match all possible channel characteristics, the main characteristics of the channel that are used to derive the above model parameters were chosen to be the following:

- Mean excess delay, \(\tau_{m0} \)
- RMS delay spread, \(\tau_{rms0} \)
- Number of multipath components (defined as the number of multipath arrival that are within 10 dB of the peak multipath arrival);
• Power decay profile.

Since the model parameters are difficult to match to the average power reduction profile, the main channel characteristics that are used to determine the model parameters are the first three above. Table 5-1 lists some initial model parameters for the channel models from CM1 to CM4 that were found through measurement data.

The IEEE 802.15.3a group provides these channel models in the form of MATLAB data files. Each file contains a series of duplets, namely a sample time and amplitude, which provide a real-valued continuous-time amplitude of the arriving signal.

These MATLAB channel models are perfect for this work, because the hardware-in-the-loop co-simulation environment of this thesis is established by connecting the implemented FPGA board with PCs through MATLAB. Thus, before sending each transmitted packet into the Rx system through the interface between MATLAB and FPGA, we can let them first go through the four different channel models instead of sending them directly. By doing so, the channel response signals that have the properties similar to real RF signals will be generated and restored. Then the Rx system will “listen” to these “RF” signals and try to get the transmitted packets through this communication environment. The so called Virtual Communication method is illustrated in Figure 5.1.
Table 5-1 IEEE UWB Channel model parameters

<table>
<thead>
<tr>
<th>Target Channel Characteristics</th>
<th>CM 1</th>
<th>CM 2</th>
<th>CM 3</th>
<th>CM 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS/NLOS</td>
<td>LOS</td>
<td>NLOS</td>
<td>NLOS</td>
<td>NLOS</td>
</tr>
<tr>
<td>Tx-Rx Separation (m)</td>
<td>0-4</td>
<td>0-4</td>
<td>4-10</td>
<td></td>
</tr>
<tr>
<td>Mean excess delay (nsec) (τ_m)</td>
<td>5.05</td>
<td>10.38</td>
<td>14.18</td>
<td></td>
</tr>
<tr>
<td>RMS delay (nsec) (τ_{rms})</td>
<td>5.28</td>
<td>8.03</td>
<td>14.28</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Parameters</th>
<th>CM 1</th>
<th>CM 2</th>
<th>CM 3</th>
<th>CM 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (1/nsec)</td>
<td>0.0233</td>
<td>0.4</td>
<td>0.0667</td>
<td>0.0667</td>
</tr>
<tr>
<td>λ (1/nsec)</td>
<td>2.5</td>
<td>0.5</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Γ</td>
<td>7.1</td>
<td>5.5</td>
<td>14.00</td>
<td>24.00</td>
</tr>
<tr>
<td>γ</td>
<td>4.3</td>
<td>6.7</td>
<td>7.9</td>
<td>12</td>
</tr>
<tr>
<td>σ_1 (dB)</td>
<td>3.3941</td>
<td>3.3941</td>
<td>3.3941</td>
<td>3.3941</td>
</tr>
<tr>
<td>σ_2 (dB)</td>
<td>3.3941</td>
<td>3.3941</td>
<td>3.3941</td>
<td>3.3941</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Characteristics</th>
<th>CM 1</th>
<th>CM 2</th>
<th>CM 3</th>
<th>CM 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean excess delay (nsec) (τ_m)</td>
<td>5.0</td>
<td>9.9</td>
<td>15.9</td>
<td>30.1</td>
</tr>
<tr>
<td>RMS delay (nsec) (τ_{rms})</td>
<td>5</td>
<td>8</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Channel energy mean (dB)</td>
<td>-0.4</td>
<td>-0.5</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Channel energy std (dB)</td>
<td>2.9</td>
<td>3.1</td>
<td>3.1</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Besides the channel response effect, the Additional White Gaussian Noise is also added to each transmission “channels”, to make the Virtual Communication environment closer to reality. IEEE has defined 100 complex baseband models for each channel family, therefore, during the simulation, the communication environment will be switched randomly among these 100 models. This means that each packet experiences a different channel and thereby allows us to simulate a frequency-selective slowly-fading environment. Figure 5.2 shows the waveforms of the transmitted OFDM symbols through all the four different channel models (only the real part of the complex symbols are shown here) and the SNR of each channel model for simulation is set to be 10 dB in this case.
5.3. **Simulation environment**

For analyzing the system performance of the entire MB-OFDM baseband transceiver system, this thesis didn’t implement or modeled any Media Access Control (MAC) layer. Thus, the Tx and Rx systems will communicate with each other continuously so as to just validate the baseband system’s performance.

As no MAC layer is used for simulation, the MAC Header and PHY Header will be generated randomly through the using of StateFlow in SIMULINK environment. The ISO/IEC standard book [ISO/IEC 26907’09] also provides an Example encoding of a PHY packet for the researchers to validate and analyze the implemented baseband system. Thus, the testing sequences that are sent through the Tx system will be based on the format provided by the ISO/IEC standard, and final analysis of the performance will be executed by comparing the Rx processing results with that of the transmitted sequences automatically with the help of the hardware-in-the-loop co-simulation methodology.

![Figure 5.2 OFDM symbols transmitted through CM1 to CM4](image-url)
Because the goal of this thesis is to design and implement a real-time MB-OFDM UWB baseband system that would be able to operate in a contemporary FPGA device that has the reconfigurability property, the specific FPGA device that used for testing is the Virtex-5 XC5VLX110T embedded in the Xilinx XUPV5-LX110T Evaluation Platform [Xilinx’09] [Xilinx’11]. The key parameters for this FPGA device are shown in Table 5-2.

Table 5-2 Main Features of Virtex-5 XC5VLX110T FPGA

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Slices</td>
<td>17,280</td>
</tr>
<tr>
<td>Block RAM Blocks (in 18 kb blocks)</td>
<td>296</td>
</tr>
<tr>
<td>Maximum Clock Frequency (MHz)</td>
<td>550</td>
</tr>
<tr>
<td>DSP48E Slices (each with 25x18 multiplier, an adder and an accumulator)</td>
<td>64</td>
</tr>
<tr>
<td>PowerPC Processor Blocks</td>
<td>N/A</td>
</tr>
<tr>
<td>Total I/O Banks</td>
<td>20</td>
</tr>
</tbody>
</table>

As shown above, the maximum speed of the Virtex-5 device is 550 MHz. Then it can support the specified working frequency of MB-OFDM UWB system, which is 528 MHz. By using the control logic, different clock enable signals with different frequencies can be generated for different processing elements of the proposed MB-OFDM transceiver system.

The XC5VLX110T is one of the largest Virtex-5 FPGAs, containing over 17 thousand slices, with each slice containing four Look-Up-Tables (LUTs) and four flip-flops. The high number of slices was necessary given the need to pipeline the FFT/IFFT architecture of the transceiver and other complex blocks, as well as the goal that there be sufficient free resources to allow experimentation with different configurations and parameters.

The Virtex-5 FPGA also provides large number of dedicated hardware multipliers that provide very high-speed 25-bit by 18-bit multiplication. Although most multiplications are replaced with additions/subtractions and shifters by using the proposed RTL structure, the Booth multiplications in Fast Fourier Transform/Inverse Fast Fourier Transform (FFT/IFFT) processor, the Carrier Frequency Offset (CFO) compensation, Sampling Frequency Offset (SFO)
compensation, and Channel Equalization processes and so on still require several high-speed complex multiplications for each OFDM symbol.

5.4. Implementation results

5.4.1 Transmission BER performance

The Virtual Communication environment has been discussed and shown in Figure 4.4. According to that, Figure 5.3 shows the setup of the FPGA prototyping platform. The transmission signals are generated from the PC end. The XUPV5-LX110T Evaluation Platform is used to prototype the proposed MB-OFDM UWB transceiver system. After being processed by the proposed design, the output signals from the Rx system will be analyzed by the functions that are built in the MATLAB environment.

Figure 5.3 Photograph of FPGA verification prototype
The Bit Error Rate (BER) performance of the proposed transceiver by FPGA measurement is illustrated in Figure 5.4. The 53.3 Mbps and 106.7 Mbps transmission rates are tested under the channel environment of CM1 and CM4. The first pattern of Timing Frequency Code (TFC 1) with SNR from 0 dB to 30 dB is used, and 10,000 bits are transmitted and received for measuring the BER performance under the testing environment.

Compared with 53.3 Mbps transmission mode, the 106.7 Mbps mode has a SNR degradation of around 2 dB in both channels models. The transmission errors increase a lot when SNR drops to 10 dB. When referring to Table 3-18, it can be seen that the timing synchronization probability has a very strong effect on the BER performance for the whole system. As the synchronization probability is almost 100% when SNR is higher than 15 dB for CM1, the BER performance tends to be steady. And when the SNR is lower than 10 dB, the probability of synchronization for the proposed synchronization scheme dropped a lot, the BER also increases a lot.

![Figure 5.4 BER performance of proposed MB-OFDM transceiver](image-url)
5.4.2 Synthesis result

By using the Xilinx ISE Design Suit 12.1 and xPower Analyzer from Xilinx tools, the Tx and Rx system are synthesized. The hardware utilization for both Tx and Rx system is shown in Table 5-3. All the timing constraints, the most stringent of which is the FFT/IFFT and Viterbi Decoder processing time, are met.

<table>
<thead>
<tr>
<th>Table 5-3 Summary of Resource Usage of XC5VLX110T FPGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter</td>
</tr>
<tr>
<td>Number of DSP48Es</td>
</tr>
<tr>
<td>Number of Slices</td>
</tr>
<tr>
<td>Number of Slice Registers</td>
</tr>
<tr>
<td>Number of Block RAM/FIFO</td>
</tr>
<tr>
<td>Number of Slice LUTs</td>
</tr>
<tr>
<td>Number of External IOBs</td>
</tr>
<tr>
<td>Number of BUFG/BUFGCTRLs</td>
</tr>
<tr>
<td>Number of LUT Flip Flop Pairs</td>
</tr>
<tr>
<td>Power Consumption</td>
</tr>
<tr>
<td>Clock Frequency</td>
</tr>
<tr>
<td>Max Frequency</td>
</tr>
</tbody>
</table>

The estimated logic gate count is around 500 K in total. As the proposed baseband system has the parallel factor of four for those critical elements (FFT/IFFT, VD, demapper, deinterleaver, etc.), the 528 Msps throughput is achieved by using 132 MHz clock frequency. According to the Xilinx xPower Analyzer, the estimated post synthesis Tx and Rx power consumptions are 241.88 mW and 449.68 mW respectively at 132 MHz frequency, omitting the energy consumed related with FPGA standing by. The differences of hardware resources usage indicate the receiver system has a much higher design complexity than that of transmitter system. The additional power consumption of receiver system mainly comes from the synchronization processes for both timing and frequency, and Channel Estimation/Equalization blocks. Extra
energy consumption caused by longer processing word-length for Rx is another reason, as soft-bits are used for demapper, de-interleaver, de-puncture, and Viterbi Decoder systems so as to increase the system robustness and accuracy.

On the Tx side, almost all the power consumptions and hardware resources usage are come from the IFFT processor (more than 90%), thus no distribution discussion for transmitter system will be made.

But on the Rx side, the additional processing elements, such as synchronization blocks, Channel Estimation/Equalization block, and Viterbi Decoder, also cost large amount of power consumption and hardware resources. The power consumption distribution and hardware cost distribution of the proposed receiver system are shown in Figure 5.5 and Figure 5.6 respectively.

![Figure 5.5 Power consumption distribution for proposed Rx system](image_url)
As it can be seen in Figure 5.5 and Figure 5.6, the FFT processor occupies a great proportion on both aspects, which denotes the important role that the FFT processor plays in the Rx system. Timing synchronization scheme, which contains both Packet Detector and Timing Offset Estimation blocks, also takes a large proportion, especially in the hardware cost distribution. This is a result of the use of RAMs for buffering the input sequences and restoring the preamble sequences. Channel Estimation/Equalization block consumes large power consumption, because of the usage of wide word-length complex divider and complex multiplier processors for estimating and compensating the channel response. Although the Viterbi Decoder (VD) system spends only 8% of the total power consumption, but 23% hardware resources are needed, this mainly comes from the proposed VD structure uses two Branch Metric Units (BMUs) and State Metric Units (SMUs) (although they consume less power than traditional architecture), and the TBU has a large bank of memory. The Carrier Frequency Offset (CFO) block takes around 10% proportion on both aspects, whereas the Sampling Frequency Synchronization system just takes around 5%. Thus, according to the distribution on both power consumption and hardware cost, future works will focus on the optimizations for Channel
Estimation/Equalization block and CFO system so as to further optimize the performance of the proposed receiver architecture.

5.5. Chapter final conclusions and original contributions

In this chapter, the UWB channel models for four different communication situations (CM1~CM4), proposed by the IEEE 802.15.3a research group, are discussed and introduced into the presented Virtual Communication procedure, with the aim of validating the proposed MB-OFDM UWB digital baseband transceiver system in different communication environments.

The simulation results show that the Bit Error Rate (BER) performance of the proposed transceiver system can reach up to below 0.1% in CM1 channel model, and around 1% in CM4 channel model, while the SNR is higher than 10 dB.

For system synthesis result, the Xilinx Virtex 5 XC5VLX110T FPGA board is selected for the implementation of the proposed MB-OFDM baseband structure. The power consumption and hardware cost distributions are discussed so as to help us analyze the performance of each block in the baseband system. All the timing constraints are met according to the synthesis report provided from Xilinx ISE Design Suit 12.1.
6. Conclusions and Future works

6.1. Conclusions

A high-performance MB-OFDM Ultra Wideband transceiver system has been presented in this thesis. The proposed UWB Physical (PHY) layer has met all three of its primary goals, namely:

1. Digital logic architectures for MB-OFDM baseband transceiver system was optimized and developed;
2. All digital aspects of the proposed UWB PHY were implemented and validated in a FPGA board;
3. Complexity and expected real-world performance were simulated and analyzed through the Virtual Communication simulation procedure.

The thesis focuses on the communication system implementation and validation tasks for the WNSVs development. As high transmission rate and low power consumption abilities are required for the design goals, meanwhile, the reconfigurability based on FPGA development is a potential application technique, the MB-OFDM digital baseband system finally became the best candidates for these goals.

The basic information for MB-OFDM UWB communication protocol based on the ISO/IEC standard has been shown. The multiband technology and PHY general requirements, such as the band group and Time-frequency code are illustrated so as to understand the theory of MB-OFDM technology. The formats of the PHY header, MAC header, as well as the transmission packet are explained, before the implementation procedure carried out. Having the clear mind of the general requirements before development can help the developers grasp the function of each element in the physical layer.

The function and action of each required element are shown in pair for the Transmitter (Tx) and Receiver (Rx) system respectively. Those critical processing
subsystems on both Tx and Rx sides are picked up for optimizations one by one. According to the different properties and effects of different processing elements, the optimizations are made through different considerations. The FFT/IFFT processing pair is highly optimized by using the proposed mix-radix algorithm as well as power efficient architectures for complex multipliers of each stage; the sign-bit only strategy for timing synchronization not only improves the detection probability but also dramatically reduces the computational complexity; the high speed ACS units along with the two-step radix-4 algorithm ensures the high throughput property for proposed Viterbi Decoder block. Moreover, several other state-of-the-art algorithms and architectures are also introduced so as to develop a highly optimized MB-OFDM digital baseband transceiver system on FPGAs. Compared with Tx system, Rx system has a more complex architecture due to high accurate synchronization and channel estimation requirements. After the optimization for each component, the proposed baseband transceiver is integrated and implemented in the Xilinx XUPV5-LX110T Evaluation Platform.

In order to test the proposed algorithms and architectures in the FPGA board, a Hardware-in-the-loop design methodology is proposed. The contribution related with this part of the work mainly comes from combining all the popular customize digital system design tools together, so that they can cooperate with each other to help the developers test and validate the proposed system in both software and hardware more efficiently. The proposed methodology ensures the most suitable tools be used for different validation procedures, such as the MATLAB is used for verify those proposed algorithms, ModelSim is used for RTL code simulations, and System Generator is used as emulator for FPGA tests.

By using the proposed co-design methodology, as well as employing the UWB channel models from IEEE 802.15.3a research group, the proposed MB-OFDM UWB digital baseband transceiver system is tested and analyzed through the Virtual Communication method. The experimental results of the proposed architecture in Chapter 3 are shown in Chapter 5. The implemented MB-OFDM system shows the ability to support different throughput modes according to the MB-OFDM UWB specification, with the power consumption of 241.88 mW and
449.68 mW for Tx and Rx respectively at 132 MHz working frequency. The proposed implementation gives a robust, low complexity and energy efficient solution for practical applications.

As a summary, the contributions of this thesis are the following:

- A novel mixed radix 128-point FFT algorithm by using multipath pipelined architecture is proposed. The complex multipliers for each processing stage are designed by using modified shift-add architectures. The system word-length and twiddle word-length are compared and selected based on Signal to Quantization Noise Ratio (SQNR) and power analysis.

- IFFT processor performance is analyzed under different Block Floating Point (BFP) arithmetic situations for overflow control, so as to find out the perfect architecture of IFFT algorithm based on the proposed FFT processor.

- An innovative low complex timing synchronization and compensation scheme, which consists of Packet Detector (PD) and Timing Offset Estimation (TOE) functions, for MB-OFDM UWB receiver system is employed. By simplifying the cross-correlation and maximum likelihood functions to sign-bit only, the computational complexity is significantly reduced.

- A 64 state soft-decision Viterbi Decoder system by using high speed radix-4 Add-Compare-Select architecture is proposed. Two-pointer Even algorithm is also introduced into the Trace Back unit in the aim of hardware-efficiency.

- Several state-of-the-art technologies are integrated into the complete baseband transceiver system, in the aim of implementing a highly-optimized UWB communication system.

- An improved design flow is proposed for complex system implementation which can be used for general Field-Programmable Gate Array (FPGA) designs. The design method not only dramatically reduces the time for functional verification, but also provides automatic analysis such as errors and output delays for the implemented hardware systems.

- A virtual communication environment is established for validating the
proposed MB-OFDM transceiver system. This methodology is proved to be easy for usage and convenient for analyzing the digital baseband system without analog frontend under different communication environments.

6.2. Future work

There are still various challenges that wait for developing a fully functional wireless communication system based on MB-OFDM UWB protocol.

First of all, the different integrated systems developed in this work have to be merged in a single FPGA board. But due to the lack of usable slices resources, this could be only resolved by additional design and optimization efforts. Based on the synthesis report of the proposed structure, the Channel Estimation/Equalization subsystem is the next block that we should pay attention to. But decreasing the complexity of any one of the subsystems will also have a negative impact on the performance of the receiver system. Optimizations should be made based on a comprehensive trade-off discussion.

Secondly, from a wireless communication system point of view, the developed transceiver system still lacks of analog front-end and RF elements. This part of work is beyond our knowledge and ability in existing situation. Finding some research institutes that focus on RF and analog system development for UWB, or wireless communication systems, and cooperating the proposed digital baseband system of this thesis with their existing RF system would be the best solution for us to extend the knowledge related with this aspect. Finally, when all the required elements (Tx, Rx, RF, MAC, etc.) are designed and ready to be used, a final ASIC (or System On Chip (SOC)) will be implemented, as shown in Figure 6.1.
Thirdly, the afore presented hardware/software co-design/co-simulation environment can only support the co-simulation for one FPGA board, this makes the real-time communication between Tx and Rx system impossible, because the proposed Tx and Rx have to be implemented in two different FPGA boards due to the hardware complexity.

Next step should be the methodology that makes the transceiver system changing among the different communication data rate modes automatically based on the data that needed to be transmitted. For example, during idle time or small amount of signals are required to be transmitted, the transceiver system should be configured to the 53.3 Mbps communication mode so as to save power consumption, while during the period that large packets needed to be transmitted in a short time, the higher data rate modes are called to take charge. This part research is focused on efficient power control and bandwidth usage. The switching function involves design of the control logic, the discussion of how frequently should the switch function take place, and reconfigurable technology.

Last, but not least, the Multiple-Input Multiple-Output (MIMO) technology has recently attract much attention for MB-OFDM based UWB communication system development, aiming at further enlarge the data rates to more than 1 Gbps so as to support future wireless applications. MIMO communication can exploit diversity to improve the channel capacity and error performance for wireless communications without increasing channel bandwidth. Hence, the MIMO UWB communication is a promising solution for future WPAN applications. The study of MIMO can be obtained based on the proposed MB-
OFDM UWB communication system, with further space-time-frequency coding and spatial multiplexing knowledge.

6.3. Publications

This section shows the complete list of publications resulting from this thesis, directly or indirectly.

Chapter 6

Conclusions and Future Works

Complete bibliography of the doctoral thesis

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
</table>

Transactions on Wireless Communications, vol. 6, no. 4, pp. 1374-1385, Apr. 2007.

