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The Nakagami-m distribution is widely used for the simulation of 
fading channels in wireless communications. A novel, simple and 
extremely efficient acceptance-rejection algorithm is introduced for 
the generation of independent Nakagami-m random variables. The pro­
posed method uses another Nakagami density with a half-integer value 
of the fading parameter, mp = n/2 < m, as proposal function, from 
which samples can be drawn exactly and easily. This novel rejection 
technique is able to work with arbitrary values of m > 1, average 
path energy, 11, and provides a higher acceptance rate than all currently 
available methods. 

Introduction: The Nakagami-m distribution is widely used to model the 
wireless fading channel because of its good agreement with empirical 
channel measurements for some urban multipath environments [1]. 
The Nakagami probability density function (PDF) is p0(x) = Cpp(x), 
with Cp = 2mm/[flT(m)] and 

p(x) = x2' exp (-S4 x > 0 (1) 

where m > 0.5 is the fading parameter, which indicates the fading depth, 
and II > 0 is the average received power. 

Several schemes for drawing samples from a Nakagami-m PDF have 
been proposed. On the one hand, when m is an integer or half-integer 
(i.e. m — n/2 with n G M), independent samples can be generated 
through the square root of a sum of squares of n zero-mean independent 
identically distributed (IID) Gaussian random variables (RVs). On the 
other hand, for m ^ n/2 several techniques have been proposed for 
drawing correlated samples from (1) [2-4], but all of them present limit­
ations in terms of complexity, applicability or poor performance for 
some values of m. Alternatively, several simple and efficient accep­
tance-rejection methods, using different proposals and with increasing 
accuracy, have been recently introduced [5-7]. Currently, the best 
results are provided by [7] using a truncated Gaussian PDF as the 
proposal. 

In this Letter we provide an extremely efficient acceptance-rejection 
method for drawing independent samples from non-truncated (i.e. 
without any restriction in the domain) Nakagami PDFs with m>\. 
As a proposal, we consider another Nakagami PDF with an integer or 
half-integer fading parameter, mp — n/2 < m, from which samples 
can be easily and efficiently drawn [8]. Our approach is valid for arbi­
trary values of the fading parameters m>\ (for many practical channels 
1 < m < 15, as discussed in [9]) and ft > 0. Furthermore, since our 
proposal is another Nakagami PDF, the novel rejection scheme provides 
a very good fit of the target, thus achieving very high acceptance rates 
that tend to 100% (i.e. exact or rejectionless sampling) when 
m —¥• +oo and outperforming all the alternative techniques reported in 
the literature. 

Acceptance-rejection algorithm: Rejection sampling (RS) is a classical 
technique for generating samples from an arbitrary target PDF, 
Po(x) — Cpp(x) with i £ P and Cp — [ v̂p(x)dx]^i, using an alterna­
tive simpler proposal PDF, ir0(x) = C^irix) with x G V and 
C,r — [Jj, ii{x)dx\~l, such that ir(x) >p(x), i.e. TT(X) is a hat function 
w.r.t. p(x). RS works by generating samples from the proposal 
density, x1 ~ ir0(x), accepting them when u' <p(x,)/ir(x'), with u' uni­
formly distributed in [0,1], and rejecting them otherwise. The key per­
formance measure for RS is the average acceptance rate, 
CIR — ̂ vp(x)/Tr{x)TT0(x)dx — CTT/CP < 1. The value of ag depends on 
how close the proposal is to the target, and determines the efficiency 
of the approach. Hence, the main difficulty when designing an RS algor­
ithm is finding a good hat function, TT(X) > p(x), such that TT(X) and/>(x) 
are as close as possible and drawing samples from ir0(x) = C^irix) can 
be done easily and efficiently. 

In this work, we consider as target density the PDF given by (1) with 
m > 1. As proposal PDF, we suggest using another Nakagami function 
with different parameters, namely 

TT„(X) oc ir(x) = apx
2mp ' exp( — -pX" 

Up 
x > 0 (2) 

with mp — n/2, n \2m\ (with [xj denoting the integer part of x E R), 
and the remaining parameters (ap and ilp) adjusted to obtain the same 
location and value of the maximum in the proposal as in the target: 

2m, 

2w„ 

m„(2m • 'p ,2 _ n'"py 

1 max m(2mp-
J) 
1) 

P\Xmax) 
2mp -1 , 

-^max e x p (̂  nPXmsx. /ft») 

= exp(mp 
fil(2m 

•m) l -
2m 

(3) 

(4) 

where xmax is the location of the maximum of the Nakagami PDF, 
obtained solving dp(x)/dx = 0, which results in 

(2m - 1)11 

2m 
(5) 

Note that we always have mp < m, with mp being an integer or half-
integer value. Thanks to this choice of mp and the parameters derived 
in (3) and (4), we can ensure that: (a) we can draw samples exactly 
from ir0(x) oc ir(x) [8]; (b) TT(X) > p(x) for all x > 0, as proved in the 
sequel. Fig. la shows an example of the target, p(x), our proposal, 
7T(X), and the proposal used in [7] for an unbounded domain, which 
fits the true PDF in a much looser way than ours, thus leading to 
worse acceptance rates. 
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Fig. 1 Example (Fig. la) of Nakagami PDF (solid line) with m — 1.8 and 
Q — 5, our proposal (dashed line), and Gaussian proposal, TT(X) — 
pfemax) exp(— m/fl(x — xmax) ) used in [7] for an unbounded domain 
(circles). The two functions (Fig. lb), ln(ap) + /3 x (dashed line) and 
2(m — mp)ln(x) (solid line) in (9), when m — 1.8 and {1 — 5 

Therefore, our algorithm follows these three simple steps: (a) calculate 
the parameters of the proposal PDF, ir0(x) oc ir(x); (b) draw a sample x' 
from TT0(X) using the direct approach described in [8]: generate 2mp IID 
Gaussian RVs, z* ~ A/"(0, 1) for 1 < k < 2mp, and set 

x! = 
2m„ t = , "Pk=\ 

(6) 

(c) accept x1 with probability p(x,)/ir(x') and discard otherwise. Steps (b) 
and (c) are repeated until the desired number of samples has been 
obtained. 

Proof of RS inequality: To apply the RS technique we need to ensure 
that IT(X) > p(x), i.e. 

apX2"1? ' exp 
nipX2 

x1"' exp 

Alternatively, (7) can be easily rewritten as 

ap exp (fix ) > x 2(m—mp) 

tnx 
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V x > 0 

Vx> 0 (7) 
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where /3 = m/fl — mp/flp and x1<jn m^ presents a sub-linear growth, 
since 0 < 2(m — mp) < 1. Finally, taking the logarithm on both sides 
of (8), 

In a„ + /3x > 2(m — m„) lnx, Vx> 0 

Now, since m > mp and ilp is given by (3), we note that 

2m„ - 1\ 
i - ^ — H >o 

tip a i m i i p 

m mp m (_ 2mn — 1 

ft ft„ ft V 2m — 1 

(9) 

(10) 

Hence, since we have ap > 0 from (4), the parabola on the left-hand side 
of (9) is an increasing function with an increasing first derivative (i.e. a 
convex function). Moreover, since m > mp, the logarithmic function on 
the right-hand side of (9) is also an increasing function, but with a 


