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The Nakagami-m distribution is widely used for the simulation of 
fading channels in wireless communications. A novel, simple and 
extremely efficient acceptance-rejection algorithm is introduced for 
the generation of independent Nakagami-m random variables. The pro
posed method uses another Nakagami density with a half-integer value 
of the fading parameter, mp = n/2 < m, as proposal function, from 
which samples can be drawn exactly and easily. This novel rejection 
technique is able to work with arbitrary values of m > 1, average 
path energy, 11, and provides a higher acceptance rate than all currently 
available methods. 

Introduction: The Nakagami-m distribution is widely used to model the 
wireless fading channel because of its good agreement with empirical 
channel measurements for some urban multipath environments [1]. 
The Nakagami probability density function (PDF) is p0(x) = Cpp(x), 
with Cp = 2mm/[flT(m)] and 

p(x) = x2' exp (-S4 x > 0 (1) 

where m > 0.5 is the fading parameter, which indicates the fading depth, 
and II > 0 is the average received power. 

Several schemes for drawing samples from a Nakagami-m PDF have 
been proposed. On the one hand, when m is an integer or half-integer 
(i.e. m — n/2 with n G M), independent samples can be generated 
through the square root of a sum of squares of n zero-mean independent 
identically distributed (IID) Gaussian random variables (RVs). On the 
other hand, for m ^ n/2 several techniques have been proposed for 
drawing correlated samples from (1) [2-4], but all of them present limit
ations in terms of complexity, applicability or poor performance for 
some values of m. Alternatively, several simple and efficient accep
tance-rejection methods, using different proposals and with increasing 
accuracy, have been recently introduced [5-7]. Currently, the best 
results are provided by [7] using a truncated Gaussian PDF as the 
proposal. 

In this Letter we provide an extremely efficient acceptance-rejection 
method for drawing independent samples from non-truncated (i.e. 
without any restriction in the domain) Nakagami PDFs with m>\. 
As a proposal, we consider another Nakagami PDF with an integer or 
half-integer fading parameter, mp — n/2 < m, from which samples 
can be easily and efficiently drawn [8]. Our approach is valid for arbi
trary values of the fading parameters m>\ (for many practical channels 
1 < m < 15, as discussed in [9]) and ft > 0. Furthermore, since our 
proposal is another Nakagami PDF, the novel rejection scheme provides 
a very good fit of the target, thus achieving very high acceptance rates 
that tend to 100% (i.e. exact or rejectionless sampling) when 
m —¥• +oo and outperforming all the alternative techniques reported in 
the literature. 

Acceptance-rejection algorithm: Rejection sampling (RS) is a classical 
technique for generating samples from an arbitrary target PDF, 
Po(x) — Cpp(x) with i £ P and Cp — [ v̂p(x)dx]^i, using an alterna
tive simpler proposal PDF, ir0(x) = C^irix) with x G V and 
C,r — [Jj, ii{x)dx\~l, such that ir(x) >p(x), i.e. TT(X) is a hat function 
w.r.t. p(x). RS works by generating samples from the proposal 
density, x1 ~ ir0(x), accepting them when u' <p(x,)/ir(x'), with u' uni
formly distributed in [0,1], and rejecting them otherwise. The key per
formance measure for RS is the average acceptance rate, 
CIR — ̂ vp(x)/Tr{x)TT0(x)dx — CTT/CP < 1. The value of ag depends on 
how close the proposal is to the target, and determines the efficiency 
of the approach. Hence, the main difficulty when designing an RS algor
ithm is finding a good hat function, TT(X) > p(x), such that TT(X) and/>(x) 
are as close as possible and drawing samples from ir0(x) = C^irix) can 
be done easily and efficiently. 

In this work, we consider as target density the PDF given by (1) with 
m > 1. As proposal PDF, we suggest using another Nakagami function 
with different parameters, namely 

TT„(X) oc ir(x) = apx
2mp ' exp( — -pX" 

Up 
x > 0 (2) 

with mp — n/2, n \2m\ (with [xj denoting the integer part of x E R), 
and the remaining parameters (ap and ilp) adjusted to obtain the same 
location and value of the maximum in the proposal as in the target: 
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where xmax is the location of the maximum of the Nakagami PDF, 
obtained solving dp(x)/dx = 0, which results in 

(2m - 1)11 

2m 
(5) 

Note that we always have mp < m, with mp being an integer or half-
integer value. Thanks to this choice of mp and the parameters derived 
in (3) and (4), we can ensure that: (a) we can draw samples exactly 
from ir0(x) oc ir(x) [8]; (b) TT(X) > p(x) for all x > 0, as proved in the 
sequel. Fig. la shows an example of the target, p(x), our proposal, 
7T(X), and the proposal used in [7] for an unbounded domain, which 
fits the true PDF in a much looser way than ours, thus leading to 
worse acceptance rates. 

1.b 
ln(,, p) + 0# y" 

3.5 

3 

__, _ ^ T 
0.5 / 
1 n i 

Fig. 1 Example (Fig. la) of Nakagami PDF (solid line) with m — 1.8 and 
Q — 5, our proposal (dashed line), and Gaussian proposal, TT(X) — 
pfemax) exp(— m/fl(x — xmax) ) used in [7] for an unbounded domain 
(circles). The two functions (Fig. lb), ln(ap) + /3 x (dashed line) and 
2(m — mp)ln(x) (solid line) in (9), when m — 1.8 and {1 — 5 

Therefore, our algorithm follows these three simple steps: (a) calculate 
the parameters of the proposal PDF, ir0(x) oc ir(x); (b) draw a sample x' 
from TT0(X) using the direct approach described in [8]: generate 2mp IID 
Gaussian RVs, z* ~ A/"(0, 1) for 1 < k < 2mp, and set 

x! = 
2m„ t = , "Pk=\ 

(6) 

(c) accept x1 with probability p(x,)/ir(x') and discard otherwise. Steps (b) 
and (c) are repeated until the desired number of samples has been 
obtained. 

Proof of RS inequality: To apply the RS technique we need to ensure 
that IT(X) > p(x), i.e. 

apX2"1? ' exp 
nipX2 

x1"' exp 

Alternatively, (7) can be easily rewritten as 

ap exp (fix ) > x 2(m—mp) 

tnx 

"~ft 

V x > 0 

Vx> 0 (7) 
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where /3 = m/fl — mp/flp and x1<jn m^ presents a sub-linear growth, 
since 0 < 2(m — mp) < 1. Finally, taking the logarithm on both sides 
of (8), 

In a„ + /3x > 2(m — m„) lnx, Vx> 0 

Now, since m > mp and ilp is given by (3), we note that 
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Hence, since we have ap > 0 from (4), the parabola on the left-hand side 
of (9) is an increasing function with an increasing first derivative (i.e. a 
convex function). Moreover, since m > mp, the logarithmic function on 
the right-hand side of (9) is also an increasing function, but with a 


