Almost rejectionless sampling from with m, —n/2, n \2m\ (with [xj denoting the integer part ofx E R),

Nakagami_m distributions [m> 1) and the remaining parameters, (and i) adjusted to obtain the same
location and value of the maximum in the proposal as in the target:
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The Nakagami-m distribution is widely used for the simulation of

fading channels in wireless communications. A novel, simple and P\Xmax)

extremely efficient acceptance-rejection algorithm is introduced for 2mp-1 sy /)

the generation of independent Nakagami-m randariables Thepro- smax  expl  "Pmsx. o)

posed method uses another Nakagami densityawittif-integer value fil(2m

of the fading parameter, ,m n/2 <m, as proposal function, from = exp(m -m)l- om

which samples can be drawn exactly and easily. This novel rejection

technique is able to work with arbitrary values of m > 1, average where x,., is the location of the maximum of the Nakagami PDF,
path energyll,and provides higher acceptance rate than all currently  ptained solving dp(x)/dx = 0, which results in

available methods.
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Introduction: The Nakagami-m distribution is widely used to model the 2m ©)
wireless fading channel because of its good agreement with empiricalygte that we always have,mx m, with m being an integer ohalf-
channel measurements for some urban multipath environments [1].inteqer value. Thanks to this choice of and the parameters derived
The Nakagami probability density function (PDF) ied = Gp(x). in (3) and (4), we can ensure that: (a) we can draw samples exactly
with C, = 2nf/[fIT(m)] and from irg(X) oc ir(x) [8]; (b) TT(X) > p(x) for all x > O, as proved in the
sequel. Fig. la shows an example of the target, p(x), our proposal,
pK) =X exp(_S4 x>0 (€] 7T(X), and the proposal used in [7] for an unbounded domain, which
fits the true PDF in a much looser way than ours, thus leading to
where m > 0.5 is the fading parameter, which indicates the fading depthworse acceptance rates.
and Il > 0 is the average received power.

Several schemes for drawing samples from a Nakagami-m PDF have »

been proposed. On the one hand, when m is an integer or half-integer InG.p) + 0%y
(,e. m —n/2 with n G M), independent samples can be generated N
through the square root of a sum of squares zdéro-mean independent % y T

identically distributed (IID) Gaussian random variables (RVs). On the

other hand, for m ~ n/2 several techniques have been proposed for os |/
drawing correlated samples from (B-4], but all of them present limit-
ations in terms of complexity, applicability or poor performance for
some values of m. Alternatively, several simple and efficient accep-
tance-rejection methods, using different proposals and with increasingFig. 1 Example (Fig. la) of Nakagami PDF (solid line) with m — 1.8 and
accuracy, have been recently introducgst7]. Currently, the best Q —5, our proposal (dashedine), and Gaussian proposal,TT(X) —

results are provided by [7] using a truncated Gaussian PDF as th@femax)exp(—m/fl(x —Xma) ) used in [7] for an unbounded domain
proposal. (circles). The two functions (Fig. Ib), Inga+ /3 x (dashed line) and
2(m—my)In(x) (solid line) in (9), when m- 1.8 and{1 —5

1ni

In this Letter we provide an extremely efficient acceptance-rejection

method for drawing independent samples from non-truncated (i.e. . . .
) L2 ; . . Therefore, our algorithm follows these three simple steps: (a) calculate
without any restriction in the domain) Nakagami PDFs with m>\. - ,
the parameters of the proposal PDR(xr ocir(x); (b) draw a sample x

ﬁslfa_ [:ropos?l,dwe conS|dert another /l\éaliagamfl PDF Vr;”tr; an |nte|ger OTfrom TTo(X) using the direct approach described in [8]: generatg [An
alf-integer fading parameter, ,ma—n m, from which samples . . RVS, 2 ~ A0, 1) for 1< k < gmand set

can be easily and efficiently drawn [8]. Our approach is valid for arbi-
trary values of the fading parameters m>\  (for many practical channels
1 <m < 15, as discussed in [9]) and ft > 0. Furthermore, since our X! = (6)
proposal is another Nakagami PDF, the novel rejection scheme provides zmﬂkiﬁ’

a very good fit of the target, thus achieving very high acceptance rates,
that tend to 100% (i.e. exact or rejectionless sampling) when (
m —¥e +00 and outperforming all the alternative techniques reported
the literature.

c) accepk' with probability p(}/ir(x') and discard otherwise. Steps (b)
find (c) are repeated until the desired number of samples has been
Obtained.

Proof of RS inequality: To apply the RS technique we need to ensure
Acceptance-rejection algorithm: Rejection sampling (RS) is a classical that IT(X) > p(x), i.e.

techniqgue for generating samples from an arbitrary target PDF,

Po(x) — Cpp(x) with i £ P and,G— [Ap(X)dx}", using an alterna- nipX T tnx

l|lr)|
tive simpler proposal PDF, ¢x) = CAirix) with x GV and apXi?" exp X7 exp "t Vx>0
Cr — [Jj, iip)dx\L,  such that ir(x) >p(x), i.eTT(X)is a hat function ) ) )
wrt p(x). RS works by generating samples from the proposal Alternatively, (7) can be easily rewritten as
density, X ~ irg(x), accepting them when u' <pjir(x’), with u' uni- a, exp (fix ) > #(m—m) Vx>0 ®)

formly distributed in[0,1], and rejecting them otherwise. The key per-
formance measure for RS is the average acceptance rateywhere /3= m/fl —myfl, and xisin ma presents a sub-linear growth,
CIR —p(X)/Tr{x)TT(x)dx —CTT/G < 1. The value of ag depends on since 0 < 2(m—m,) < 1. Finally, taking the logarithm on both sides
how close the proposal is to the target, and determines the efficiencyof (8),

of the approach. Hence, the main difficulty when designing an RS algor-

ithm is finding a good hat functiof[T(X) > p(x), such thalT(X) and/>(x) Ina, + /3x > 2(m—m,) Inx, Vx> 0 ©)
are as close as possible and drawing samples frgx) &= CAirix) can
be done easily and efficiently.

In this work, we consider as target density the PDF given by (1) with m m m(C 2Zmg—1N

m > 1. As proposal PDF, we suggest using another Nakagami function ft ft, ft vi-%m=tH >0
with different parameters, namely

Now, since m > mand jb, is given by (3), we note that
(10)

Hence, since we haveg & 0 from (4), the parabola on the left-hand side
of (9) is an increasing function with an increasing first derivative (i.e. a
convex function). Moreover, since m >, nthe logarithmic function on
the right-hand side of (9) is also an increasing function, but with a

TT(X) oc ir(x) = ap@™ ' exp( — -pX" x>0 @
Up



