Theory of a Probe in a Strong Magnetic Field

by

Juan R. Sanmartin

MATT-599 July, 1968

AEC RESEARCH AND DEVELOPMENT REPORT

This work was supported under Contract AT(30-1)-1238 with the Atomic Energy Commission. Reproduction, translation, publication, use, and disposal, in whole or in part, by or for the United States Government is permitted.
Theory of a Probe in a Strong Magnetic Field

Juan R. Sanmartín
University of Colorado, Boulder, Colorado

ABSTRACT

A kinetic approach is used to develop a theory of electrostatic probes in a fully ionized plasma in the presence of a magnetic field. A consistent asymptotic expansion is obtained assuming that the electron Larmor radius is small compared to the radius of the probe. The order of magnitude of neglected terms is given. It is found that the electric potential within the tube of force defined by the cross section of the probe decays non-monotonically from the probe; this bump disappears at a certain probe voltage and the theory is valid up to this voltage. The transition region, which extends beyond plasma potential, is not exponential. The possible saturation of the electron current is discussed. Restricted numerical results are given; they seem to be useful for weaker magnetic fields down to the zero-field limit. Extensions of the theory are considered.

†Present address: Plasma Physics Laboratory, Princeton University, Princeton, New Jersey.
I. INTRODUCTION

Since Langmuir's work, probe theory has been extensively developed for the case of zero magnetic field (B = 0). The theory is practically complete in the dilute limit when \(\lambda_D \ll R \ll \lambda \) (\(\lambda_D \), \(R \), and \(\lambda \) being the Debye length, probe radius, and mean free path, respectively). Extensive computed results are available in Ref. 5, including values of \(\lambda_D/R > 0 \). The continuum case \(\lambda \ll \lambda_D \ll R \) was successfully treated by Su and Lam and Cohen. The more difficult problem of an intermediate \(\lambda \) has been approached rather crudely, although lately some improvements have been obtained.

When a magnetic field is present no reliable results exist. The probe characteristic or current-voltage (I-V) diagram has less definite features: roughly, a certain decrease in the current and a blurring of the plasma potential kink. Papers on the subject are crude and sparse. Three basic difficulties are the cause of this. First, the presence of \(B \) makes the space anisotropic. Second, for large \(B \), collisions will come into play; unless \(\lambda \) is the smallest relevant length, the character of the equations will change substantially in space. Finally, for fully ionized plasmas, transport coefficients are spatially dependent because the density experiences large changes; in fact, for either \(B = 0 \) or \(B \neq 0 \), only one paper is known to the author where Coulomb collisions are considered, although as a weak effect.

Spivak and Reichrudel studied the case of a weak field. As in later papers, where plane probes parallel to \(B \) were assumed, an ill-defined sheath edge is introduced where the density cannot be expected to be that of
the unperturbed plasma. Moreover, the effect of the flux along B is not considered at all.

Bertotti treated the case of a probe perpendicular to B and averaged magnitudes over the cross section. An unspecified diffusion process was assumed and in this way a phenomenological integro-differential equation was found and integrated numerically. The results are in clear contradiction to all experimental evidence.

Bohm established a balancing between fluxes along and across B. Besides the known depletion of the plasma he found the results to be insensitive to the shape of the probe along B. However, several defects should be pointed out. First, the diffusion equation is assumed to be valid up to a vaguely-defined surface: no proper matching is made, the results are quantitatively unreliable, and there is no way of knowing the error of the approximations or of improving the treatment. Second, the value of the current, I, does not depend on V and so it is useless (the curve certainly is not flat around space potential, $V = 0$). The ion-electron temperature ratio was considered negligible. A correction by Sugawara is wrong; the involved $I-V$ dependence produced by an overshooting of the potential is missed. Moreover, in both papers Laplace's equation was solved incorrectly: the density was assumed constant on the above-indicated surface. They were concerned with weakly ionized gases.

Our treatment is of an asymptotic nature and quiescent fully ionized plasmas are considered. We shall formulate our problem and assumptions
in Sec. II. In Sec. III a basic physical picture is obtained, and the equations are properly solved in Sec. IV. In Sec. V we present the actual study of the I-V diagram. Extensions of the theory and discussions of results are given in the last section.

II. STATEMENT OF THE PROBLEM

Two shapes of probes will be considered simultaneously: a thin strip of width 2R and infinitely long, and a disc of radius R, both perpendicular to B. They give rise to two-dimensional and axisymmetric problems, respectively. The strip will be found to disturb entirely the plasma, as is frequent whenever diffusion is important. The probe is normally cold and acts as a sink of particles; it will be assumed perfectly absorbing. This condition is easily relaxed (see Sec. VI).

The equations to be studied are

\[\nabla^2 V = 4\pi e (N^e - Z_i N^i) \]
\[N^j = \int F^j \, dw . \]

The boundary conditions are

\[V = V_p \] on the probe
\[V = 0 \] at infinity
and the \(F^j \) 's given at infinity; in particular, there,

\[
N_e = Z_i N_i = N_\infty \\
T_e = T_e^{\infty} = T_\infty \\
T_i = T_i^{\infty} = \beta Z_i T_\infty ,
\]

\(\beta \) being \(T_i^{\infty}/T_e^{\infty} Z_i \) and \(Z_i \) the charge of the ions. Space (or plasma) potential is taken as origin of voltages.

We now define non-dimensional variables:

\[
f^e = \frac{F^e U^3}{N_\infty}, \quad f^i = \frac{F^i U^3}{N_\infty/Z_i}
\]

\[
\chi = \frac{eV}{kT_\infty}, \quad \nu = \frac{W}{U_j} \quad (j = e, i)
\]

where \(U_j^2 m_j = kT_j^{\infty} \). Then Eqs. (1), (2) become explicitly (choosing the \(z \) axis along \(B \))

\[
[v_z \frac{\partial}{\partial z} + v \frac{\partial}{\partial \xi} + \frac{\partial X}{\partial z} \frac{\partial}{\partial v} + \frac{\partial X}{\partial \xi} \frac{\partial}{\partial v} - \frac{s v}{\xi} - \frac{1}{\xi} (v \frac{\partial}{\partial v} - v \frac{\partial}{\partial \xi})] f^e =
\]

\[
= \lambda^{-1} [c(f^e, f^e) + c(f^e, f^i)]
\]

(3)

\[
[v_z \frac{\partial}{\partial z} + v \frac{\partial}{\partial \xi} - \frac{1}{\beta} \frac{\partial X}{\partial z} \frac{\partial}{\partial v} - \frac{1}{\beta} \frac{\partial X}{\partial \xi} \frac{\partial}{\partial v} - \frac{s v}{\xi} + \frac{1}{\xi} (v \frac{\partial}{\partial v} - v \frac{\partial}{\partial \xi})] f^i =
\]

\[
= \lambda^{-1} [c(f^i, f^i) + c(f^i, f^e)]
\]

(4)

\[
\lambda_D^2 \left[\frac{\partial^2}{\partial z^2} + \xi^{-s} \frac{\partial}{\partial \xi} \xi^s \frac{\partial}{\partial \xi} \right] \chi = n^e - n^i
\]

(5)

where
\[\ell_j = \frac{m U c}{|q_j|^B}, \quad n^j = \int f^j \, \text{d}v \]

\[\lambda_D = \left(\frac{k \cdot T_\infty}{4\pi N_\infty e^2} \right)^{1/2}, \quad \lambda = \frac{(kT_\infty)^2}{2\pi N_\infty e^4 \ln \Lambda_\infty} \]

\[\Lambda_\infty = \frac{3kT_\infty}{4\pi N_\infty e^2} \left[\frac{kT_\infty}{4\pi N_\infty e^2 (1+\beta^{-1})} \right]^{1/2} \]

$s = 0$ for the strip and 1 for the disc. In this case ξ is the radial distance in cylindrical coordinates; for $s = 0$ the $z-\xi$ plane is perpendicular to the strip.

The definition of λ is somewhat arbitrary but, of course, the solution will not depend on it. The point is that the c's are now non-dimensional quantities of order unity for $|y| = O(1)$, as are the terms on the left-hand sides of (3)-(4) if exclusion is made of spatial derivatives or length factors.

The identities

\[\lambda^{-1} \sum_k c(f^j, f^k) = \frac{U^2}{N_{\infty}} \sum_{j=0}^\infty C(F^j, F^k) \]

define the c's. It is important to observe that we can write

\[c(f^e, f^i) = n^i P(f^e) + \mu \frac{P}{\mu} (f^e, f^i) \]

where $P(f^e) = 0$ if f^e is isotropic and $\mu P/\mu = O(\mu)$, $\mu \sim (m^e/m_1)^{1/2}$.

The C's are collision operators of the Fokker-Planck or Balescu-Lenard type if λ_D is smaller than any gradient length or the length over which any field produces a non-negligible effect on the motion of the particles (for B,
the Larmor radius). In other cases the proper non-local operators will be assumed; under the weak restriction that \(e^2 / kT_\infty \) should be the smallest length present, the c's are still \(O(1) \) with \(\lambda \) given by (6).

The boundary conditions are

\[
\begin{align*}
\chi &= \chi_p = eV_p / kT_\infty \quad \text{on the probe} \\
\chi &= 0 \quad \text{at infinity} \\
f^e, f^i &\quad \text{given at infinity where } n^e = n^i = 1.
\end{align*}
\]

Five characteristic lengths appear explicitly in our equations: \(\lambda_D, \lambda, R, l_e, l_i \). We can define four non-dimensional parameters

\[
\begin{align*}
\mu &= l_e / l_i < O(1) \quad \text{(i.e., } \mu << 1) \\
\sigma &= l_e / R < O(1) \\
\varepsilon &= \lambda_D / R < O(1) \\
z &= R / \lambda \leq O(1).
\end{align*}
\]

The first is a natural small parameter of our plasma [\(\beta \) is arbitrary but \(O(1) \)]. \(\sigma < O(1) \) will be considered as our definition of a "strong" magnetic field; in Sec. VI the use of the present results for weaker fields down to the limit \(B \to 0 \) (\(\sigma \to \infty \)) will be discussed. We require also the exclusion of the case \(\sigma / \mu < O(1) \).

The condition \(\varepsilon < O(1) \) is frequently satisfied in actual plasmas; the complications arising from the relaxation of this condition will be considered.

In the last restriction we exclude the case \(\lambda << R \) but not \(\lambda < R \).

Furthermore,

\[
\varepsilon \tau = \lambda_D / \lambda = O(\Lambda_\infty^{-1} \ln \Lambda_\infty) < O(1).
\]
Thus if $\tau = O(1)$, $\varepsilon < O(1)$; conditions on ε and τ are not entirely different.

It is worth pointing out here that writing Eqs. (3) and (4) excludes the possibility of anomalous diffusion due to fluctuating fields. The consequences of this strong restriction will come out clearly from our analysis. It can be guessed at present that a certain degree of smoothness in the plasma is to be required. The allowance for $\tau = O(1)$ makes our treatment useful for a relatively large range of cases. In itself, the interaction of body, plasma, and magnetic field is of interest.

III. THE PERTURBATION IN SPACE

Consider a cylindrical probe in the absence of a magnetic field. The directed flux toward the probe decays as r^{-1} where r is the distance to the axis of the cylinder. This results in an immediate, obvious first integral of the continuity equation. If the probe is small enough the spreading makes negligible all effects at distances still "microscopic."

However, when a magnetic field is present, no such integral is available. The continuity equation is not eliminated and clearly will be of foremost importance. For large enough B, electrons are inhibited from flowing across field lines so that the flux along B will vary slowly and transport coefficients will come into play. Moreover, in the plane of the probe ($z = 0$) and outside its area, the parallel flux is zero by symmetry but it is not so inside. Therefore strong gradients will appear on the boundary of the "shadow, " the tube of force impinging on the probe. If we consider any of
the two half-spaces produced by the plane of the probe the problem is
equivalent to that of a plasma bounded by an infinite wall where a dis­
continuity on the reflection coefficient occurs over a small circle.

To obtain an initial picture of the situation we apply briefly a multiple
scales method in this section. First, we define

\[D_z = v_z \frac{\partial}{\partial z} + \frac{\partial x}{\partial z} \frac{\partial}{\partial v_z} \]
\[D_\xi = v_\perp \frac{\partial}{\partial \xi} + \frac{\partial x}{\partial \xi} \frac{\partial}{\partial v_\perp} \]
\[v_\xi = v_\perp \cos \phi, \quad v_\eta = v_\perp \sin \phi \]

so that

\[v_\xi \frac{\partial}{\partial v_\eta} - v_\eta \frac{\partial}{\partial v_\xi} = \frac{\partial}{\partial \phi} \]

Then, multiplying Eqs. (3) and (4) by \(\ell_e \) and rearranging terms we get

\[\frac{\partial f_e}{\partial \phi} + \ell_e D_z f_e + \ell_e \cos \phi D_\xi f_e = -\ell_e \sin \phi \left(\frac{s v_\perp}{\xi} + \frac{1}{\mu} \frac{\partial x}{\partial \phi} \right) \frac{\partial f_e}{\partial \phi} \]

\[= \sigma \tau [c(f_e, f_e) + n^i P(f_e) + \mu P \mu (f_e, f_i)] \]

\[\ell_e D_z f_i + \ell_e \cos \phi D_\xi f_i = -\ell_e \sin \phi \left(\frac{s v_\perp}{\xi} - \beta^{-1} \frac{\partial x}{\partial \xi} \right) \frac{\partial f_i}{\partial \phi} \]

\[= \sigma \tau [c(f_i, f_i) + c(f_i, f_e)] . \]

(For \(D_z \), \(D_\xi \) the factor \(\beta^{-1} \) multiplies the second terms in the operators
given in Eq. (8).)
We define next a set of non-dimensional variables

\[z_k = \frac{z}{L_k} \]

where the \(L_k \)'s are unknown combinations of the five characteristic lengths of our problem. We assume that from an equation such as

\[\frac{\partial A}{\partial z_k} = E \]

we can obtain

\[\lim_{z_k \to \infty} E = 0. \]

This results from requiring boundedness for \(A \) and non-oscillatory behavior for \(E \).

We define also \(\xi_r = \xi/R \). Although one should allow for strong gradients around \(\xi = R \) and therefore define \(\xi_k = (\xi - R)/L_k \xi \) where \(L_k \xi/R \to 0 \) as \((\mu, \sigma, \varepsilon) \to 0 \), in this limit

\[\frac{\xi_k}{\xi_r} = (1 - \frac{R}{\xi}) \frac{R}{L_k \xi} \to \infty \]

for any fixed \(\xi \neq R \). Thus the region over which \(\xi_k \) is finite or \(\partial/\partial \xi_k \neq 0 \) [see Eqs. (11a, b)] shrinks to zero. Its importance will be estimated later.

Now we make the expansions

\[f_j = \sum_m f^m_j, \quad \chi = \sum_m \chi_m \]

and retain terms in (9), (10), and (5) of dominant order. It is possible to show that the smallest length \(L_o^2 \) cannot be shorter than \(\lambda_D \). In effect, then,

\[(\lambda_D/L_o^2)^2 >> 1 \] and from (5),
$$\frac{d^2 \chi}{dz^2} = 0 \text{ or } \chi = az + b$$

but from \(\lim_{z \to \infty} \frac{\partial}{\partial z} = 0 \) we get \(a = 0 \). Consequently from Eq. (10),

$$\frac{\partial f^i}{\partial z} = 0 \text{ and from (9),}$$

$$f^e_0 = f^e_0 \left(\phi - \frac{L_z}{f_e} \frac{z}{v_z} \right).$$

But this function cannot be periodic in \(\phi \) if \(\frac{\partial f^e_0}{\partial z} \to 0 \) as \(z \to \infty \). Thus \(\frac{\partial f^e_0}{\partial \phi} = \frac{\partial f^e_0}{\partial z} = 0 \). This can be seen in another way: the electrons enter the \(z = 0 \) layer with a distribution function symmetric around the \(z \) axis (to zero order), because for large \(z \), \(\frac{\partial f^e_0}{\partial z} = 0 \). This cannot be altered by the spiraling around field lines.

Therefore, \(L^z_0 = \lambda_D \). We get

$$\frac{d^2 \chi}{dz^2} = n^e_0 - n^i_0$$

$$\frac{\partial f^e_0}{\partial \phi} = 0, \left(v \frac{z}{\partial z} + \frac{f_e}{\lambda_D} \frac{\partial \chi}{\partial v} - \frac{\partial \chi}{\partial z} \right) f^e_0 = 0 \quad (12a, b)$$

$$(v \frac{z}{\partial z} - \frac{f_e}{\lambda_D} \frac{1}{\beta} \frac{\partial \chi}{\partial v} - \frac{\partial \chi}{\partial z}) f^i_0 = 0$$

and also

$$\frac{\partial}{\partial z} j^e_0 = 0$$

where

$$j^e_z = \int f^e v d \nu = n^e u^e_z.$$

If we let \(z \to \infty \), (12a) remains valid but (12b) vanishes identically. We take terms of next order in Eq. (9),
This equation is of the type
\[
\frac{\partial f_e}{\partial \phi} = A(\phi) + C
\]
and from the requirement of periodicity of \(f_1^e\) in \(\phi\):
\[
C = 0, \quad \frac{\partial f_1^e}{\partial \phi} = A(\phi).
\]
Therefore,
\[
\frac{L_1}{z} = \sigma \tau \quad \text{or} \quad L_1^z = \lambda
\]
\[
D_{z_1} f_0^e = c(f_0^e, f_0^e) + n_i^P(f_0^e)
\]
\[
\delta f_1^e = -\sigma \sin \phi D_{\xi r} f_0^e + \delta_{1c} f_1^e
\]
where the index \(c\) means constant in \(\phi\). Unless otherwise stated, \(\chi_0\) subst
for \(\chi\) in Eq. (8).
\(f_1^e\) gives an \(\eta\) flux but no \(\xi\) flux. Again we obtain
\[
\frac{\partial}{\partial z_1} j_0^{ez} = 0, \quad \frac{\partial}{\partial z_0} j_1^{ez} = 0.
\]
If we now let \(z_1 \to \infty\), Eq. (12) becomes
\[
c(f_0^e, f_0^e) + n_i^P(f_0^e) = 0.
\]
Not only is an isotropic Maxwellian distribution a solution to Eq. (14) but it is the unique solution as proved in App. B. Thus \(T_{\parallel} = T_{\perp} \). Moreover, \(T_e = T_\infty \) because the electric field is small (collisions are dominant) and heating can be neglected to zero order. Thus

\[
\lim_{z \to \infty} f_{o e} = n_{o e} f_{M} = n_{o e} \frac{e^{-v^2/2}}{(2\pi)^{3/2}}.
\]

It should be emphasized that the decomposition of Eq. (7) is valid if the average ion velocity is much smaller than that of electrons. Therefore, if the ions had acquired an average \(z \) velocity of order \((kT_e/m_e)^{1/2} \) the above conclusion would be wrong; in particular, \(u_{o e}^z = 0 \) would not follow. However, this would require an energy gain for the ions of order

\[
m_i \left[\frac{kT_e}{m_e} \right]^{1/2} \approx kT_e \mu^{-2}.
\]

There is no source of such a large energy. In the case of Bohm's criterion for ion collection, an energy gain is necessary of order

\[
m_i \left[\frac{kT_e}{m_i} \right]^{1/2} = kT_e
\]

and moreover it applies when \(T_i \ll T_e \) and \(\chi_p \) is large enough so that all electrons are repelled. Then a fraction of \(V_p' \)

\[
\frac{1}{\chi_p} V_p' = kT_e,
\]

accelerates the ions outside the sheath.

From Eq. (14) there results

\[
\lim_{z \to \infty} j_{ex} < O(1)
\]
and \(j^e_0(z = 0) < O(1) \) since \(j^e_0 \) is conserved in both \(z_0 \) and \(z_1 \) to zero order.

But on the probe all particles travel toward it; thus \(n^e_0(z = 0) < O(1) \) and also
\[\frac{n^e_1(z \to \infty)}{n^e_0(z = 0)} < O(1) \].

Now the \(z \)-momentum equation in \(z_0 \) and \(z_1 \) is

\[
0 = -\frac{\partial}{\partial z_k} n^e_0 \frac{E}{z_0} e^z + n^e_0 \frac{\partial x_0}{\partial z_k}, \quad k = 0, 1.
\]

(Because \(j^e_0 < O(1) \), the collision term does not contribute to this equation for \(k = 1 \).) Therefore if \(E^e_0 = (n^e_0)^{-1} \int f^e_o(v_z - u_0 e^0)^2 \, dv \) is order unity everywhere, \(x_0 > O(1) \); in particular it is so in the limit \(z_1 \to \infty \).

Hence \(n^e < O(1) \) in these layers and the results \(L^e_0 = \lambda_D \), \(L^e_1 = \lambda \) based on \(n^e = O(1) \) are not true (the local values for \(\lambda_D \) and \(\lambda \) have to be used but they are unknown).

The importance of \(\chi \) at these large distances from the probe follows also from the analysis of the following scale; so does the order of magnitude of \(n^e \) and \(\chi \) in the limit \(z_1 \to \infty \). This and the detailed solution of the problem will be made in the next section. Here we consider briefly the limit \(z_1 \to \infty \).

Then \(f^e_o = f^e_M n^e_0 \) and from the terms of next order in Eq. (9) there results an equation of the type

\[
\frac{\partial f^e_2}{\partial \phi} = A_2(\phi) + C_2
\]

and again \(C_2 = 0 \), \(\partial f^e_2 / \partial \phi = A_2 \).

It is found that \(j^e_2 \xi_2 \neq 0 \) and is \(O(\sigma^2 \tau) \). Also, \(j^e_1 \xi_1 \neq 0 \) and is \(O(\sigma) \).

If \(L^e_2 = \lambda R / l_e \), the continuity equation allows now a spreading such that at infinity (in this scale) \(u^e_m = 0 \) and \(n^e (= n^i) = 1 \), \(\chi = 0 \). Thus in this scale the probe perturbation can vanish at infinity.
IV. SOLUTION TO THE EQUATIONS

A. The Outer z Layer

In this section we shall be concerned with a proper solution of Eqs. (5), (9), and (10), as complete as necessary to determine the electron current to the probe to first order. (To zero order in σ, I^e vanishes.)

It was found in the last section that over distances of order $\lambda R/\ell_e$ and R, along and across B, respectively, the conditions at infinity could be satisfied. We define these "outer" variables:

$$z_2 = \frac{z \ell_e}{R \lambda}, \quad \xi_r = \frac{\xi}{R}.$$

Equations (5), (9), and (10) become

$$\mathcal{E}^2 \left[\xi_r^{-s} \frac{\partial}{\partial \xi_r} \xi_r^s \frac{\partial}{\partial \xi_r} + \sigma^2 \tau \frac{\partial}{\partial z_2^2} \right] \chi = n^e - n^i,$$

$$\frac{\partial f^e}{\partial \phi} + \sigma \cos \phi \frac{D}{\xi_r} f^e + \sigma^2 \tau D_{z_2} f^e -$$

$$-\sigma \sin \phi \left[\frac{s v}{\xi_r} + \frac{1}{v_\perp} \frac{\partial \chi}{\partial \xi_r} \right] \frac{\partial f^e}{\partial \phi} = \sigma \tau [c(f^e, f^e) +$$

$$+ n^i P(f^e) + \mu P(f^e, f^i)]$$

$$\sigma \left[v \frac{\partial}{\partial \xi_r} - \beta^{-1} \frac{\partial \chi}{\partial \xi_r} \frac{\partial}{\partial \xi_r} \right] i^i - \mu \frac{\partial f^i}{\partial \phi} - \sigma \frac{s v \eta}{\xi_r} \frac{\partial f^i}{\partial \phi},$$

$$+ \sigma^2 \tau D_{z_2} i^i = \sigma \tau [c(t^i, t^i) + c(t^i, f^e)].$$
Next, we introduce the expansion
\[f^e = f^e_0 + \delta_1 f^e_1 + \delta_2 f^e_2 + \ldots \]
\[f^i = f^i_0 + \delta_1 f^i_1 + \ldots \]
\[\chi = \chi_0 + \delta_1 \chi_1 + \ldots \]

Then we obtain from Eq. (16),
\[
\begin{align*}
\frac{\partial f^e_0}{\partial \phi} &= 0 \\
\delta_1 \frac{\partial f^e_1}{\partial \phi} + \sigma \cos \phi D_{\xi} f^e_0 &= 0 \\
& \quad c(f^e, f^i_0) + n_0 P(f^e_0) = 0
\end{align*}
\]
so that
\[
\delta_1 f^e_1 = -\sigma \sin \phi D_{\xi} f^e_0 + \delta_1 c f^e_0
\]
\[
f^e_0 = n_0 f_M = n_0 (2\pi)^{-3/2} \exp \left(-\frac{v^2}{2}\right)
\]
(see App. B).

To following order,
\[
\begin{align*}
\delta_2 \frac{\partial f^e_2}{\partial \phi} + \sigma \delta_1 \cos \phi D_{\xi} f^e_1 + \sigma \delta_1 \cos \phi \frac{\partial \chi_1}{\partial \xi} f^e_0 + \frac{\partial f^e_0}{\partial v} &
\end{align*}
\]
\[
= \sigma^2 \tau c_{L} [f^e_0, \cos \phi D_{\xi} f^e_0] + n_0 P(-\sin \phi D_{\xi} f^e_0)
\]
\[\sigma^2 \tau D \left(f_{e 2}^{e}\right) = \sigma \tau \left\{ c_{L} \left(f_{o}^{e} f_{1c}^{e} + n_{o}^{i} P(f_{o}^{e}) \right) + \delta_{1} \chi_{o} \left(\ln n_{o}^{e} - \chi_{o} \right) + \mu P\left(f_{o}^{e}, f_{1}^{e} \right) \right\} \]

\begin{equation}
(19b)
\end{equation}

c_L is the result of linearizing c\left(f_{o}^{e} + \delta_{1} f_{1}^{e} + \delta_{1} f_{1}^{e} \right). It will be seen below that f_o is Maxwellian. Then \(\mu P = O(\mu^2) \) and should be removed from the last equation [for arbitrary \(\beta \); it is known in particular that the mean free path for energy exchange is \(O(\lambda^2) \)]. Of course, \(\delta_{1} n_{1} P(f_{o}^{e}) \) vanishes. There follows

\[\delta_{1c} = \sigma, \nu \frac{\partial}{\partial z} \left(\ln n_{o}^{e} - \chi_{o} \right) = c_{L} \left(f_{o}^{e} f_{1c}^{e} + n_{o}^{i} P(f_{o}^{e}) \right) \]

\begin{equation}
(20)
\end{equation}

and \(i^{e r} \) can be obtained.

It is easy to integrate Eq. (19a) giving

\[\delta_{2} f_{2}^{e} = \delta_{2c} f_{2c}^{e} + \delta_{2} \int \frac{\partial f_{2}^{e}}{\partial \phi} \, d \phi \]

However, we shall need only \(j_{2}^{e} \); the only contribution comes from the right-hand side of Eq. (19a).

\[\delta_{2} j_{2}^{e} = \sigma^2 \tau \left(\frac{\partial}{\partial z} \right) j_{1}^{e r} + \delta_{2} \frac{\partial}{\partial s} \left[c_{L} \left(f_{o}^{e}, \sin \phi D \xi^{e} f_{o}^{e} \right) + n_{o}^{i} P (\sin \phi D \xi_{r}^{e} f_{o}^{e}) \right] \]

\begin{equation}
(21)
\end{equation}

Then from the electron continuity equation a relation between \(n_{o}^{e}, n_{o}^{i} \), and \(\chi_{o} \) is obtained,

\[\sigma^3 \tau \left(\frac{\partial}{\partial z} j_{1}^{e r} + \xi_{r}^{e} \frac{\partial}{\partial s} \xi_{r} \xi_{r}^{e} j_{2}^{e} \right) = 0 \]

\begin{equation}
(22)
\end{equation}
From Eq. (15), \(n^e_o = n^i_o \) and from Eq. (17),

\[
\sigma \left[v \frac{\partial}{\partial \xi} - \beta^{-1} \frac{\partial X}{\partial v} \right] f^i_o - \mu \frac{\partial f^i_o}{\partial \phi} = \sigma s v \frac{\partial f^i_o}{\partial \phi} - \frac{\partial f^i_o}{\partial \xi} = 0.
\]

Because of the form of \(f^e_o \), \(c(f^i_o, f^e_o) = O(\mu) \) and it should be dropped out of Eq. (19b). It is shown in App. B that the unique solution for \(f^i_o \) is then

\[
f^i_o = A \exp(-\beta^{-1} X^i_o)(2\pi)^{-3/2} \exp \left[-\frac{v^2}{2} - \frac{(v - u_x i z)^2}{2} \right]
\]

where \(A \) and \(u^i_o \) are arbitrary functions of \(z^2 \). Taking the limit \(\xi \to \infty \) with fixed \(z^2 \) gives \(A = 1, u^i_o \equiv 0 \). Thus, while \(f^e_o \) is a local Maxwellian, \(f^i_o \) is a global Maxwellian distribution and \(n^e_o = n^i_o = \exp(-\beta^{-1} X^i_o) \). If \(X^i_o \approx 0 \) in the \(\xi - z^2 \) plane, \(n^e_o \approx 1 \) and no diffusion would exist. Only in the limit \(\beta \to 0 \) is it possible to have \(X^i_o \approx 0 \) while \(n^e_o \approx 1 \).

Equation (22) involves only \(X^i_o \) after these substitutions. If boundary conditions on \(z^2 = 0 \) are known \(X^i_o = X^i_o(\xi^i_r, z^2) \) can be obtained. In general, a relation of the type \(G(X^i_o, \partial X^i_o/\partial z^2) = 0 \) is needed on \(z^2 = 0 \). It will be seen later that this relation involves \(\sigma \); and \(X^i_o \approx X^i_o(z^2 = 0, \xi^i_r < 1) \) is slightly larger than \(O(1) \) for \(X^i_o = O(1) \). However, it is neither worth while nor easy in the partial differential equation to separate terms of almost equal order. Moreover, it is not clear that \(\partial X^i_o/\partial z^2 \) is not \(O(1) \).

On the probe, \(z = 0 \), the expansion for \(f^e_o \) breaks down since all particles travel toward the probe there, and \(f^e_o \) cannot be isotropic. A boundary layer(s) will exist of the type classical in fluid mechanics where gradients are strong and the condition of perfect absorption by the probe can be satisfied. As
in fluid mechanics it is possible, however, that the "outer" problem is a complete one (except for the condition right at the body surface). To see this, consider \(\eta = 0 (\xi < 1) \). Assume that \(x_0 = O(\ln \Delta^{-1}) \) there; then \(n^e_0 = O(\Delta) \), with \(\Delta \) unknown yet. This results in \(\delta_{1c} i^e_1 / i^e_0 = O(\sigma/\Delta) \). Thus, \(\sigma/\Delta < O(1) \) is a condition for our expansion; since \(\Delta \) will be found to decrease with \(\chi \), there is a maximum value of probe potential for which our procedure is valid. The results \(n^e_0 = n^i_0 \) and \(n^i_0 = \exp(-\beta^{-1} \chi) \) are still correct.

Assuming \(\sigma/\Delta < O(1) \) we consider the limit \(\xi = 1 \). While over "most" (asymptotically) of the probe the characteristic length of \(\xi \) gradients should be \(R \), it is possible that at \(\xi = 1 \) much larger gradients are needed. Far from the probe, where \(n^e_0 = O(1) \), this is not the case, but where \(n^e_0 = O(\Delta) \) (at small \(z_2 \) and \(\xi < 1 \)), \(j^e_2 = O(\xi^2 \Delta^2) \) while for \(\xi > 1 \), \(j^e_2 = O(\sigma^2 \tau) \). The first term of Eq. (22) has to produce this change. Since \(j^e_2 = O(\sigma) \) there results

\[
\frac{\sigma^2 \tau}{\sigma^2 \tau \Delta^2 / \delta} = \sigma / \delta
\]

or \(\Delta = \delta \), where \(\delta = L^\xi / R \); \(\sigma / \delta = L^e / L^\xi \), and \(L^\xi \ll R \) is the characteristic length over which this fast change across \(B \) exists. \(\delta_{1c} i^e_1 / i^e_0 = O(\sigma/\Delta) \) and \(\sigma/\Delta < O(1) \) is again the condition for the validity of our expansion. However, only a \(\Delta \) fraction of the probe area is subject to this large gradient and sensibly an error \(O(\sigma) \) is produced in this case.

The result for \(i^i_0 \) is still unmodified. As for Poisson's equation, the left-hand side is now \(O(\xi^2 \Delta^{-2}) \), and since the right-hand side is \(O(\Delta) \) the error of quasineutrality is \(O(\xi^2 / \Delta^3) \). If \(\Delta \) is small enough so that
\[\mathcal{E}^2/\Delta^3 = O(1), \] we should use instead of \(n_e^i = n_o \),

\[\mathcal{E}^2 \xi^a \frac{\partial}{\partial \xi} \cdot \xi^s \frac{\partial}{\partial \xi} \chi_o = n_e^i - \exp(-\beta^{-1} \chi_o) \quad . \quad (24) \]

This equation, together with Eq. (20), determines both \(\chi_o \) and \(n_e^i \). Some problem in finding boundary conditions for both could exist then, but this only over a region on the boundary of order \(\mathcal{E}^{2/3} \) that for elliptic equations seems only important to \(O(\mathcal{E}^{2/3}) \). In the numerical results presented in Sec. V, \(\mathcal{E}^2/\Delta^3 < O(1) \) will be assumed.

As soon as we find the relation \(G[\chi_o, (\partial \chi_o/\partial z_2)] = 0 \) on the line \(z_2 = 0 \), we have results for \(\chi_o \), \(n_e^o \), and \(n_i^o \) on the whole \(\xi - z_2 \) space valid if \(\sigma/\Delta \) and \(\mathcal{E}^2/\Delta^3 \) [or \(\mathcal{E}^{2/3} \) in case \(\Delta^3 = O(\mathcal{E}^2) \)] \(O(1) \). However, we have yet to determine which is the order of the terms neglected when writing \(j_{ez} \approx j_{1z}^e \), \(j_{e\xi} \approx j_{2\xi}^e \).

If the terms of next order are taken in Eq. (16) it is possible to find that the order of both \(\delta_j^e j_{ez}/\delta_j^e j_{1z}^e \), \(\delta_j^e j_{e\xi}/\delta_j^e j_{2\xi}^e \) is the lowest of \(\sigma/\Delta \), \(\delta_1^i/\Delta \), and \(\delta_1^X \). \(\delta_1^i/\Delta \) can be seen to be \(O(\mathcal{E}^2/\Delta^3) \) from Poisson's equation if quasineutrality is taken; in case Eq. (24) is adopted, it is of higher order. Thus, we come back to the same critical inequalities to be satisfied in our theory. As for \(\delta_1^X \), analysis of Eq. (15) seems to rule out the possibility of its being larger than both \(\sigma/\Delta \) and \(\mathcal{E}^2/\Delta^3 \).

It can be seen that collisions are local in the whole \(\xi - z_2 \) plane; hence, a collision operator other than F-P or B-L needs to be considered only if \(\ell_e < \lambda_D \); that operator, which includes \(B \), is already known. (Where \(n_e^o = O(\Delta) \) and at \(\xi = 1 \), \(\lambda_D/\Delta^{1/2} < \Lambda^{\ell} = R \Delta \) if \(\mathcal{E}^2 \approx \Delta^3 \);

but even if \(\mathcal{E}^2 \approx \Delta^3 \) collisions are local because \(\ell_e < L^{\ell} \) and \(\sim \) restricts to \(\ell_e \) the impact parameter transverse to it.)
Then both $j^{e_z}_1$ and $j^{e_x}_2$ can be found from Eqs. (20) and (21):

$$\frac{\beta + 1}{\beta} \frac{\partial \chi_o}{\partial z_2} \frac{\partial f}{\partial v_z} = c \int (f M, f e_c) + P(f e_c)$$

$$j^{e_x}_2 = \frac{\beta + 1}{\beta} \exp \left(\frac{-2 \chi_o}{\beta} \right) \frac{\partial \chi_o}{\partial \xi_r} \int d \tau \eta \frac{\partial f}{\partial \eta}$$

The term $c \int (f M, \partial f / \partial \eta)$ does not contribute to $j^{e_x}_2$ since the electrons do not gain average momentum from themselves (collisions are local). There result, in the present non-dimensional form,

$$j^{e_z}_1 = \frac{\gamma(Z_i)}{Z_i} \frac{\beta + 1}{\beta} \frac{2^{7/2}}{\pi^{1/2}} \frac{\ln \Lambda}{\ln \Lambda} \frac{\partial \chi_o}{\partial z_2}$$

$$j^{e_x}_2 = \frac{\gamma(Z_i)}{Z_i} \frac{\beta + 1}{\beta} \frac{2^{3/2}}{3 \pi^{1/2}} \frac{\ln \Lambda}{\ln \Lambda} \exp \left(\frac{-2 \chi_o}{\beta} \right) \frac{\partial \chi_o}{\partial \xi_r}$$

γ is the factor given by Spitzer to correct the Lorentz conductivity; $\ln \Lambda$ is spatially dependent since n^e_o is. When $\ell_e < \lambda_D$ no results are known to the author for $j^{e_z}_1$ (dc conductivity along B when B enters the collision process), although results exist for $j^{e_x}_1$ for $\ell_e \ll \lambda_D$. Even if $\lambda_D < \ell_e$, the above simple expression for $\ln \Lambda$ may not be correct since the local Debye length and not λ_D should be compared.

In what follows we shall assume an average value $\langle \ln \Lambda \rangle$. This is basically because of the imperfect knowledge of transport coefficients in the presence of a strong magnetic field (some review is made in I). Also, the dominant effect is the exponential term in Eq. (25b) while the variation due to $\ln \Lambda$ can be negligible for large enough $\ln \Lambda$. Finally, the results will be seen below not to depend on $\langle \ln \Lambda \rangle$.
Using Eqs. (25a) and (25b) in Eq. (22) and defining

$$\psi = \frac{2\chi_0}{\beta}, \quad y = z \frac{Z_1}{(12\gamma)^{1/2}} \frac{(\ln \Lambda)}{\ln \Lambda_\infty}, \quad x = \xi$$

we obtain finally

$$\frac{\partial^2 \psi}{\partial y^2} + \frac{1}{x} \frac{\partial \psi}{\partial x} \xi^2 \frac{\partial \psi}{\partial y} \psi = 0$$

(26)

$$\sigma j^e_x = \sigma(\beta + 1) \left(\frac{3\gamma}{3\pi} \right) \frac{\partial \psi}{\partial y}.$$

(27)

This elliptic equation for \(\psi\) should be solved on the half-space \(y \geq 0\) with

the boundary conditions

$$\psi = 0 \quad \text{at infinity}$$

$$G(\psi, \frac{\partial \psi}{\partial y}) = 0 \quad \text{at } y = 0,$$

(28)

this last relation being yet unknown.

Before going to the analysis of the inner layers, some comments should be made. An important result is that the electric field is non-negligible very far from the probe; in fact, \(\chi\) is not \(O(\chi_p)\) and the field is not restricted to distances \(O(\lambda_D)\) from the probe. Only in the case \(\beta \to 0\) is \(\chi\) small in this "outer" space.

Near the probe, \(\chi\) has to decay to negative values or positive values of order unity; the large potential hill resulting will simplify the obtainment of a correct solution. However, strong restrictions are imposed by the large penetration of the potential. First, the plasma cannot be shorter (along \(B\)) than \(\lambda R/\lambda_e\), otherwise the probe will have catastrophic effects.
on the plasma. Fluctuations will set in and a steady state seems not possible; anomalous transport processes will appear. Second, even if the plasma is long enough, macroscopic variations should be very weak; otherwise the measurement would be non-local and the probe would interfere with the whole plasma.

If any of these conditions are violated it seems improbable that probes are of any use. Results would not be universal but would depend on the particular plasma, and spatial resolution could not be obtained. Thus, use of probes with strong magnetic field is strongly restricted. On the other hand, if these conditions are met, the present theory is a correct one in an asymptotic sense and results can easily be accurate to 10%. If poorer accuracy is not rejected the theory should be useful even if the above conditions are not quite satisfied. Moreover, in Sec. VI it will appear that results can be used for weaker fields down to the limit $B \to 0$; then the restrictions are weak too. Finally, a comparison could be made with the case $B = 0$ as far as the perturbation of the plasma is considered. In the case of the disc (the strip cannot be used) the current density, which is a measure of the perturbations, is $O(\sigma)$ at distances $O(\lambda R / \ell_e)$; in the case $B = 0$ for a cylinder which is frequently used, the current density is $O(\sigma \tau)$ at such distances. Thus, if $\tau = O(1)$ the comparison is not bad; moreover, at smaller and larger distances the cylinder disturbs more of the plasma, and transversely to B the perturbation of our case decays as ξ^{-2} over distances of order of R.
B. The Inner z Layers

To satisfy the condition on the probe an inner variable is defined $z \equiv z/L_1^z$ such that the term $D_{z_1} f^e$ is now comparable to the collision term.

Next we introduce the expansions

$$ f^e = \Delta [g^e + \delta^*_{1} g_1^e + \ldots] $$

$$ \chi = \ln \Delta^{-1} \beta + \chi_0^* + \delta^*_{1} \chi_1^* + \ldots $$

so that

$$ \frac{\partial g_0^e}{\partial \phi} = 0 $$

$$ \delta^*_{1} \frac{\partial g_1^e}{\partial \phi} + \Delta^{-1} \sigma \cos \phi \frac{\partial}{\partial \xi_r} \Delta g_0^e = 0 \quad (29) $$

$$ f \frac{\partial}{\partial z_1^e} D_{z_1^e} g_0^e = \sigma \tau [\Delta c(g_0^e, g_0^e) + n_0^e P(g_0^e)] \quad (30) $$

Hence $L_1^z \equiv \lambda \Delta^{-1}$; Poisson's equation still reduces to the quasineutrality condition since $\Delta^{-1} \sigma = O(R)$. As for f_i^1, our former result remains obviously valid if $\Delta^{-1} \sigma > O(R)$; we shall comment later on the other case.

Here $\Delta = \lim_{z_2 \to 0} n_0^e(z_2)$ as obtained from the analysis of the z_2 layer and thus depends on ξ_r. (We are presently concerned only with the range $\xi_r < 1$.)

From Eq. (30) we obtain sensibly $n_0^e \sim e^{-\chi_0^*}$; this behavior is incompatible with the knowledge we have that as $z_1 \to \infty$, $n_0^e \sim e^{-\chi_0^* / \beta}$ as the matching with the z_2 layer would require. The only possibility is that
\(\chi_0 \equiv 0 \) so that in the inner region \(\chi = \ln \Delta^{-\beta} + \delta_1^{X^*} \chi_1^* + \ldots \). This result shows that the flattened part of the potential around the hill covers the \(z_1 \) layer, which basically will produce only a change in \(f^e \) as a function of \(v \).

There has to be a new layer where a fast decay of \(\chi \) to its value on the probe will occur. Gradients along \(B \) will become large and electrons will experience free-streaming motion toward the probe. Before studying this region we shall take the limit \(z \rightarrow 0 \) in our solution in the outer space, to obtain the matching condition at \(z \rightarrow \infty \); by rewriting it first in inner variables,

\[
\chi = \chi_0 \left(\frac{\sigma}{\Delta} z_1 \right) + \delta_1^{X^*} \chi_1(\sigma/\Delta z_1) + \ldots
\]

\[
= \chi_0(0) + \frac{\sigma}{\Delta} \frac{\partial \chi_0}{\partial z_2} \bigg|_{z_2=0} z_1 + \delta_1^{X^*} \chi_1(0) + \ldots
\]

\[
= \ln \Delta^{-\beta} + \frac{\sigma}{\Delta} q z_1 + \delta_1^{X^*} \chi_1(0) + \ldots
\]

(31)

where \(q(\xi) = \frac{\partial \chi_0}{\partial z_2} \Big|_{z_2=0} \). Also

\[
f^e = \Delta f_M - \sigma q \left\{ \frac{z_1}{\beta} f_M - \frac{\beta + 1}{\beta} c^{-1} \frac{\partial f_M}{\partial v_z} \right\} + \sigma(\beta+1) \frac{\partial A}{\partial \xi_r} \frac{\partial f_M}{\partial v_\eta} + \ldots
\]

(32)

where \(c^{-1} \) is such that

\[
c_L(\xi_M, c^{-1} \frac{\partial f_M}{\partial v_z}) + P(c^{-1} \frac{\partial f_M}{\partial v_z}) = \frac{\partial f_M}{\partial v_z}.
\]

In the \(z_0 \) region,

\[
f^e = \Delta \left[g^e_0 + \delta_1 g_1^e + \ldots \right]
\]
and there results

\[
D_{z_0} \tilde{g}_o^c = 0
\]
(33)

\[
\tilde{\delta}_1 \tilde{g}_1 = -\Delta^{-1} \sigma \sin \phi \; \tilde{D}_\xi \tilde{g}_o \Delta + \tilde{\delta}_{lc} \tilde{g}_{lc}
\]

\[
\frac{\ell}{L_0^*} \left\{ \tilde{\delta}_{lc} \frac{\partial}{\partial z} \tilde{g}_{lc} + \tilde{\delta} \frac{\partial}{\partial z} \frac{\partial \tilde{g}_o}{\partial z} \right\} = \tilde{\Delta} \sigma \tau [c(\tilde{g}_o^e, \tilde{g}_o^e) + n_o^i/\Delta P(\tilde{g}_o^e)]
\]

\[n_o^i\] should be much larger than \(\tilde{\Delta}\) so that \(\tilde{\delta}_{lc} = O(L_0^* n_o^i/\lambda)\).

The solution for \(\tilde{g}_o^e\) is

\[
\tilde{g}_o^e = g(v_z^2 - 2\tilde{\chi}_o) \; h(z^{1/2} [\chi_o - \chi_p]^{1/2} - v_z)
\]

(34)

where \(g\) is an arbitrary function and

\[
h(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}
\]

Because \(dh/dx = \delta(x)\) (Dirac's delta function) and \(x\delta(x) = 0\), (34) satisfies identically Eq. (33) and the condition of perfect absorption on the probe, too.

We rewrite

\[
g(v_z^2 - 2\tilde{\chi}_o) = e^{\tilde{\chi}_o} f_M g(v_z^2 - 2\tilde{\chi}_o, v_1^2)
\]

to put in evidence some expected exponential behavior in \(g\); \(\tilde{g}\) is again arbitrary.

Equations (29) and (30) in \(z_1\) should be solved now; the equation for \(g_o^e\) is nonlinear but we need not really solve it. It is enough to observe that the
z flux does not change in \(z_0 \) and \(z_1 \); the current at \(z_0 = 0 \) should then be made equal to the current at \(z_2 = 0 \). This will be the condition (28).

It is necessary, however, to determine \(\Delta \) and \(\tilde{g} \) first. It should be noted that because of the large overshooting of \(\chi \), the discontinuity in the distribution function has moved to the positive high-velocity tail in \(v \) in the limit \(z_0 \to \infty \); \(\tilde{g}_0(z_1 \to \infty) \) is even in \(v \) to zero order. Also \(\delta \chi^* < O(1) \)

and we would have in \(z_1 \), splitting Eq. (30):

\[
\begin{align*}
\gamma_{z_1} \frac{\partial g_0^e}{\partial z_1} &= c(g_0^e, g_0^e) + P(g_0^e) \\
\delta_{z_1} \frac{\partial g_0^e}{\partial z_1} + \delta_{z_1}^* \frac{\partial g_0^e}{\partial v} &= \delta_{z_1}^* \left[c_L^e (g_0^e, g_1^e) + P_L^e \right] + \frac{n_1}{\Delta} P(g_0^e),
\end{align*}
\]

\(g_{z_1}^e \) being even in \(v \).

The equation for \(g_{z_1}^e \) is parabolic with \(z_1 \) acting as a time-like variable. Hence, if \(g_{z_1}^e(z_1 = 0, v) \) is given, \(g_{z_1}^e \) is automatically obtained in \(z_1 \). The matching condition at \(z_1 \to 0 \) gives not only \(g_{z_1}^e(z_1 = 0) \) but the behavior as \(z_1 \to 0 \), in \(z_1 \). However, it is easily found that the limiting form of \(f^e \) as \(z_0 \to \infty \) satisfies Eqs. (29) and (30), as should be expected if the proper selection of layers has been made. Therefore only the function \(g_{z_1}^e(z_1 = 0, v) \) is given really as independent data; i.e., \(\tilde{\Delta} \) and the function \(\tilde{g} \).

The point now is that because of the singular character of \(g_{z_1}^e(z_1 = 0) \), that is, because of the \(h \) function, the splitting (35)-(36) cannot be made in the whole range of \(v \) for the whole \(z_1 \) layer. Around the discontinuity in
the second term in the left-hand side of Eq. (30) is of the order of the first one and not small. Strong nonlinear effects are produced in this region by the collision term. The diffusion in velocity space that collisions produce does not allow the cut to persist, and a progressive smoothing will occur. In the limit \(z_1 \to -\infty \), therefore, that splitting will be valid.

The form for \(f^e \) as \(z_1 \to -\infty \) given by (32) has to come out automatically and is not a boundary condition. It can be observed immediately that if\(g_0^e = f_M \), (35) is satisfied. From Eq. (31), as \(z_1 \to -\infty \),

\[
\delta^* \frac{\partial X_1^*}{\partial z_1} \approx \frac{\sigma}{\Delta} q
\]

and

\[
\delta^*_{lc} \frac{\partial}{\partial z_1} = \left(-\frac{q f_M}{\beta} z_1 + \frac{\beta + 1}{\beta} q c^{-1} \frac{\partial f_M}{\partial v_z} \right) \frac{\sigma}{\Delta}
\]

is seen to satisfy (36). Therefore (32) is a solution of (29)-(30) in the limit \(z_1 \to -\infty \). This only means, of course, that no layer exists between \(z_1 \) and \(z_2 \).

There are other possible forms for \(\delta^*_{lc} g_{lc}^e \) as \(z_1 \to -\infty \); in particular,

\[
\delta^*_{lc} g_{lc}^e = q f_M z_1 \frac{\sigma}{\Delta} = (\delta^* X_1^* \left(\frac{\partial X_1^*}{\partial z_1} \right) \int dz_1) f_M
\]

\[
\delta^*_{lc} g_{lc}^e = \frac{\sigma}{\Delta} q c^{-1} \frac{\partial f_M}{\partial v_z}
\]

(The first one valid for an arbitrary \(X_1^* \).) However, it can be shown that these limiting forms are ruled out by Eq. (30) itself. Define

\[
H = \int (g_0^e \ln g_0^e) v_z dv
\]

There results...
\[\frac{dH}{dz_1} = \int \left(\ln g^e_o + 1 \right) \left[c(g^e_o, g^e_o) + P(g^e_o) \right] dv \leq 0. \] (39)

The inequality follows from the usual H-theorem for all known C's. \(\frac{dH}{dz_1} \) cannot vanish since from (30), too,

\[\frac{\partial}{\partial z_1} \int g^e_o v_z dv = 0, \]

and because \(\int g^e_o v_z dv = \text{constant} \neq 0 \) at \(z_1 = 0 \) the square bracket in (39) can never vanish. Thus, as \(z_1 \rightarrow \infty \), \(g^e_{1c} \) has to depend on \(z_1 \) and to have a non-zero \(z \) flux, which rules out both (37) and (38).

Of course, one still has \(\tilde{g} \) as an arbitrary datum chosen such that as \(z_1 \rightarrow \infty \) the desired behavior for \(f^e \) is obtained. Our problem is to find \(\tilde{g} \); in the end, to show that \(\tilde{g} \equiv 1 \). It seems that the difficulty is not to find a proper, unique \(\tilde{g} \) but that for any \(\tilde{g} \), collisions will have made \(f^e \) Maxwellian to zero order in the limit \(z_1 \rightarrow \infty \) and (32) can follow. To clarify and escape this difficulty, consider \(f^e \) given in (32) at \(z_1 \rightarrow \infty \).

We are going to use the overshooting in \(\chi \) now, i.e., we shall take advantage of \(\chi_p \ll \ln \Delta^{-\beta} \) or, better, \(e^{\chi_p} \ll \Delta^{-\beta} \). From the value for \(\Delta \) obtained below it can be seen that the condition \(e^{\chi_p} \approx \Delta^{-\beta} \) is the same as \(\sigma \approx \Delta \) and our former restriction \(\sigma/\Delta < O(1) \) comes back again.

In the limit of an infinite overshooting \(\chi_p - \ln \Delta^{-\beta} \rightarrow -\infty \), the condition at \(z_1 = 0 \) is one of perfect reflection. From the argument in App. B, there follows that \(g^e_o = \Delta f_M \) everywhere [since \(\delta\chi^*_1 < O(l) \)]; of course, \(q = 0 \) then. From continuity of the solution on the boundary conditions it is expected that for large but finite \(\chi_p - \ln \Delta^{-\beta} \) the change in boundary
condition at \(z_1 = 0 \) will affect to zero order only the positive \(v_z \) tail of the distribution function. Hence, it is possible to obtain immediately that

\[
\tilde{g} \equiv 1, \quad \Delta \Delta^{-\beta} = \Delta.
\]

The current arriving into the probe is

\[
j^{\text{ez}} \approx \Delta^{\beta+1} e^{\chi_p} \int_M h(-v_z) v_z \, dv
\]

\[
= -\Delta^{\beta+1} e^{\chi_p} (2\pi)^{-1/2}.
\]

Since \(\Delta = \lim_{z \to 0} e^{\chi_p} \) we obtain for \(\xi_r < 1 \), from the equality of (27) and (40),

\[
a e^{-b\psi} = -\frac{\delta \psi}{\delta y} \quad \text{at} \quad z_2 = 0, \quad \xi_r < 1
\]

where \(b = (\beta + 1)/2, a = [\sigma (\beta + 1) e^{-\chi_p}]^{-1} (3/16\gamma)^{1/2} \). Equation (41a) can be written

\[
\chi_0 + \frac{\beta}{\beta + 1} \ln \left(-\frac{\partial \chi_0}{\partial y} \right) = \frac{\beta}{\beta + 1} \chi_p + \ln \sigma^{-\beta/\beta+1}
\]

\[
- \ln \left[\frac{\beta+1}{\beta} \left(\frac{64\gamma}{3} \right)^{1/2} \beta/\beta+1 \right] \quad \text{at} \quad z_2 = 0
\]

which shows that \(\chi_0 \) in \(z_2 \) is not \(O(\chi_p) \) but \(O(\ln \sigma^{-\beta/\beta+1}) \). Also, the condition \(\sigma/\Delta < O(1) \) becomes

\[
\sigma/\beta+1 \quad e^{\chi_p/\beta+1} A^{-1/\beta+1} < O(1)
\]

where \(A = -\langle \delta \psi/\delta y \rangle (\beta + 1) (16\gamma/3)^{1/2} \). Because as \(\Delta \) decreases \(A \) can become appreciably larger than unity, results should be accurate right up to \(\chi_p = \ln \sigma^{-\beta} \).
In the range $\xi_r > 1$, the condition at $z_1 = 0$ is one of perfect reflection and the condition (28) results in

$$\frac{\partial \psi}{\partial y} = 0 \quad \text{at} \quad z_2 = 0, \quad \xi_r > 1. \quad (41b)$$

In I the density at $z_1 \rightarrow 0$ was matched to its value at $z_1 \rightarrow \infty$; because of this improper matching (the density is not conserved in z_1 to zero and first orders) an additional factor appeared in (41a) which limited more the valid range of χ_p and produced some anomalies in the probe characteristic (see Sec. V-A).

Some comments should be made now. First, it is obvious why the shape of the probe along B has no sensible influence on the current as pointed out by Bohm.\(^{16}\) If its dimension along B is, say, $O(R)$, the probe lies entirely in the $z_2 = 0$ plane; only its cross section appears in the formulation. This would not be the case if the probe were not perfectly absorbing.

Second, in the inner layers the problem is one-dimensional and Poisson's equation is unimportant, as suggested by Spivak\(^{12}\) for the whole problem.

Third, both the decrease and the blurring in the I-V diagram become clear. Because of the inhibition of transverse electron flux, any electron current is maintained over long distances along the field. Since the ions are motionless to $O(\mu)$ with respect to the electrons, any sensible flux would experience a friction over such a long distance that only a small electron current is possible.

Moreover, Poisson's equation imposes quasineutrality thus far from the probe; because ions are not inhibited in flowing across the field, only
a large electric potential can produce large differences in ion density, i.e., in electron density. Hence, an overshooting is built up inside the "shadow."

The decay far from the probe of this potential hill draws the electron current.

As \(\chi_p \to -\infty \), \(I^e \to 0 \) and the hill disappears; thus \(\Delta \to 1 \) and if \(\tau = O(1) \) the result used for \(f^i_0 \) is not valid in \(z_1 \). But then the whole \(z_1 \) layer collapses. At \(\chi_p = 0 \) no kink in the \(I-V_p \) diagram should be expected because for the inner layers the effective plasma potential is given by the overshooting. As \(\chi_p \) increases this will disappear, as shown in Sec. V, and the present theory breaks down.

Finally, although difficult of proof without a much more detailed analysis, it seems that the error involved in stating the equality of total current to the probe to that reaching the plane \(z_2 = 0 \) is \(O(\sigma) \). Also, when \(\Delta < O(1) \), the ion current is expected to decrease from its value for \(B = 0 \) at the same \(\chi_p \).

V. THE PROBE CHARACTERISTIC

A. Analysis of the I-V_p Diagram

We proceed now to discuss the determination of essential parts of the I-V_p diagram. From now on, whenever the ion current, \(I^i \), is taken into account, a cylindrical or spherical probe will be assumed; also \(l_i > R \).

The floating potential, \(\chi_p = \chi_f \), where \(I \) vanishes, is the most accessible result from experiments; moreover, the plasma is disturbed the least. Therefore an accurate theoretical determination of \(\chi_f \) is important. Since the plasma potential is unknown, a check between both
results relates the plasma potential to the other unknowns of our problem.

To find χ_f we write

$$I^e(\chi_f) = I^i(\chi_f)$$

For large, negative χ_p, the effect of B on both I^e and I^i becomes small.

We shall find then that there is a small change in I^e for large $|\chi_f|$ from the value for $B = 0$; and a much smaller change in I^i, for which we can then use results by other authors for $B = 0$. The change in χ_f is small but non-negligible.

Let us consider first I^e. If in Eq. (41a) we let $\chi_p \to -\infty$, there results

$$\psi(x < 1, 0) \to 0.$$ We can expand $\psi = \psi_0 + \psi_1 + \ldots$ and obtain linear equations for $\psi_j, j = 0, 1, \ldots$. For ψ_0 we get

$$\frac{\partial^2 \psi_0}{\partial y^2} + \frac{x^{-s}}{x} \frac{\partial}{\partial x} x^s \frac{\partial \psi_0}{\partial x} = 0$$

with the boundary conditions

$$\psi_0 = 0 \quad \text{at infinity}$$

$$\frac{\partial \psi_0}{\partial y} = 0 \quad \text{at } y = 0, x > 1$$

$$\frac{\partial \psi_0}{\partial y} = -a \quad \text{at } y = 0, x < 1.$$

As soon as we know $\psi_0(x < 1, y = 0)$ we obtain from the left-hand side of Eq. (41a),

$$I^e \approx 2e N_\infty \left(\frac{kT_\infty}{m_e} \right)^{1/2} R^2 2\pi \exp \chi_p \exp \frac{\chi_p}{(2\pi)^{1/2}} \int_0^1 x \, dx \left(1 - \frac{\beta + 1}{2} \psi_0 \right).$$
It is obvious that the two-dimensional problem is not well posed since Laplace's equation has a logarithmic divergence at infinity. From now on we shall take $s = 1$.

To solve for ψ_0, we use an integral transform approach; we obtain

$$\psi_0(x, y) = \int_0^\infty \tilde{\psi}(q) \, e^{-qy} J_0(xq) \, dq.$$

The conditions at $y = 0$ give

$$\int_0^\infty \tilde{\psi}(q) \, q \, J_0(xq) \, dq = \begin{cases} a & x < 1 \\ 0 & x > 1 \end{cases}.$$

By inverting the Hankel transform,

$$\tilde{\psi}(q) = a \, q^{-1} J_1(q)$$

and

$$a^{-1} \psi_0(x, y) = \frac{2x^{1/2}}{\pi k} E(k) + \frac{(1-x^2)kK(k)}{2\pi x^{1/2}} + \frac{y \Lambda_0(\beta, \alpha)}{2} - y \quad x < 1$$

$$= \frac{2E(k)}{\pi k} - y/2 \quad x = 1$$

$$= \frac{2x^{1/2}}{\pi k} E(k) + \frac{(1-x^2)kK(k)}{2\pi x^{1/2}} - \frac{y \Lambda_0(\beta, \alpha)}{2} \quad x > 1$$

$$k = \sin \alpha = \frac{2x^{1/2}}{[y^2 + (x+1)^2]^{1/2}} \quad \sin \beta = \frac{y[y^2 + (1-x)^2]^{-1/2}}{2\pi x^{1/2}}$$

and K, E, and Λ_0 are the complete and Heuman's elliptic integrals.

For $y = 0, x < 1$, $\psi_0 = 2\pi^{-1} a E(x)$ and thus

$$I^e = e \, N_\infty \left(\frac{kT_\infty}{m_e} \right)^{1/2} 2\pi R^2 \frac{e^{\frac{X_p}{2}}}{(2\pi)^{1/2} \, e^{(3\gamma)^{1/2} \, \pi \, \sigma}} \left[1 - \frac{X_p}{(3\gamma)^{1/2} \, \pi \, \sigma} \right]. \quad (42)$$
Let us now consider I^i. The point to be made is that if $\mathcal{E} < O(1)$ and χ_p is negative enough the ion current is somehow insensitive to certain modifications. Assume first $\tau < O(1)$. We refer the reader to Figs. 20, 21, 27b, and 39 in Ref. 5. It can be inferred that (if roughly $\mathcal{E} < 0.1$ and $\chi_p < -3.5$) for changes of order unity in χ_p (and even in the form of I^i at infinity), $\Delta I^i/I^i = O(10^{-1})$; for changes in the geometry of the probe, again I^i is modified only slightly and it does not change at all by assuming perfectly repelled electrons ($n^e = e^\chi$).

At $\chi_p \approx \chi_f$ we found a small correction for I^e with respect to the value for $B = 0$. The correction is connected with a small overshooting of χ (amounting to a decrease in χ_p) and a distortion on the spherical symmetry (amounting to a change in shape of the probe). Also, n^e will not have the same spatial dependence as for $B = 0$; but $n^e \approx e^\chi$. Therefore, all these small effects will produce higher-order modifications in I^i as deduced from the considerations of the preceding paragraph. We can use the results for I^i from Ref. 5.

In the case $\tau = O(1)$, the information from Ref. 9 is very incomplete. However, in Fig. 11 of Ref. 9 it can be seen that under the same conditions for \mathcal{E} and χ_p, $dI^i/d\chi_p$ is very small. Although it is not so clear for the effect of geometrical distortion, it is quite probable that again assuming $n^e = e^\chi$ will not modify I^i. Thus the results for the case $B = 0$ can be used for I^i. Those from Ref. 9 are not complete and are quantitatively valid only for weakly ionized gases.
It should be pointed out that as β decreases the above statements on I_i become less true. Thus, the conditions on $\beta, \tau,$ and $\mathcal{E},$ already taken advantage of in Sec. IV, have also this motivation of allowing the use of results for I_i obtained with $B = 0.$

A second feature of the characteristic which is immediately obtained experimentally is the slope at zero current. Again we can use for dI_i/dV_p the values for $B = 0.$ In fact, $d^2 \ln I_i/d\chi_p^2 \ll d \ln I_i/d\chi_p$ and the approximation is still better. As for $dI^e/dV_p,$ we obtain it from Eq. (42).

For $\chi_p \leq -\chi_f$ all the arguments about I_i given above remain valid. We have both components of the current for χ_p up to $-\infty.$ In particular, the behavior of I as $\chi_p \to -\infty$ can be taken from the limit $B \to 0.$

When $\chi_p \sim -3,$ I_i decreases rapidly and the decrease depends strongly on the particular conditions. However, I^e increases then, making the ratio I^e/I_i large. To solve for $I^e,$ numerical computations are necessary, but a certain amount of information can be obtained analytically.

Let us assume that the boundary condition for $x < 1,$ $y = 0$ were $\psi = \alpha$ where α is a given constant. $\partial \psi(x < 1, y = 0)/\partial y$ would depend on α and on $x.$ We can talk, however, in some average sense and neglect the x dependence. Of course what follows has only an approximate, but meaningful, value. Then for the current electron density on the probe we have

$$j^e = \frac{e\chi_p e^{-b\alpha}}{(2\pi)^{1/2}} = \sigma^* b\Phi(\alpha) \tag{43}$$
where $\sigma^* = (32\gamma/3\pi)^{1/2}$ and $\Phi(\alpha) = -\partial \psi/\partial y$ at $x < 1, y = 0$. $\Phi(\alpha)$ depends only on the differential equation for ψ; if this were linear $\Phi(\alpha) = E\alpha$ with E a constant. For small α this is certainly true. For all α, $d\Phi/d\alpha > 0$.

We obtain next an implicit equation for j^e:

$$j^e = \alpha^* \Phi \left(\frac{\chi_p - \ln j^e - \ln(2\pi)^{1/2}}{b} \right) .$$

For $\chi_p \to -\infty$, Φ is linear; thus

$$j^e = \alpha^* E[\chi_p - \ln j^e - \ln(2\pi)^{1/2}] .$$

The dependence on b disappears and for $|\chi_p|$ large enough, $j^e \to \chi_p/(2\pi)^{1/2}$.

If Φ were linear for all α it would come out for $\chi_p \to +\infty$,

$$j^e + \alpha^* E \ln j^e = \alpha^* E\chi_p + ct \quad (44)$$

or

$$j^e = \alpha^* E (\chi_p - \ln \chi_p) ,$$

with $\alpha^* E = O(\sigma)$ as a limiting slope. However, we can show that this result is not valid. In effect,

$$\chi_p \sim e^{b\alpha \Phi(\alpha)}$$

so that $d\alpha/d\chi_p > 0$. Then $d\Phi/d\chi_p > 0$ or

$$\frac{d}{d\chi_p} (\chi_p - b\alpha) > 0 .$$
i.e.,

\[
\frac{d\chi^*_p}{d\chi_p} < \frac{\beta}{\beta + 1} < 1
\]

where \(\chi^*_p = \chi(x < 1, y = 0) \) and represents the overshooting. Hence, the overshooting tends to disappear or, what is the same, \(\Delta \to O(\sigma) \) and the formulation of the last section breaks down. Because of the exponential character of the left-hand side of Eq. (43),

\[
\frac{d\chi^*_p}{d\chi_p} \approx \frac{\beta}{\beta + 1}
\]

and for \(\beta \to \infty \) (cold electrons or formal limit \(Z_1 \to 0 \)) the overshooting persists. For small \(\beta \) it does not change; we saw it was negligible.

Therefore the limit \(\chi_p \to \infty \) for fixed \(\sigma \) cannot be studied with the present formulation.

Moreover, it seems that \(d\Phi/d\alpha \) should decay as \(\alpha \) grows because of the exponential factor in the second term of Eq. (26). The slope \(dj^e/d\chi_p \) would fall fast as \(\chi_p \) grows and it is possible that a zero slope is practically reached before the overshooting has disappeared; \(j^e \) will depend now on \(b \) and \(dj^e/db > 0 \). We give below the dependence of \(j^e \) on \(\sigma^*, \chi_p^*, \) and \(b^* \):

\[
\frac{\partial j^e}{\partial \sigma^*} = \frac{j^e}{j^e + \frac{d\Phi}{d\alpha} \sigma^*} \frac{j^e}{\sigma^*} > 0 \quad (45a)
\]

\[
\frac{\partial j^e}{\partial \chi_p^*} = \frac{j^e}{j^e + \frac{d\Phi}{d\alpha} \sigma^*} \frac{d\Phi}{d\alpha} \sigma^* > 0 \quad (45b)
\]

\[
\frac{\partial j^e}{\partial b} = \frac{j^e}{j^e + \frac{d\Phi}{d\alpha} \sigma^*} \sigma^* (\Phi - \frac{d\Phi}{d\alpha} \alpha) . \quad (45c)
\]
B. Numerical Results

Equation (26), together with the boundary conditions (41a, b), was solved using the University of Colorado CDC 3600 computer. The behavior of ψ at infinity was obtained analytically using an asymptotic coordinate expansion for large $\rho = (x^2 + y^2)^{1/2}$. Thus the domain of integration was finite.

For large ρ, ψ is small, and, expanding $\psi = \sum_k \psi_k$ where $\psi_k / \psi_{k-1} \to 0$ as $\rho \to \infty$, we get

$$\nabla \cdot \nabla \psi_k = \Theta_k(\psi_0, \ldots, \psi_{k-1}).$$

For the homogeneous part, this results in

$$\psi_H = \sum_n P_n(\cos \theta) \left[\frac{a_n}{\rho^{m+1}} + b_n \rho^n \right]$$

where P_n are Legendre polynomials and $y = \rho \cos \theta$. Obviously $b_n = 0$ for all n and also $a_n = 0$ for odd n, because $y = 0$ is a plane of symmetry.

Thus

$$\psi_H = \frac{a_0}{\rho} P_0 + \frac{a_2}{\rho^2} P_2 + \cdots.$$

We obtain next for ψ_1,

$$\nabla \cdot \nabla \psi_1 = \Theta_1(\psi_0) = \frac{1}{x} \frac{\partial}{\partial x} x \frac{a_0}{\rho} \frac{\partial}{\partial x} \frac{a_0}{\rho^2}.$$

Using spherical coordinates in both sides of this equation and expanding Θ_1 in Legendre polynomials results in

$$\psi_1 = \frac{a_0 \cos^2 \theta}{\rho^2}.$$
Hence for large ρ,

$$\psi = \frac{a_o}{\rho} + \frac{a^2 \cos^2 \theta}{\rho^2} + O(\rho^{-3})$$

A rectangular area was used as the domain of integration, $x = 0$ and $y = 0$ being two sides. On the other two, the last equation was taken as a boundary condition, eliminating a_o between ψ and $\nabla \psi$.

Although no use was made of it, a relation between the behavior of ψ on separate regions of the domain was available as a criterion of convergence; an over-relaxation factor could be obtained from it. To derive that relation we rewrite Eq. (26) as

$$\nabla \cdot \nabla \psi = \frac{1}{x} \frac{\partial}{\partial x} x \frac{\partial}{\partial x} (e^{-\psi} + \psi) = \Theta.$$

This is a Poisson-like equation; after integrating over the whole space, the right-hand side vanishes. Hence

$$\int_V \nabla \cdot \nabla \psi \, dV = \int_S \nabla \psi \cdot \frac{dS}{\rho} = 0,$$

from which

$$\int_0^1 x \, dx \left. \frac{\partial \psi}{\partial y} \right|_{y=0} + a_o = 0.$$

Since the spatial "charge," Θ, gives a zero total result, a_o, which represents the total charge in a solution to the Poisson equation, must be equal to the charge on the disc.

Equation (26) was changed into a finite difference equation and solved by row-relaxation. To have an initial estimate for ψ we began with a small
value of \(a \), for which the solution was found analytically above. An appropriate scaling was used as initialization for the next larger value of \(a \).

In Fig. 1 the nondimensional current \(I^e (m_e/kT_\infty)^{1/2} (e N_\infty R^2)^{-1} \) is given as a function of \(\chi_p \) for \(\beta = 1 \) and several \(\sigma \). Only values of \(\chi_p \leq 0 \) are given and the variation of \(I \) with \(\beta \) is not included. When the computations were made it was unfortunate that an improper matching was used and a factor \(2 \{ 1 + \text{erf} (\beta \psi/2 - \chi_p)^{1/2} \}^{-1} \) appeared in the left-hand side of Eq. (41a). It produced two spurious effects: first, it gave \(\partial I/\partial b < 0 \) as presented in \(I \), contrary to what is expected from (45c). This is because if the above factor is included the denominator of (45c) is still positive but a new and strong negative term adds to \(\{ \Phi - (d\phi/d\alpha) \alpha \} \). Second, \(I(\chi_p) \) turned upwards when \(\chi_p \) was approaching \(\chi^* = \beta \alpha/2 \). The reason is that the error function causes \(\partial I/\partial \chi_p \) to grow to infinity for \(\chi_p \sim \beta \alpha/2; [d/dt \text{erf} t^{1/2} = e^{-t^2/2t^{1/2}}] \). Moreover, the spurious factor restricted the range of validity of the theory since it can be seen that the overshooting disappears for large \(\chi_p \) when that is not present. Some problem of storage was found also in the 3600 computer for \(\chi_p > 2 \). It is intended to present in the future more complete numerical results, extended to positive values of \(\chi_p \) that would allow determination of the character of \(d\phi/d\alpha \) for large \(\alpha \), and give the variation with \(\beta \). Some extensions discussed in the next section will be included.
VI. DISCUSSION

A. Extensions of the Theory

A number of effects can be included in the present theory in a straightforward way.

Non-uniform work functions were considered by Medicus and are easily allowed for here if cylindrical symmetry is preserved. (Uniform work functions are taken into account by shifting the origin of potentials.)

Second, non-perfectly absorbing probes can be included in the theory. Because of the well-defined motion of the electrons toward the probe, this amounts again to a modification of Eq. (4la) where \(x \) will appear explicitly. Here the shape of the probe along \(B \) will be of importance. The reflection coefficient should not be near 1.

Third, recombination is easily allowed for; in the \(z - \xi \) space, \(n^e - n^i - e^{-\Psi/2} \) and the continuity equation (26) would require only a term \(\omega e^{-\Psi} \) where \(\omega \) would be a non-dimensional recombination coefficient. In the inner \(z \) layers, gradients are stronger, densities weaker, so that recombination can be neglected.

In this case we can treat the cylindrical problem \((s = 0) \). Even if \(\omega = 0 \) it seems simple to obtain the results for an elongated ellipsoidal probe.

Two major extensions are the allowance for anomalous diffusion and weakly ionized gases. The first does not seem simple even if a rational theory existed for the transport processes in that case; this is because the inner layers would be difficult to analyze. We doubt, however, whether
such a theory would be useful here because the measurement would probably be non-local. As for weakly ionized gases, no difficulties seem to appear. They will be considered in future work.

As for the strength of \(B \) the formulation of Sec. IV required only \(\mu/\sigma \leq O(1) \) (which, of course, allows \(\ell_i < R \) but not \(\ell_i \ll R \)). The limit \(\sigma \to 0 \) has a proper behavior in our formulation but \(\mu \to 0 \) at the same time. In Sec. V, when \(i^i \) was considered, the more restrictive \(\ell_i > R \) was needed. Because of \(E < O(1) \), \(\ell_i \gg R \) is not required.

To allow for \(\xi - 1 \) has the additional, but perhaps solvable, complication of lacking some boundary condition in the \(z_2 - \xi_r \) space for \(n_e^o \) or \(\chi_o \).

The present theory required \(\sigma < O(1) \). However, in the limit \(\sigma \to \infty \) our solution goes back to the known result

\[
j^e = e \frac{\chi_p}{(2\pi)^{1/2}}
\]

when only negative \(\chi_p \) are considered. Thus it seems that the present solution is valid for weaker magnetic fields down to the limit \(B = 0 \) for values of \(\chi_p \) up to that for which \(\chi_p \approx \chi^* \) (for \(B = 0 \), \(\chi_p \approx 0 \)). The overshooting thus has the property of extending to positive \(\chi_p \) the range for which the simple result for a repelled species is valid. [One should take a plane probe (a disc for \(s = 1 \)) for such small \(B \)'s; results for \(i^i \) exist then only in an approximate way.]
B. Conclusions

The present study is a consistent asymptotic analysis in the limit of some small parameters approaching zero. The order of neglected terms is given. The dependence on \(\chi_p, \sigma, \beta, Z_i \) (and \(\mu \) for the part of the diagram where \(I_1 \) is important) appears explicitly. Although \(\tau \) determines the extent of the perturbation by the probe along \(B \), it does not enter into the result. The physical reason for this is that while the collecting fields inside the probe "shadow" decrease as \(\tau \) decreases, the extension of the perturbation is larger and transverse diffusion fills the shadow over longer distances. As for \(\xi \), the current reaches a finite value in the limit \(\xi \to 0 \) (contrary to the limit \(\sigma \to 0 \) for which \(I^e \to 0 \)). Both \(\xi \tau \) and \(\xi \sigma^{-1} \) would enter into the solution if the local \(\ln \Lambda \) were used instead of an average.

Because of this average the accuracy does not exceed \(O[(\ln \Lambda)^{-1}] = O(10^{-1}) \). While transport coefficients are not readily available for all cases, this is an extrinsic difficulty and some improvement can be reached easily. As for the accuracy of the asymptotic expansion, it seems that the critical errors are \(O(\sigma/\Delta) \) and \(O(\xi^2/\Delta^3) \). If \(\xi^2/\Delta^3 = O(1) \), use of Poisson's equation in a narrow region makes again valid the solution with an error \(O(\xi^2/3) \). Because \(\Delta = O(\sigma^{1/\beta+1} \chi_p^{\beta+1}) \), an upper limit to \(\chi_p \) is imposed by the theory. It seems that results are good right up to \(\chi_p \) such that \(\Delta = \sigma \). The errors in the numerical computations are \(O(10^{-2}) \).

The most important feature of the solution is the existence of a large potential hill inside the "shadow." This made the solution easy and clarified
its validity for weak magnetic fields. The overshooting is perhaps of interest in other situations where plasma, field, and body interact. The possibility of using the results for arbitrary B is very important in practice.

ACKNOWLEDGMENTS

I wish to express my appreciation to Professor C. Forbes Dewey for helpful discussions and guidance. I acknowledge support from the Advanced Research Projects Agency under Contract OA-31-124-AEO(D)-139 and the U. S. Air Force (AFSC) under Contract F 33615-67-C-185.

This work was performed under the auspices of the U. S. Atomic Energy Commission, Contract No. AT(30-1)-1238.
APPENDIX A

For a typical thermally ionized cesium plasma,

\[T_\infty \approx 2.3 \times 10^3 \, \text{°K} \]

\[\beta \approx 1 \, , \, Z_i = 1 \, , \, \mu \approx 0.002 \]

\[10^{11} < N_\infty < 10^{13} \, (\text{cm}^{-3}) \, ; \]

also

\[10^3 < B < 3 \times 10^4 \, (\text{gauss}) \]

\[10^{-1} > R > 10^{-3} \, (\text{cm}) \, . \]

The ranges of variation for \(l_e \, , \, \lambda_D \, , \, R \, , \, \lambda \, , \, \text{and} \, l_i \) are shown (in cm) in Fig. 2.
APPENDIX B

The equation for f^e,

$$0 = c(f^e, f^e) + n^i P(f^e)$$ \hspace{1cm} (B-1)

has as unique solution an isotropic Maxwellian distribution. While physically apparent it can be proved simply. Define $H = \int d\nu f^e \ln f^e$ and introduce $\partial f^e / \partial t$ in the left-hand side of (B-1). Then

$$\frac{dH}{dt} = \int d\nu (\ln f^e + 1) c(f^e, f^e) + n^i \int d\nu (\ln f^e + 1) P(f^e)$$

$$= \frac{dH_1}{dt} + \frac{dH_2}{dt}.$$

The usual H-theorem gives $dH_1 / dt \leq 0$. Since

$$P(f^e) = \frac{A}{\nu} \frac{\partial}{\partial \nu} (1 - \nu^2) \frac{\partial f^e}{\partial \nu}$$

($A > 0$, $\nu = v_z / \nu$, $\partial f^e / \partial \phi = 0$) there results

$$\frac{dH_2}{dt} = 2A \pi n^i \int_0^\infty \frac{d\nu}{\nu} \int_{-1}^1 d\nu (\ln f^e + 1) \frac{\partial}{\partial \nu} (1 - \nu^2) \frac{\partial f^e}{\partial \nu}$$

$$= -2\pi A n^i \int_0^\infty \frac{d\nu}{\nu} \int_{-1}^1 d\nu (1 - \nu^2) \frac{\partial f^e}{\partial \nu} \frac{1}{f^e} \leq 0.$$

Both dH_1 / dt and dH_2 / dt have to vanish independently for (B-1) to be satisfied; thus, f^e is Maxwellian and isotropic, $\partial f^e / \partial \nu = 0$. If $\partial f^e / \partial \phi = 0$ is not assumed, the conclusion follows anyhow.
The proof of Eq. (23) is the one used for a non-uniform gas in a vessel of perfectly reflecting walls and under the action of a potential field.

However, no integration is made over z_2; define $H = \int d\xi_r \int dv f^i \ln f^i$ (for $s = 1$ Cartesian coordinates should be used too, and the integration should be made over both spatial coordinates perpendicular to B). The limits for the ξ_r integral can be taken far enough so that there $f(\nu_\xi) = f(-\nu_\xi)$. Then the argument in Ref. 20 is reproduced. Only an arbitrary z_2 dependence is left as a factor of f^i and in u^{iz} which can be non-vanishing.
REFERENCES

18. It was erroneously stated in I that the energy-exchange mean free path was $O[\lambda (m_i/m_e)^{1/2}]$. This is true for the ions but not for the electrons because of the different thermal velocities.

Fig. 1. The electron current as a function of χ_p and σ.

The equation shown in the graph is:

$$\frac{I_e}{R^2eN_0} \left(\frac{m_e}{kT_e}\right)^{1/2}$$

The vertical axis represents I_e/R^2eN_0, and the horizontal axis represents χ_p. The graph includes curves labeled with values of σ^{-1} (26.2, 65.3, 104.5, 197.0) and parameters $Z_i = 1$ and $\beta = 1$.

\[482038\]
Fig. 2. Typical ranges of characteristic lengths in a Cs plasma.
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.