Magnetic pumping of whistler waves by tether current modulation
G. Sanchez-Arriaga and J. R. Sanmartin

[1] Magnetic excitation of whistlers by a square array of electrodynamic tethers is discussed. The array is made of perpendicular rows of tethers that carry equal, uniform, and time-modulated currents at equal frequency with a 90° phase shift. The array would fly vertical in the orbital equatorial plane, which is perpendicular to the geomagnetic field B_0 when its tilt is ignored. The array radiates a whistler wave along B_0. A parametric instability due to pumping by the background magnetic field through the radiated wave gives rise to two unstable coupled whistler perturbations. The growth rate is maximum for perturbations with wave vector at angles 38.36° and 75.93° from B_0. For an experiment involving a wavefront that moves with the orbiting array, which might serve to study nonlinear wave interactions and turbulence in space plasmas, characteristic values of growth rate and parameters, such as the number of tethers and their dimensions and distances in the array, are discussed for low Earth orbit ambient conditions.

1. Introduction

[2] This work is a first analysis of a parametric instability to excite whistler waves using electrodynamic tethers in low Earth orbit (LEO). Time-modulated currents carried by the tethers and driven by a power supply result in pumping by the background magnetic field through the radiated wave; coupling in the near field of this wave with whistler perturbations gives rise to the parametric instability. A nonlinear evolution stage, not studied here, may generate a wavefront that could be used to investigate wave–wave interactions and turbulence in space plasmas. Such a large-scale active experiment, with frequency and intensity of a radiated wave controlled and aimed at studying the nonlinear evolution of whistler waves under boundary-free conditions, would hardly be possible on the ground.

[3] Many theoretical works but a limited number of experiments have been carried out on radiation from VLF antennas in space plasmas. Examples are rocket missions by Barrington [1969] and Begin and Debré [1972] and more recently satellites ACTIVNY and IMAGE. These experiments gave insight into a variety of phenomena. In particular, mission ACTIVNY produced effective nonlinear excitation of ion–sound electrostatic turbulence, which converted to lower hybrid resonance noise once radiation ceased [Molchanov et al., 1997]. Whistler and Z mode echoes from radio sounding on the IMAGE satellite were used to provide diagnostics of magnetospheric electron density and irregularities [Sonwalkar et al., 2004].

[4] Orbiting conductors carrying steady currents have been considered for in situ wave emission in the past [Drell et al., 1965; Barnett and Olbert, 1986; Estes, 1988; Sanmartin and Martínez-Sánchez, 1995; Sanmartin and Estes, 1997]. The radiation of an electrodynamic tether with time-modulated current has been also studied [Hastings and Wang, 1987; Hastings et al., 1988]. The Japan Aerospace Exploration Agency’s rocket flight S-520–25 in late August 2009 [Fuji et al., 2009] and National Research Laboratory’s CubeSat late this year [Amatucci et al., 2009] are actual space tether missions. Tether array systems, similar to the one proposed here, have been also discussed for electric solar sailing [Janhunen, 2004].

[5] The resonant interaction between a pump wave and the natural waves of a continuous system has been extensively studied. A simple general formalism for the coupling of two waves due to the presence of a spatially uniform pump wave was described by Nishikawa [1968]; Liu and Kaw [1976] reviewed the case for plasmas. Parametric instabilities in inhomogeneous plasmas were originally considered by Perkins and Flick [1971], Rosenbluth [1972], and Liu et al. [1973] and recently by Afeyan and Williams [1997], Short and Simon [2004], and Charbonneau-Lefort et al. [2008].

[6] The parametric excitation of Alfvén waves predicted by Vahala and Montgomery [1971], a problem first involving the modulation of a dc magnetic field [Kaw, 1976], was observed in the laboratory as early as 1972 [Lehane and Paoloni, 1972]. Both Hall and resistivity terms [Cramer, 1975] as well as boundary effects [Cramer and Sy, 1979] were included in later theoretical analysis. Dusty and multicomponent plasmas have been studied too [Hertzberg et al., 2003; Hertzberg et al., 2004].

[7] This is the first of two papers on the general problem considered, which differ from each other in the tether geom-
etery and the type of waves excited. We will here consider a square array of tethers, as has been recently suggested in the (solar) electric sail concept [Janhunen, 2004, Janhunen and Sandros, 2007], with the plane of the array perpendicular to the ambient magnetic field and the frequency lying in the classical whistler range having the modulation frequency Ω_1 proportional to the square of the wave vector. In a following paper, we will consider a cylindrical array of tethers, with Ω_1 lying in the range below the ion cyclotron frequency.

In both cases the tethers would act like an antenna and the required length makes using rigid booms impossible. Experimental and theoretical analyses of the near field of a loop antenna operating in the whistler frequency range have found nonuniform plasma structures in the vicinity of the antennas [Gushchin et al., 2006, Korobkov et al., 2007]. Antenna radiation resistance for whistler waves has been recently determined through measurements of whistler wave propagation, formation of propagation ducts was observed [Matutucci et al., 2005]. Here we have omitted considerations of the near field, and a simple current law will be used. We will just require that the driven wave be radiated away from the tether, and we will use the Ampere law as a boundary condition for the magnetic field at the tether surface.

The tethers will be assumed at rest in the plasma, as corresponding to LEO orbital velocity $v_{orb} \approx 8$ km/s much less than the Alfvén velocity V_A, which typically lies in the 200–300 km/s range. All tethers will be assumed to be of infinite length, which will require that (1) the actual tether length L be large, as advanced, compared to any wavelength in the analysis and (2) this analysis is restricted to a region not too far from the center of the array.

This paper is organized as follows. In section 2 the magnetic field generated by a square array of tethers carrying a time-modulated current is found. The required number of tethers to approximate the square array by a sheet of current is discussed for several frequency domains, the approximation is easiest for whistler waves. Starting from the electron-magnetohydrodynamic system, an equation that describes the evolution of the magnetic field is obtained in section 3. The solution is found by expanding the magnetic field in three different levels: geomagnetic, radiated wave and excited or perturbation waves [Vahala and Montgomery, 1971]. The wave radiated by the array is found with the boundary condition obtained in section 2. In section 4 the equations describing the perturbations are analyzed, and the growth rate is found in section 5. Possible orbits and characteristic values of some parameters such as mass and power are discussed in section 6. Conclusions are given in section 7.

2. A Square Array of Tethers

A tether carrying an active modulated current at a frequency Ω_1 radiates like an antenna. In principle, a rigorous determination of the radiated wave requires determining the current in the tether self-consistently with the near-driven fields. Here we will just assume a simple current law uniform along the tether

$$I = I_1 \cos \Omega_1 t = \text{Re}[I_1 \exp(-i\Omega_1 t)]$$ (1)

Note that the case for tethers in a plasma is different, in principle, from the case of a standard antenna, whose current necessarily vanishes at the ends (having negligible capacity), thus being fundamentally nonuniform, tethers can exchange current and present no such restriction. In addition, a long enough standard antenna in air presents another source of current non-uniformity, the phase difference for a signal traveling between two points at distance l in the antenna $\Omega_1 \Delta t = \Omega_1 l/c = k_1 l$ being only ignorable for a tether length $L \ll \lambda_1/2 = \pi/k_1$.

A tether in a magnetized plasma, however, behaves differently for whistler and MHD waves, which have large refraction index n, corresponding to negligible displacement current. We can then have both $\Omega_1 \Delta t = \Omega_1 l/c = k_1 l/n$, say $k_1 L/2n$, small and $k_1 L/2$ large, allowing us to extremely simplify the analysis by keeping l uniform while taking $L \gg \lambda_1$.

Ignoring the small displacement current at the low frequency ratio Ω_1/ω_{pe} of interest finally means that sheath charge effects may not have a dominant effect here. Actually, the rapid tether-plasma current exchange assumed here might not be technically feasible, tethers carrying uniform, oscillating currents have been studied in the past for radiation impedance considerations [Hastings and Wang, 1987, Hastings et al., 1988].

The magnetic field generated by an infinitely long tether, centered at the origin and aligned with the z axis, is

$$B = \frac{i\mu_0 l}{2\pi r} (\nu_x - \nu_y)$$ (2)

For a line array of tethers parallel to the z axis in the $x = 0$ plane and separated by a regular distance Δ, with current I in phase throughout the array, the field is

$$B = \frac{i\mu_0 l}{2\pi} \sum_{s=-\infty}^{\infty} \frac{x\nu_y + (s\Delta - y)\nu_x}{x^2 + (y - s\Delta)^2}$$ (3)

We can approximate this sum as an integral for the distances x of interest, i.e., of the order of the wavelength λ_1 for the driven wave

$$B \approx \frac{i\mu_0 l}{2\pi} \left[\int_{-\infty}^{\infty} \frac{dx}{x^2 + \Delta^2 s^2} \nu_y + \int_{-\infty}^{\infty} \frac{dx}{x^2 + \Delta^2 s^2} \nu_x \right]$$

$$= \frac{i\mu_0 l}{2\Delta} \text{sgn}(x)\nu_y$$ (4)

if that wavelength is large compared with the distance between tethers

$$\lambda_1 \gg \Delta$$ (5)

Equation (4) is the magnetic field created by a sheet of current with surface current density I/Δ, which the field generated by the array rapidly converges to, setting $y = 0$ in equation (3), one readily finds $2B_y \Delta/\mu_0 l = 3.4240/\pi$ at $x = 0.5\Delta$ and $3.1513/\pi$ at $x = \Delta$.
Further, for the simplified analysis of our model to be valid, the array must also be wide as compared with wavelengths:

\[N \Delta \gg \lambda_1. \]
(6)

Conditions (5) and (6) may be rewritten in terms of a parameter

\[\varepsilon = \frac{\mu_0 I_1}{2B_0 \Delta}. \]
(7)

which is the ratio of driven to ambient magnetic fields:

\[1 \ll \frac{\lambda_1}{\Delta} \equiv \varepsilon \cdot \frac{4\pi B_0}{\mu_0 I_1 k_1} \ll N. \]
(8)

Exciting the fast magnetosonic (FMS) mode of a cold magnetized plasma could typically require too large a number of array tethers in condition (8); using \(\Omega_1 \approx V_A k_1 \) at frequencies well below the ion cyclotron frequency, we should have, say,

\[N \gg \varepsilon \cdot \frac{4\pi m_i V_A}{e \mu_0 I_1} \cdot \frac{\Omega_1}{\Omega_i} \approx 2 \times 10^3 \times \frac{\Omega_1}{\Omega_i}. \]
(9)

for oxygen ions, \(V_A \sim 250 \text{ km/s}, I_1 = 10 \text{ A}, \) and \(\varepsilon = 0.05. \)

The equivalent condition on \(N \) for Alfvén waves would just be smaller by the cosine of the angle between \(k_1 \) and \(B_0. \)

Near the frequency \(\Omega_1 \), this condition replaces the (assumed large) ratio \(\Omega_1 / \Omega_i \) in (9) by the factor \(\sqrt{1 - \Omega_1 / \Omega_i} \), which would require an excitation frequency unreasonably close to \(\Omega_i \), for sensibly reducing the number of tethers required.

On the other hand, for the whistler range of the FMS mode with \(\Omega_1 \) well above \(\Omega_i \), and wave vector \(k_1 \propto \sqrt{\Omega_1} \), the ratio \(\Omega_1 / \Omega_i \) in (9) would be replaced by the product \(\sqrt{m_i / m_e} \times \sqrt{\Omega_e / \Omega_i} \); a ratio \(\Omega_i / \Omega_e \sim 0.1, \) say, would allow using a reasonable \(N \) value. Considering the array as a sheath of current, the Ampere law immediately gives the magnetic field it generates throughout the \(x > 0 \) half-space as

\[\varepsilon B_1(x, y, z - \text{line array}) = B_0 \varepsilon \cos(\Omega_1 t) u_y. \]
(10)

Whistlers propagating along an ambient magnetic field are circularly polarized waves rotating around the ambient field direction in the sense of the electron cyclotron motion. To drive a single whistler wave we add a second line array, with tethers parallel to the \(y \) axis carrying the same current with a phase shift, \(I_1 \sin(\Omega_1 t) \); this generates a field in the \(x > 0 \) half-space (see Figure 1): \(B_1(y - \text{line array}) = B_0 \sin(\Omega_1 t) u_x. \)

The magnetic field of the full array, written as

\[B_1(x > 0) = B_0 \Re[(e_1 + i e_2) \exp(-i\Omega_1 t)], \]
(12)

will be used as a boundary condition on the driven wave in section 3. The length of the tethers will now be \(L = (N - 1) \Delta \), which condition (6) shows to be indeed large compared with \(\lambda_1 \). The square array should fly in an equatorial orbit with the geomagnetic field normal when its tilt is ignored (see Figure 2).

3. General Equations and Radiated Wave

Whistlers are described by the equations of the electron magnetohydrodynamics (EMHD) model of a cold plasma, having ion motion ignored,

\[\frac{\partial n_e}{\partial t} + \nabla \cdot (n_e v_e) = 0 \]
(13)

\[\frac{\partial v_e}{\partial t} + (v_e \cdot \nabla) v_e = -\frac{e}{m_e} (E + v_e \times B) - \nu_{ne} v_e \]
(14)

\[\frac{\partial B}{\partial t} = -\nabla \times E \]
(15)

\[\nabla \times B = -e \mu_0 n_e v_e, \]
(16)
where \(n_e \) and \(v_e \) are electron density and velocity, \(B \) and \(E \) are magnetic and electric fields, and \(v_{el} \) is the frequency of collisions between electrons and ions.

Equations (13) and (16) give \(n_e = n_0 \). Then, taking the curl of equations (14) and (16) yields

\[
\frac{\partial \Omega}{\partial t} - \nabla (n_e \wedge \Omega) = \frac{\partial \Omega_e}{\partial t} - \nabla (n_e \wedge \Omega_e) - \nu_{el} \Omega \tag{17}
\]

where we defined vectors \(\Omega_e = eB/m_e \) and (vorticity) \(\Omega = \nabla \wedge v_e \) and where \(\nu_{el} \) and \(c/\nu_{el} \) are the electron plasma frequency and skin depth in the ambient plasma, respectively.

Considering wave vectors satisfying \(k^2 < (\nu_{el}/c)^2 \), which corresponds to the classical whistler domain, we have \(|\Omega| < |\Omega_e| \), making the entire LHS of (17) negligible.

Next, using equations (16) and (18) in (17), an equation describing the evolution of the magnetic field is obtained:

\[
\frac{\partial b}{\partial t} - \frac{c^2 \Omega_e}{\omega^2_{pe}} \nabla \wedge [b \wedge (\nabla \wedge b)] - \eta \nabla^2 b = 0, \tag{19}
\]

where we wrote \(B = B_0 b \) and \(\eta = \nu_{el} c^2/\omega^2_{pe} \), which is a diffusivity. Equation (19) must here be solved in the half-space \(x > 0 \) following the scheme introduced by Vahala and Montgomery [1971]. The magnetic field is made of three contributions of disparate magnitude:

\[
b = b_0 + \varepsilon b_1 + b_1. \tag{20}
\]

The field \(b_0 \) refers to the geomagnetic field directed along \(u_x \) (see Figures 1 and 2), \(b_1 \) is the radiated wave and \(b_1 \) the perturbations or excited waves. The scaling \(\varepsilon b_1 \gg b_1 \) is assumed. The boundary condition at \(x = 0^- \) is obtained from equations (12) and (20):

\[
b(x = 0^-) = \text{Re} [u_x + \varepsilon (u_y + i u_x)e^{-\alpha|x|}]. \tag{21}
\]

To keep the development compact, we will use complex notation for the fields.

The radiated wave is obtained by substituting equation (20) in equation (19) and collecting terms of order \(\varepsilon \). Using \(\nabla \cdot u_x = 0 \) and \(\nabla \cdot (\nabla \wedge b_1) = 0 \), we find

\[
\frac{\partial b_1}{\partial t} - \eta (\nabla^2 b_1 - \frac{c^2 \Omega_e}{\omega^2_{pe}} \nabla \times b_1) = 0. \tag{22}
\]

The solution to equation (22) satisfying boundary condition (21) takes the form

\[
b_1 = \beta e^{(k_x x - k_y t)} + cc \tag{23}
\]

\[
\beta = \frac{u_y + i u_x}{2}, \tag{24}
\]

with \(cc \) denoting complex conjugated. Using \(\nabla \wedge b_1 = k_1 b_1 \) and defining \(\alpha = \omega^2_{pa}/c^2 \Omega_e \), (22) becomes

\[
\frac{\partial b_1}{\partial t} - \eta (\nabla^2 b_1 - \frac{c^2 \Omega_e}{\omega^2_{pe}} \nabla \times b_1) = 0, \tag{25}
\]

yielding the dispersion relation for whistlers

\[
k_1 = \pm \sqrt{\alpha \Omega_e} \left(1 + \frac{i \nu_{el}}{2 \Omega_e} \right), \tag{26a}
\]

\[
\Omega_1 = \frac{c^2 k_1^2}{\omega^2_{pe}} \left(1 - i \frac{\nu_{el}}{\Omega_e} \right), \tag{26b}
\]

where a weak collision frequency, \(\nu_{el} \ll \Omega_e \), was assumed. The physical solution to (25) corresponds to the plus sign in equation (26a), showing waves to decay as \(x \to +\infty \).

4. Excited Waves

Perturbations to the background made of ambient plasma and driven fields are studied collecting terms linear in \(b_1 \) and \(\varepsilon b_1 \) in equation (19):

\[
\alpha \left(\frac{\partial}{\partial t} - \eta \nabla^2 \right) b_1 = \nabla \wedge [(u_x + \varepsilon u_y) \wedge (\nabla \times b_1)] + \nabla \wedge [b_1 \wedge (\nabla \times \varepsilon b_1)]. \tag{27}
\]

Using again \(\nabla \times b_1 = k_1 b_1 \), and \(\nabla \cdot b = 0 \), equation (27) reads

\[
\alpha \left(\frac{\partial}{\partial t} - \eta \nabla^2 \right) b_1 + \frac{\partial}{\partial x} (\nabla \times b_1) = \varepsilon [(\nabla \times b_1 - k_1 b_1) \cdot \nabla b_1 - b_1 \cdot \nabla (\nabla \times b_1 - k_1 b_1)]. \tag{28}
\]

No general solution to equation (28) can be given because of coefficients variable in time and space due to the driven fields. Determining growth rates is possible, however, for perturbations only composed of two waves linked by a resonance condition and ignoring off-resonance terms.

To handle products of terms with subscript 1 (driven fields) and superscript 1 (perturbations) in equation (28), we keep the complex notation for the real fields:

\[
b_1 = b_{a1} e^{(k_a x - \omega_a t)} + b_{b1} e^{(k_b x - \omega_b t)} + cc. \tag{29}
\]

Consider waves with subscripts a and b satisfying the resonance conditions:

\[
\text{Re}(\omega_a + \omega_b) = \Omega_1 \tag{30a}
\]

\[
\text{Im}(\omega_a - \omega_b) = 0 \tag{30b}
\]

\[
k_{a0} + k_{b0} = k_1 \tag{31a}
\]

\[
k_{ai} + k_{bi} = 0. \tag{31b}
\]
[35] Using (23) and (29) in equation (28), \(b_a \) terms proportional to \(e^{i(u \omega_a - \eta k)^2} \) on the LHS are coupled to both the \(b^* \) term and the first term of (23) on the RHS so as to yield identical space and time dependence on both sides of (28):

\[
k_{a0} k_a \times b_a + \alpha (u \omega_a - \eta k)^2 b_a = \varepsilon \left[k_1 b_0 + (i k_1 b_0^* - k_a \times b_a) \right] + \beta \left[k_b (i k_1 b_0^* - k_a \times b_a) \right].
\]

(32)

[36] Equation (32) and the corresponding equation for \(b^* \) constitute a homogeneous system with six unknown variables, the compatibility condition yielding a dispersion relation. Writing \(k_a \times b = \overline{k} \cdot b \) where \(\overline{k} \) is the tensor

\[
\overline{k} = \begin{pmatrix}
0 & -k_z & k_y \\
-k_z & 0 & -k_x \\
-k_y & k_x & 0
\end{pmatrix},
\]

(33)
equation (32) becomes, in a matrix form,

\[
\overline{M}_a b_a = \overline{N}_a b_b^*,
\]

(34)

with

\[
\overline{M}_a = k_{a0} \overline{k} + \alpha (u \omega_a - \eta k)^2 \overline{U}
\]

(35)

\[
\overline{N}_b = \varepsilon \left[k_1 b_0 + (k_b \beta \overline{U}) \left(i k_1 \overline{U} - k_b \right) \right].
\]

(36)

where \(\overline{U} \) is the unitary matrix. From (34), we can immediately write

\[
\overline{M}_a b_a = \overline{N}_b b_b^*,
\]

(37)

[37] Next, with equations (34) and (37), one readily obtains

\[
\left(\overline{U} - \overline{M}_a^{-1} \overline{N}_b \overline{M}_a^{-1} \overline{N}_a \right) b_a = 0
\]

(38)

[38] Since the problem has axial symmetry around \(u_e \), we can set \(k_z = 0 \) and write

\[
k_{a0} = -k_{sb} = k_y
\]

with no loss of generality. Then, matrices are given as

\[
\overline{M}(\omega, k) = k_{a0} \overline{k} + \alpha (u \omega - \eta k)^2 \overline{U}
\]

\[
= \begin{pmatrix}
\alpha (u \omega - \eta k)^2 & 0 & k_x k_y \\
0 & \alpha (u \omega - \eta k)^2 & -k_z^2 \\
-k_z k_y & k_z k_x & \alpha (u \omega - \eta k)^2
\end{pmatrix}
\]

(39)

\[
\overline{N}(k) = \varepsilon \left[k_1 b_0 + (k \beta \overline{U}) \left(i k_1 \overline{U} - k \right) \right]
\]

\[
= \varepsilon \left[\begin{pmatrix} i k_1 k_y & 0 & -k_z^2 \\
-k_z k_y & i k_1 k_y & k_z k_x \\
k_z^2 & -k_z k_y & -k_z k_y & 0
\end{pmatrix}
\right].
\]

(40)

where, writing \(k_a, \omega_a \) \((k_b, \omega_b)\) for \(k \), \(\omega \) would yield \(\overline{M}_a, \overline{N}_a (M_b, \overline{N}_b) \). The inverse of \(M \) reads

\[
M^{-1}(\omega, k) = \overline{L}(\omega, k) D(\omega, k),
\]

(41)

where

\[
\overline{L}(\omega, k) \equiv \frac{1}{\omega} \left(k_1^2 k_y^2 - k_z^2 k_x^2 - \alpha^2 \omega^2 - \omega \omega_1 k_z k_x \right)
\]

(42)

\[
D(\omega, k) \equiv \alpha^2 \left(\omega^2 + 2 \eta k \omega \right) - k_1^2 k_2^2
\]

(43)

[39] Damping is assumed small and terms involving the product between \(\varepsilon \) and \(\eta \) are neglected; the resistivity contribution was ignored in the auxiliary matrix \(\overline{L} \) while kept in \(D \), \(\omega \), \(k \) for use in the dispersion relation.

5. Dispersion Relation

[40] The dispersion relation for \(\varepsilon = 0 \) and \(\eta = 0 \), reading \(D \) \((\omega, k) = 0 \) or \(\omega \omega_1 k_0 = k_y k_x \) for either mode \(a \) or \(b \) as a whistler wave, will be only slightly modified by the driven fields. We may use \(\varepsilon = 0 \) frequency values in just the matrix \(\overline{L} \) which takes an extremely simple form as the dyadic product of a vector:

\[
e = (k_y, -k_x, -ik)
\]

(44)

and its complex conjugate

\[
\overline{L}(k) = -i \frac{k_y}{k} e \otimes e^*
\]

(45)

[41] The dispersion relation then reads

\[
D(\omega_a, k_a)D^*(\omega_b, k_b) \overline{U} - k_y k_x \overline{N}_b \overline{N}_a = 0
\]

(46)

[42] To determine the small \(\varepsilon \) corrections taking into account the resonance conditions (30) and (31) and setting \(\text{Re}(\omega_a + \omega_b)|_{\varepsilon = 0} = \Omega_1 \), or \(k_{a0} k_a + k_{b0} k_b = k_1^2 \), the frequencies are written as

\[
\omega_a = \frac{k_{a0} k_a}{\alpha} + \Omega_1 (\varphi + \overline{\gamma})
\]

(47a)

\[
\omega_b = \frac{k_{b0} k_b}{\alpha} - \Omega_1 (\varphi + \overline{\gamma}),
\]

(47b)

where \(\varphi \) and \(\overline{\gamma} \) are the dimensionless frequency shift and growth rate, respectively. The dispersion relation becomes (see section A)

\[
[(\varphi + \overline{\gamma})^2 + \frac{m}{\Omega_1} (\varphi + \overline{\gamma})(k_1^2 + k_2^2)] = \varepsilon^2 J.
\]

(48)
Finally, writing \[A_0 = A_0 + F_n \] with \(n = K^* + b \), one has \(a \neq b \leftarrow n \) being coupled to each other Waves propagating at different inclinations to the array behave differently, however, making the shape of the two lobes different.

6. Discussion

[49] The choice of the orbit is determined by a set of requirements involving plasma ambient conditions, the properties of the excited wavefront, and technological considerations (mass and power) An equatorial circular orbit, with the planar array flying vertical (see Figures 1 and 2), would be an appropriate choice because the geomagnetic field would be always normal to the array and the gravity gradient could be used for stability considerations [Arnold, 1987] On the other hand, the wavelength \(\lambda_1 \) determines the length of the tethers and it has a direct impact on the mass and the required power As we will see, a low altitude orbit reduces the mass requirements because the wavelength of the radiated wave decreases with the plasma density as \(\lambda_1 \rightarrow n_0^{1/2} \) A low Earth orbit would then appear to be the best choice.

[50] The system mass would be basically made of tether hardware and power subsystem.

Figure 3. Normalized growth rate versus \(k_{a1}/k_1 \) at \(\eta = 0 \) \[\frac{\gamma}{\varepsilon} = \frac{1}{\Omega_1} \frac{k_1^2}{2} \left(k_1 - k_a - k_b \right) k_a + 2 k_1 k_{a1} \left(k_1 - k_a - k_b \right) k_a + 2 k_1 k_{a2} \right] \]

where

\[J = \frac{k_1^2}{16k_1^4} \left(k_1 - k_a - k_b \right) k_a + 2 k_1 k_{a1} \left(k_1 - k_a - k_b \right) k_a + 2 k_1 k_{a2} \]

\[\frac{\gamma}{\varepsilon} = \frac{1}{\Omega_1} \frac{k_1^2}{2} \left(k_1 - k_a - k_b \right) k_a + 2 k_1 k_{a1} \left(k_1 - k_a - k_b \right) k_a + 2 k_1 k_{a2} \]

\[F(k_a, k_b) = k_a \sqrt{1 + \kappa_a^2 + \kappa_b \kappa_a + \kappa_b^2} - (k_a + k_b)^2 = 0 \]

between \(\kappa_a = k_{a1}/k_1 \) and \(\kappa_b = k_{a2}/k_1 \). A fixed point \(F(k^*, k^*) = 0 \) occurs at \(\kappa_a = \kappa_b = k^* = 1/\sqrt{3} \) Further, from equation (49) we can also obtain a function \(G \) of \(\kappa_a \) and \(\kappa_b \) to allow writing \(J = k_1^2 \left(k_1 - k_a - k_b \right) k_a + 2 k_1 k_{a1} \left(k_1 - k_a - k_b \right) k_a + 2 k_1 k_{a2} \) Finally, writing \(\kappa_a = k^* + \Delta \kappa_a, \kappa_b = k^* + \Delta \kappa_b \) with \(\Delta \kappa_a \) and \(\Delta \kappa_b \) small, in equation (51) we find \(\Delta \kappa_a = -\Delta \kappa_b \), whereas \(J \) takes the form

\[J = C \left(\frac{\partial}{\partial \kappa_a} - \frac{\partial}{\partial \kappa_b} \right) G(k_1, k_1) \left| \kappa^* \right| \Delta \kappa_a \Delta \kappa_b \]

proving \(J \) negative at some \(\kappa_a \) range around \(k^* \)

[46] Figure 3 shows the (positive) rate \(\gamma = \Omega_1 \sqrt{\gamma} \) versus the normalized wave vector component \(k_{a1}/k_1 \) when \(\eta = 0 \) proving the ansatz The maximum growth rate, attained at \(k_{a1}/k_1 \approx 0.17 \) and \(k_{a2}/k_1 \approx 0.83 \), is \(\frac{\gamma_{\max}}{\varepsilon} \approx 0.0758 \) At \(k_{a1}/k_1 = 0.5 \), corresponding to \(\kappa_a = \kappa_b = k^* \), the growth rate vanishes as previously noticed.

[47] Figure 4 is a polar diagram of the dimensionless growth rate \(\gamma/\varepsilon \) as a function of the angle \(\theta_a \) between the wave vector \(k_a \) and the \(x \) axis, with \(\cos \theta_a = k_{a1}/k_a \) when \(\eta = 0 \) There are two lobes corresponding to the two maxima in Figure 3, which occur at \(\theta_a \approx 38^\circ \) and \(\theta_b \approx 75^\circ \) The parametric instability describes early dynamics, with the evolution of the nonlinear wavefront definitely more complicated However, a footprint of the two lobes might possibly be present in the nonlinear stage and it could be measured in an experiment.

[48] The parametric instability analysis showed that for each wave with angle \(\theta_a \), there is a second wave with \(\theta_b \) and the same growth rate Note that both rate maxima are equal, in agreement with the waves at \(38^\circ \) and \(75^\circ \) being coupled to each other Waves propagating at different inclinations to the array behave differently, however, making the shape of the two lobes different.
where the Ohmic power was assumed to be dominant, α is the inverse specific power of the power supply and ρ and σ_c are the tethers’ density and conductivity, respectively. A minimum of total mass is reached at

$$A_{cs} = l_1 \sqrt{\frac{\alpha}{\sigma_c \rho}}$$

(54)

and the minimum mass is

$$M_s |_{\text{min}} = 4N L_L \frac{\sqrt{\frac{\alpha}{\sigma_c}} \times 8}\sqrt{\frac{B_0 L^2}{\mu_0}} \frac{N}{N-1} \sqrt{\frac{\alpha \rho}{\sigma_c}}$$

(55)

where we used equation (7) and $L = (N-1) \Delta$. The length of the tethers is now written in terms of the wavelength λ_1 by the dispersion relation (26a) that assumes $\Omega_1 \ll \Omega_e$. In the general case the wavelength is given by the whistler dispersion relation

$$\frac{\Omega_1}{\Omega_e} = \frac{c^2 k_1^2 / \omega_{pe}^2}{1 + c^2 k_1^2 / \omega_{pe}^2}$$

(56a)

or

$$\lambda_1 = \frac{2 \pi c}{\omega_{pe} \sqrt{1 - \Omega_1 / \Omega_e / \Omega_1 / \Omega_e}}.$$

(56b)

[51] Substituting $L = \delta \lambda_1$ and equation (56) in (55) yields

$$M_s |_{\text{min}} (\varepsilon \Omega_1 / \Omega_e, \delta) = K \frac{1 - \Omega_1 / \Omega_e \varepsilon \delta_2}{\Omega_1 / \Omega_e}$$

(57)

where K is a factor that depends on the orbit and the characteristic of the tether:

$$K = \frac{32 \pi^2 B_0 m_e}{\mu_0 n_0 e^2} \frac{N}{N-1} \sqrt{\frac{\alpha \rho}{\sigma_c}} \approx \frac{32 \pi^2 B_0 m_e}{\mu_0 n_0 e^2} \sqrt{\frac{\alpha \rho}{\sigma_c}}$$

(58)

[52] Equation (57) is a valid expression for an experiment to excite whistler waves using a square array of tethers. Note, however, that the growth rate obtained in section 5 requires (i) $\varepsilon < 1$ for keeping our perturbation method valid, (ii) $\Omega_1 / \Omega_e < 1$ for neglecting the LHS of equation (17), and (iii) $\delta > 1$ for ignoring array edge effects. Typical LEO ambient values ($B_0 = 0.3 G$, $n_0 = 10^6 / cm^3$), tether parameters ($\rho = 2.7 \times 10^3$ kg/m3, $\sigma_c = 3.5 \times 10^3$ ohm$^{-1}$/m), and an inverse specific power $\alpha = 20$ kg/kW [Stark, 2003], yield $K = 265$ kg. Equation (58) shows that high plasma density and better technological coefficient (α, ρ, and σ_c) decrease the mass of the system.

[53] The growth rate, which governs the characteristic time for the development of the wavefront, depends on the electron gyrofrequency and the resistivity too. In LEO one finds $\Omega_e \approx 5.2 \times 10^2$ rad/s and the collision frequency between electrons and ions:

$$\nu_{ei} (s^{-1}) = 2.9 \times 10^{-12} n_e (m^{-3}) \ln(A) T_e (eV)^{1/2}.$$

(59)

[54] Assuming $\ln A \approx 15$ and $T_e = 0.1$ eV yields $\nu_{ei} = 1.4 \times 10^3$ s$^{-1}$, which produces a very small correction for the growth rate in equation (50): $\eta(\delta_{\alpha} + \delta_{\gamma})/2\Omega_1 = \eta_{\delta_{\gamma}}/\Omega_1 = \nu_{ei}/\Omega_e = 0.0016$. The typical space scale to damp out the driven fields is very large too (see equation (26)) $\text{Im}(\lambda_1) \approx 250 \times \sqrt{\Omega_e / \Omega_1}$ km.

[55] For a round tether of radius $R = 0.8$ mm ($A_{cs} = 2$ mm2), the intensity that minimizes the mass is from equation (54): $I_1 = 4.37 A$. Table 1 summarizes the characteristic parameters of the experiment assuming the previous values and $\delta = 5$, $N = 100$, and $\eta = 0$. Two modulation frequencies, $\Omega_1 / \Omega_e = 0.1$ and $\Omega_1 / \Omega_e = 0.3$, are considered. In the latter case the LHS of equation (17) should be retained. Higher modulation frequency not only increases the growth rate, but also decreases the total mass.

[56] Consideration of mass, power, and structural forces in the array system would be relevant for design purposes. The Lorentz force $L_L B_0$ of the geomagnetic field on any tether in the array, which rapidly oscillates at frequency Ω_1, will vanish on the average. Similarly, the force between perpendicular array tethers, which varies as sin $2\Omega_1 t$, will vanish when averaged too. Forces between parallel tethers will have non-zero average, however. Tethers at the end of a line will experience the largest Lorentz force:

$$F_1 = \mu_0 L L_L \left(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{N-1} \right)$$

$$\approx \frac{\varepsilon}{\pi} \left[0.577 + \ln N - \frac{1}{2N} \right] L_B L_L.$$

(60)

7. Conclusions

[57] Use of electrodynamic tethers for space applications other than propulsion or power generation have been discussed recently; these include, in particular, radiation belt remediation [Inan et al., 2003], solar electric sailing [Janhunen, 2004; Janhunen and Sandroos, 2007] and generation of electron beams for the production of artificial auroras [Sanmartin et al., 2006]. In this work we considered an application of scientific interest, involving the parametric excitation of whistler waves by a square array of electrodynamic tethers to produce and study nonlinear wave interactions and turbulence in space plasmas.

[58] The array would lie in the vertical, equatorial orbital plane. With its tilt neglected, the geomagnetic field would be perpendicular to the orbital plane and array. One line of tethers will be aligned vertically and regularly spaced, each tether carrying a current uniform along its length and time modulated with frequency Ω_1; to radiate one whistler wave, a second line array of tethers will lie horizontal with the current phase shifted by 90°.
The maximum growth of coupled whistler perturbations is found to occur at angles of 38.36° and 75.93° from the geomagnetic field. Characteristic values of growth rate and parameters such as the number of tethers, and their dimensions and distance in the array, have been determined for the ambient conditions at an experiment involving the whistler wavefront that moves with the array in a low Earth orbit.

Appendix A: Analytical Derivation of the Growth Rate

Taking into account equations (47a) and (47b), both $D(\omega_a, k_a)$ and $D^*(\omega^*, b, k_b)$ can be approximated as

$$D(\omega_a, k_a) = \alpha^2 \left(\omega_a^2 + 2\omega_a(\kappa b^2) - \kappa^2 k_a^2 \right)$$

$$\approx 2\omega_a k_a [\Omega_1 (\varphi + r\gamma) + m^2 k_a^2], \quad (A1)$$

$$D^*(\omega^*, b, k_b) = \alpha^2 \left(\omega^* - 2\omega^* m^2 k_b^2 - k_b^2 k_b^2 \right)$$

$$\approx -2\omega_a k_b k_b [\Omega_1 (\varphi + r\gamma) + m^2 k_b^2], \quad (A2)$$

The dispersion relation then reads

$$\left[(\varphi + r\gamma)^2 + \frac{m}{\Omega_1} (\varphi + r\gamma) (k_a^2 + k_b^2) \right] \tilde{U} - \varepsilon^2 \tilde{J} = 0, \quad (A3)$$

where

$$\tilde{J} = -\frac{c_a N_b^* c_b^*}{(2\varepsilon^2 k_a^2 k_b^2)} - c_a \otimes c_b \overline{N}_a \quad (A4)$$

Matrix \tilde{J} is then written as the tensorial product of two vectors c_a and $c_b \overline{N}_a$. Using the identity

$$\mu \tilde{J} - u \otimes v = \mu^2 [\mu - tr(u \otimes v)] \quad (A5)$$

allows us to write equation (A3) as

$$\left[(\varphi + r\gamma)^2 + \frac{m}{\Omega_1} (\varphi + r\gamma) (k_a^2 + k_b^2) \right] \varepsilon^2 tr(\tilde{J}) \equiv \varepsilon^2 \tilde{J} \equiv \varepsilon^2 J \quad (A6)$$

The trace J is found with the following steps. First, the numerator in (A4) is obtained:

$$c_a N_b^* = \frac{i\varepsilon}{2} \left(k_a (k_a - k_b) - k_b (k_a + k_b), \; k_a (k_a k_b + k_b k_a), \; i k_b k_a^2 \right) \quad (A7)$$

$$c_a N_b^* c_b^* = \frac{i\varepsilon}{2} k_b k_a [k_a (k_a - k_b) + 2k_b k_a] \quad (A8)$$

On the second place, the vector $c_b \overline{N}_a$ is

$$c_b \overline{N}_a = -\frac{i\varepsilon}{2} \left(k_b (k_b - k_a) - k_a (k_a + k_b), \; k_b (k_a k_b + k_b k_a), \; i k_a k_b^2 \right) \quad (A9)$$

Note that it is not necessary to compute the whole matrix $\overline{c}_a \otimes \overline{c}_b \overline{N}_a$, and just the trace is given by

$$tr(\overline{c}_a \otimes \overline{c}_b \overline{N}_a) = \frac{i\varepsilon}{2} k_b k_a [k_a (k_a - k_b) + 2k_b k_a] \quad (A10)$$

Using equations (A4), (A8) and (A10) finally yields

$$J = \frac{k_a^2 [(k_a - k_b) k_b + 2k_b k_a] + 2k_b k_a]}{16\varepsilon^2 k_b k_a} \quad (A11)$$

References

Bogdan, C, and R Debye (1972). Characteristics of the electric field far from and close to a radiating antenna around the lower hybrid resonance in the ionosphere, J Plasma Phys., 8, 287–310, doi 10.1017/S0022377800007157

Drell, S D, H M Foley, and M A Ruderman (1965). Drag and propulsion of large satellite in the ionosphere An Alfvén propulsion engine in space, J Geophys Res., 70, 3131–3145, doi 10.1029/JZ070i013p03131

Guschchin, M, A Kostrov, S Korobkov, A Strikovsky, D Yann, M Starodubtsev, V Gundann, and A Mochalov (2006). Whistler wave experiments on large gKROTh device, Rep 56, Sodankyla Geophys Obs, Sodankyla, Finland

Sanmartín, J , and R Estes (1997), Alfvén wave far field from steady current tethers, *J Geophys Res*, 102, 14,625–14,630

G Sanchez-Arriaga and J R Sanmartin, Escuela Técnica Superior de Ingenieros Aeronauticos, Universidad Politécnica de Madrid, Madrid E-28040, Spain (gonzalo.sanchez@upm.es)