New Results on Bare-Tether Current

ROBERT D. ESTES
Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts

JUAN R. SANMARTIN
ETSI Aeronáuticos, Universidad Politécnica de Madrid, Madrid, Spain

Recent results on the validity of the orbital-motion-limited (OML) regime of cylindrical Langmuir probes, which are essential for bare-tether applications, are extended to show how the current lags behind the OML value beyond the OML regime, and the possible effects of motion of the probe relative to the plasma.

The electron current I to a long cylinder at rest in a collisionless, unmagnetized, Maxwellian plasma of density N_e and temperatures T_e and T_i may be written as

$$I = I_{th} \times \text{a function of } R \lambda_{De} e \Phi_p/kT_e, T_e/T_i$$

where $I_{th} = 2\pi R e N_e \sqrt{kT_e}/2\pi m_e$ is the random or thermal current, $\lambda_{De} = \sqrt{kT_e}/4\pi e^2 N_e$ is the Debye length, and R, L, and Φ_p are probe radius, length, and bias, respectively. For cylinders thin enough, however, I/I_{th} only depends on $e\Phi_p/kT_e$. This is the orbital-motion-limited (OML) regime; at high bias one has

$$I_{OML} = I_{th} \times \sqrt{4e\Phi_p/kT_e} = 2R \lambda_{De} N_e \sqrt{2e\Phi_p/m_e},$$

$$e\Phi_p >> kT_e.$$ (1)

There is a maximum radius, R_{max}, for the OML regime to hold with other parameters fixed, i.e., the ratio I/I_{OML} dropping below unity when R goes beyond R_{max}. The way that ratio drops below unity is of interest for the design of bare (uninsulated) tethers.

In general, determining electron trajectories to obtain I requires solving Poisson's equation for $\Phi(r)$.

$$\frac{\lambda_{De}^2}{r} \frac{d}{dr} \left(\frac{d\Phi}{dr} \right) = \frac{N_e - N_i}{N_e - N_i} \approx \frac{N_e}{N_e} - \exp \left(-\frac{e\Phi}{kT_e} \right),$$ (2)

with boundary conditions $\Phi = \Phi_p > 0$ at $r = R$, $\Phi \to 0$ as $r \to \infty$. The Boltzmann law used for the repelled-particle density N_i is quite accurate for the $e\Phi_p >> kT_e$ values of interest here. The basic problem in probe theory lies in the attracted-particle density N_e.

Since the Vlasov equation conserves the electron distribution function $f(r,v)$ along orbits, and electrons trapped in bounded orbits may be ignored, we have $f(r,v) = f_0(v_-)$ (undisturbed Maxwellian) if the r,v orbit, traced back in time, reaches infinity, and $f(r,v) = 0$ otherwise. Since both axial velocity v_z and transverse energy (Fig.1)

$$\frac{m_z v_z^2}{2} + \frac{m_v v_v^2}{2} - e\Phi = E = \frac{m_z v_z^2}{2} - \frac{m_v v_v^2}{2},$$ (3)

are also conserved along orbits, values r,v determine v_- and f_M in terms of the local potential $\Phi(r)$; the density N_e at a radius r is then obtained by integrating f_M over appropriate velocity ranges. A change of variables $v_z v_\theta \to E$, $J = m_e v_\theta$, and a trivial v_θ-integration yield

$$N_e = \int_0 \int \frac{dE}{\pi kT_e} \exp \left(-\frac{E}{kT_e} \right) \left[2\sin^{-1} \frac{J_{\theta, E}}{J_{\theta, E}} - \sin^{-1} \frac{J_{\theta, E}}{J_{\theta, E}} \right] \cdot$$ (4)

where the J-integral covers just positive values, and we define

$$J_{\theta, E} = 2m_e r^2 [E + e\Phi(r)].$$ (5)

Figure 1. Geometry of cylindrical probe and electron motion.

The E-integral also covers positive values and is carried out once for $v_z < 0$ (incoming electrons) and again for $v_z > 0$ (electrons that turn outwards at a radius between r and R).

An incoming electron of energy E will only reach r if v_z^2 is positive throughout the entire range $r < r' = \infty$; since J is also conserved, its range of integration will be

$$0 < J < J_{\theta, E}^*(E) = \min \{ J_{\theta, E} r E \}; r \leq r' < \infty \}.$$ (6)

If the minimum occurs at some $r' > r$, electrons in the range $J_{\theta, E}^*(E) < J < J_{\theta, E}(E)$, for which v_z^2 would actually be positive at r, never reach r and are thus excluded from the J-integral (there is an effective potential barrier at r, for energy E). The J-range of integration for an E-electron outgoing at r is $J_{\theta, E}^r(E) < J < J_{\theta, E}(E)$, because electrons in the range $0 < J < J_{\theta, E}(E)$ disappear at the probe. Equation (4) may now be written as

$$N_e = \int_0 \int \frac{dE}{\pi kT_e} \exp \left(-\frac{E}{kT_e} \right) \left[2\sin^{-1} \frac{J_{\theta, E}^r(E)}{J_{\theta, E}(E)} - \sin^{-1} \frac{J_{\theta, E}^r(E)}{J_{\theta, E}(E)} \right] \cdot$$ (7)

The current itself is easily found to be
The quasineutrality approximation for Eq.(2), \(N_e \approx N_i \), is valid below a point 1 where \(d\Phi/\partial r \to -\infty \) (Fig.3). Between points 0 and 1, there is an \(r \)-dependent energy range with potential barrier. Since we have \(r < r_0 \) and \(r^2 \Phi \) diverges, the \(r \)-lines for points 0 and 1 meet at some positive energy, as shown in Fig.4b. Also shown is the envelope \(J = J_{m}(E) \) of the set of \(r \)-lines in the range \(r < r_0 \) which is determined by the equations \(J = J_{m}(E) \), \(\partial [J - J_{m}(E)]/\partial r = 0 \), leading to the parametric representation

\[
J = J_{m}(r) \equiv -m_e r^2 e d\Phi/dr, \tag{13a}
\]

\[
E = E_{m}(r) \equiv -e\Phi(r) - 1/2 m_e r^2 e d\Phi/dr. \tag{13b}
\]

The envelope touches each \(r \)-line at the \(E, J \) point given by Eqs.(13a, b). Since \(E \) and \(J \) diverge with \(d\Phi/dr \) in (13a, b), as \(r \to r_0 \), the envelope is asymptotic to the \(r \)-line; also, it is tangent to the \(r_0 \)-line at \(E = 0 \) (Fig.4b). Condition \(E_{m}(r) = 0 \) in (13b) corresponds to a minimum of \(r^2 \Phi \), the profile tangent meeting the origin in Fig. 3 when point 0 is reached from above. The quasineutral solution below 0 has no such property, thus breaking down at that point; local use of the full Eq. (2),

\[
I = 2RLeN_{e} \left(e \Phi_{p} / m_e \right) \times \int_{0}^{\infty} dE \exp \left(-E / kT_e \right) J_{R} \ast (E) / J_{R}(0). \tag{8}
\]

A hypothetical potential with no barriers at all \(J_r(E) = J(R) \) for \(0 \leq E < \infty, R \leq r < \infty \) would everywhere reduce \(N_e \) in (7) to a function of the local radius and potential. As we shall now see, however, actual potentials behave differently. Note that in order to have \(J_r(E) = J(R) \) in the entire range \(0 \leq E < \infty \) at a particular \(r \), it suffices to have \(J_r(0) = J(0) \). Using \(J_r(0) = r^2 \Phi(r) \), it follows from (6) that the condition of no barrier at a radius \(r \)

\[
r^2 \Phi(r) \leq r^2 \Phi(r') \quad (r \leq r' < \infty). \tag{9}
\]

There are two consequences of that simple result: First, the condition of maximum current in (8), \(J_r(0) = J_R(0) \) for \(0 \leq E < \infty \) (no potential barriers just at \(R \)) is satisfied if

\[
R^2 \Phi_{p} \leq r^2 \Phi(r), \quad (R \leq r < \infty). \tag{10}
\]

This is the OML current: with \(E = kT_e \ll e\Phi_p \), we have \(J_R(0) = J(0) \) in Eq. (8), recovering (1). Secondly, a potential satisfying the condition

\[
d(r^2 \Phi)/dr \geq 0, \quad r_0 \leq r < \infty, \tag{11}
\]

for some radius \(r_0 \), has potential barrier at no radius beyond \(r_0 \).

\[
J_r(0) = J_R(0) \quad (0 \leq E < \infty, r_0 \leq r < \infty). \tag{12}
\]

Figure 3 again shows the profile \(d \) of Fig.2 for the \(R > R_{\max} \) case. In order to solve Poisson’s equation using (7), we need \(J_r(0) \) in the different regions of the profile, and the particular function \(J_R(E) \), which gives the current \(I \) too. The no-barrier condition (12), \(J_r(0) = J_R(0) \) for all energies, holds below point 0. Property (11) may be illustrated by considering the \(r \)-family of straight lines, \(J^2 = J_r^2(0) \) in the \(E-J^2 \) plane, for the range \(r \geq r_0 \) (Fig.4a): for \(r \) increasing, the corresponding line keeps moving to the right for all positive energies. Since point 0 lies below the diagonal in Fig. 3, its line reaches to the left of the \(R \)-line on the \(J^2 \) axis.

The quasineutrality approximation for Eq.(2), \(N_e = N_i \), is valid below a point 1 where \(d\Phi/\partial r \to -\infty \) (Fig.3). Between points 0 and 1, there is an \(r \)-dependent energy range with potential barrier. Since we have \(r < r_0 \) and \(r^2 \Phi \) diverges, the \(r \)-lines for points 0 and 1 meet at some positive energy, as shown in Fig.4b. Also shown is the envelope \(J^2 = J_{m}(0) \) of the set of \(r \)-lines in the range \(r < r_0 \) which is determined by the equations \(J_{m}^2 = J_{m}(E) \), \(\partial [J_{m}^2 - J_{m}(E)]/\partial r = 0 \), leading to the parametric representation

\[
J = J_{m}(r) \equiv -m_e r^2 e d\Phi/dr, \tag{13a}
\]

\[
E = E_{m}(r) \equiv -e\Phi(r) - 1/2 m_e r^2 e d\Phi/dr. \tag{13b}
\]
Figure 4. (a) Straight lines of the \(r\)-family \(J^2 = J^2(E)\), defined in Eq.(3), for probe point 0 in Fig.3, and any two radii \(r' > r\) beyond \(r_0\) (b) Envelope \(J^2_{env}(E)\) (dashed curve) for \(r\)-family lines in the range \(r_1 < r < r_0\), and limit lines for points 0 and 1. At the top of the thin layers, and for most of the broad region above in Fig.3, \(r\)-lines lie far to the right; as the probe is approached, however, the \(r\)-line would move back to the left, finally reaching the probe line.

A simple but accurate approximation for \(J_{env}(E)\) can now be readily obtained without knowledge of \(\Phi(r)\), using the \(r_0\) and \(r_1\) lines in Fig.4b,

\[
J_{env}^2(E) = J_{env}^2(E) = \frac{2m_e(e\Phi_0 - e\Phi_1)}{e^2}\left(\frac{r_1}{r_0}\right)^2 + e\Phi_0 + (r_0^2 - r_1^2)E,
\]

where the values \(r_0\), \(\Phi_0\), \(r_1\), and \(\Phi_1\) are yet unknown. For any radius \(r\) between \(r_1\) and \(r_0\) we would now have

\[
J_1^*(E) = J_{env}(E) \text{ for } E < E_{env}(r), \tag{15a}
\]

\[
J_1^*(E) = J(E) \text{ for } E > E_{env}(r). \tag{15b}
\]

As \(r\) approaches \(r_0\), one has \(E_{env}(r) \rightarrow \infty\) in (13b), Eq.(15a) for \(J_1^*(E)\) then holding throughout the entire range \(0 < E < \infty\). Above point 1 in Fig.3 the potential \(\Phi\) rises rapidly to values \(\Phi \gg \Phi_1\). Note that both \(e\Phi_0\) and \(e\Phi_1\) are of order of \(kT_1\), whereas \(e\Phi/kT_1\) is very large \((\sim 10^3, 10^4\) for tethers\); if Fig. 3 were drawn to scale, the near-vertical potential rise up from point 1 would occur very close to the \(\Phi\)-axis, and point 0 would lie very close to the origin. With the \(r\)-line moving far to the right in Fig.4b as \(\Phi\) rises, we still have \(J_1^*(E) = J_{env}(E)\).

Finally, as one approaches the probe, moving toward the upper right corner in the diagonal of Fig. 3, the \(r\)-line moves back to the left in Fig.4b, ending at the \(R\)-line. As it follows from Fig. 4b and the preceding discussion, we have \(J_1^*(E) = J_{env}(E)\) below the energy where the envelope crosses to the right of the near-vertical \(R\)-line. We now assume that \(RR_{max}\) is large enough, with the crossing occurring at large \(E/kT_1\). One may then safely set \(J_R^*(E) = J_{env}(E)\) for all energies in the integrals of Eqs. (7) and (8). We also have \(J_R^*(E) = J_{env}(E)\) from point 1 to the probe.

The ratio \(I/I_{OVL}\) takes now the form

\[
\frac{I}{I_{OVL}} = \int_0^\infty \frac{dE}{kT_1} \exp\left(-\frac{E}{kT_1}\right) J_1^*(E) J_R^*(0), \tag{16}
\]

To obtain the values \(r_0\), \(\Phi_0\), \(r_1\), and \(\Phi_1\) that determine \(J_{env}(E)\) in (14), we solve Poisson’s equation with \(J_R^*(E) = J_{env}(E)\) in (7) throughout. The quasineutrality relation at point 0, with \(J_R^*(E) = J_1^*(E)\) in Eq.(7), and both the quasineutrality relation with \(J_1^*(E) = J_{env}(E)\), and its derivative with respect to \(\Phi\) at \(r_1\), where \(d\Phi/d\Phi\) vanishes, serve to determine \(e\Phi/kT_1\) and \(r_1/r_0\) as functions of \(T/T_1\). Above point 1 there are two non-quasineutrality layers that take the solution to values satisfying \(\Phi_1 < \Phi < \Phi_0\) and to a radius \(r_1\) a bit closer to the probe; the structure of these two thin layers can be analysed in a simple way, and yields \(r_1/r_0\) and the behavior \(\Phi \approx (r_1 - r_2)^3\) at the top of the second layer.

In the broad region from these layers to the probe, we have \(e\Phi/kT_1 \ll \Phi_1\), large (Fig.3), making \(N/N_{env}\) exponentially small in Poisson’s equation; also, since \(r\)-lines lie far to the right in Fig.4b, we have \(J_R^*(E) = J_{env}(E) << J_1^*(E) = J(0)\), considerably simplifying the integral for \(N/N_{env}\) in (7):

\[
\frac{N_I}{N_{env}} = \frac{N}{N_{env}} = \frac{I}{I_{OVL}} \frac{\Phi_1}{\Phi_0} \tag{17a, b}
\]

although this approximation fails within some neighborhood of the probe, the high bias makes space-charge effects negligible there (even though \(R\) is not small compared with \(\lambda_{OVL}\)).

Using (17a, b), and matching to the second layer at \(r_1/r_0\), one fully determines the solution \(\Phi(r)\) to Poisson’s equation in this broad region. The boundary condition \(\Phi = \Phi_0\) at \(r = R\), yields a fourth relation and serves to determine \(r_1\).

Figure 4, taken from results in Ref 2, shows \(R_{max}/\lambda_{OVL}\) versus \(e\Phi/kT_1\) for three values of temperature ratio \(T/T_1\).

Figure 5, taken from results in Ref 2, shows \(R_{max}/\lambda_{OVL}\) versus \(e\Phi/kT_1\) and \(T/T_1\); at any given bias, \(R_{max}\) increases with the \(T_1/T_0\) ratio. Figure 6 shows results from our present calculations for \(I/I_{OVL}\). Each curve reaches the value \(I/I_{OVL} = 1\) at a radius \(R_{max}\) larger than \(R_{max}\). (See Fig. 5). This is a conse-
sequence of our having used the approximation $J^*(E) = J_{\text{ex}}(E)$, which is only valid for R/R_{max} large enough; results valid for the entire range $R/R_{\text{max}} > 1$ are the subject of a future publication. The present, simplified results, giving $I/I_{\text{OML}} = 1$ for $R_{\text{max}} < R < R_{\text{max}}$ and I/I_{OML} dropping rapidly beyond R_{max}, are qualitatively correct, however, and lead to some simple conclusions:

1) One might use tethers with R larger than R_{max}, but not larger than R_{max}.

2) The ratio $R_{\text{max}}/R_{\text{max}}$ increases rapidly with decreasing T/T_e.

3) R_{max}, in opposition to R_{max}, exceeds λ_{De} for quite small values of T/T_e.

Note that the OML current law is still valid, being independent of both ion distribution function and cross-section shape (just replace $2R$ with perimeter π in Eq.1); the law applies even if the potential has no rotational symmetry. The high-bias limit law (1) is particularly robust: it is also independent of the unperturbed electron distribution function as long as it is isotropic, as in the present case, with $1/2 m_j U^2 << kT_e$. The effect of a large ion ram energy would just be a reduction of the domain of validity for the OML law.

The fact that I/I_{OML} remains unity over some domain in Fig.5 mirrors the fact that $I_{\text{OML}}/I_{\text{OML}}$ in (1) is independent of R/λ_{De}, and T/T_e. Figures 6a, b extend the case for I/I_{OML} close to unity to a much larger domain. This means that one could alter substantially, say T_i or T_e or the probe cross section (keeping its perimeter), thus fully modifying the structure of the potential field, without reaching the boundary of the domain of OML validity, that is, with no current I variation. This is a case quite the opposite of large spherical collectors, as used in the TSS1 tethers. In predicting the new domain of validity (instead of an actual value for I) one might use crude models, if conservative.

For the conditions of interest, $1/2 m_j U^2 << e\Phi_{\text{per}}$, ions would be kept far away from the probe for all directions, with some (angle dependent) potential structure similar to that shown in Fig.3. In a crude model, one would ignore the nonthermal character of the ram energy, excepting the fact that it makes the ion characteristic energy angle dependent; for all other parameters fixed, the distance r_d in Fig.3 (and for b-d profiles in Fig.2) is directly related to the characteristic ion energy. In a plasma with $T_i \sim T_e$, one would then have effective ion temperatures $kT_{\text{eff}(i)} = 1/2 m_j U^2 \sim 30 kT_e$ on the windward side, and $T_{\text{eff}(i)} \sim T_e$ on the lateral sides. For the lee side, we take $r_d(\text{lee}) = r_d(\text{side}) \times \sqrt{m_j U^2 / 2kT_e}$ from simple wake considerations, and $r_d = R^2/C_{\text{p}} e\Phi_{\text{per}} / kT_e \sqrt{T_e / T_i}$ for T_e small or about unity from the no-U analysis, yielding $T_{\text{eff}(i)} \sim T_e \times \sqrt{2kT_e / m_j U^2} \sim 0.2 T_e$. One can now see from Figs.5 and 6a, that a probe with $e\Phi_{\text{per}} \sim 3000 kT_e$ and $R \leq R_{\text{max}}$ ($T_i/T_e \sim 1$, $U = 0$) has R well below R_{max} for all three values T/T_e, $0.2, 1$, and 30; this suggests the probe should collect current close to the OML value in Eq.(1).

The work of J.R.S. was supported by the Comisión Interministerial de Ciencia y Tecnología of Spain under Grant PB97-0574-C04-1.

References