The scalar wave equation in the cylindrical coordinate system is

$$\psi_n(r, \phi, z) = Z_n(\Lambda r) \exp(jn\phi) \exp(-jhz) \quad (1)$$

where n is any integer, h is any real number, and Λ is

$$\Lambda = \begin{cases} \sqrt{k^2 - h^2} & h \leq k \\ -j \sqrt{h^2 - k^2} & h > k \end{cases} \quad (2)$$

The vectors M_n and N_n are written as

$$M_n(r, \phi, z) = \left(\frac{jn}{r} Z_n'(\Lambda r) - \frac{\partial Z_n}{\partial r} \right) \exp(jn\phi) \exp(-jhz) \quad (3)$$

$$N_n(r, \phi, z) = \left(-\frac{j}{k} \frac{\partial Z_n}{\partial r} + \frac{hn}{kr} Z_n + \frac{\Lambda^2}{k} Z_n(\Lambda r) \right) \exp(jn\phi) \exp(-jhz) \quad (4)$$

The function $Z_n(\Lambda r)$ is any one of the four cylindrical Bessel functions given by

$$Z_n(\Lambda r) = J_n(\Lambda r), Y_n(\Lambda r), Z_n^0(\Lambda r) = H_n^0(\Lambda r), Z_n^1(\Lambda r) = H_n^1(\Lambda r) \quad (5)$$

In the present case, a solution for E is required, which is valid in the region external to a small cylinder containing all sources defined by $r \geq r_s$. In order for E-field to satisfy the radiation condition at infinity, the large argument asymptotic expansion of the cylindrical Bessel function must represent surfaces of constant phase which propagate in the positive radial direction. For time variations of the form $\exp(j\omega t)$, the only one of these functions which satisfies this condition is a Hankel function of the second kind $H_n^0(\Lambda r)$ [2]. The large argument asymptotic expansion of this function is

$$H_n^0(\Lambda r) \rightarrow j^{n+\frac{1}{2}} \frac{2}{\pi \Lambda r} \exp(-j\Lambda r); \, r \rightarrow \infty$$

The general linear combination of the vectors M and N will involve an integral over all real h and a sum over all integer n. Thus, in this case, the general solution for E-field can be written as

$$E(r, \phi, z) = \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} (a_n(h) M_n(r, \phi, z) + b_n(h) N_n(r, \phi, z)) \, dh \quad (6)$$

where $a_n(h)$ and $b_n(h)$ are the complex amplitude weighting functions of the vectors M and N, respectively [2]. The corresponding solution for H follows from Maxwell’s equation

$$H = (-1/j\omega \mu) \nabla \times E$$

and is given by

$$H(r, \phi, z) = \sum_{n=-\infty}^{\infty} \frac{k}{jw \mu} \int_{-\infty}^{\infty} (b_n(h) M_n(r, \phi, z) + a_n(h) N_n(r, \phi, z)) \, dh \quad (7)$$

For magnetic and electric components can be written as
The z component of the magnetic field, $H_z(r_0, \phi, z)$, is zero in this cases, it follows from (13) that the other amplitude weighting function $a_0(h)$ is correspondingly zero. Thus the normalized fields radiated by the dipole or array of dipoles on any cylinder can be expressed in terms of $b_0(h)$ as

$$E_z(r_0, \phi, z) = \frac{2\pi k}{\Lambda^2 H_0(\Lambda r_0)} \int_{-\infty}^{+\infty} E_z(r_0, \phi, z) \, dz$$

and

$$E_\phi(r_0, \phi, z) = \frac{4\pi^2 k u h H_0^2(\Lambda r_0)}{\Lambda^2 H_0(\Lambda r_0)} \int_{-\infty}^{+\infty} E_\phi(r_0, \phi, z) \, dz$$

u is an integer different of zero.

Whenever, if the z component of E-field radiated by the center-fed dipole of length L with sinusoidal current distribution is

$$E_z = \frac{1}{4\pi} \left(e^{-jkr_0} + e^{-jkr_0} e^{-jkz} \right) - \frac{jL\eta}{2} \left(e^{-jkr_0} + e^{-jkr_0} e^{-jkz} \right)$$

where $k = 2\pi/\lambda$ is the wavenumber, η is intrinsic impedance of free space and L is maximum current, the z component of E-field radiated by the center-fed dipole and array of dipoles linearly along the axis z, is independent of ϕ.

3. DISCUSSION AND NUMERICAL EXAMPLES

In this section, we report some numerical examples assessing the effectiveness of the work; The AUT consists of a linear array of 3×25 dipoles oriented along the z axis, with equal excitation, and uniformly spaced on a square lying in the xz plane and $\lambda/2$ equispaced. Each dipole is fed by a unit electric current. The near-field component along ϕ of the electric field is measured by a probe on a scanning surface placed at a distance $d = 54\lambda$ from the AUT. The reconstruction has been made considering 153 points along ϕ and 145 points along the z axis on the surface of a

![Figure 1](https://www.interscience.wiley.com)

Reconstructed and calculated field (E_z) with dependence of the component phi.
cylinder, and the practical upper bounds on the sample intervals are $\Delta \phi = \frac{2\pi}{N}$ and $\Delta z = \frac{z_{\text{max}}}{M}$, and a dipole and array of dipoles of length L with sinusoidal current distribution, linearly along the axis z.

Then we will see diagrams of radiation in the near-field component z, calculated and reconstructed, for an array of dipoles and for a dipole, with dependence and independence of the variable ϕ.

We see in Figure 1 diagram of the near-field calculated and reconstructed for an array of dipoles distributed rectangular taking into account the electric field component ϕ. While in Figure 2 we see the near-field diagram calculated and reconstructed for an array of dipoles distributed linearly therefore not taking into account the electric field component ϕ.

We see in Figure 3 diagram of the near-field calculated and reconstructed for a dipole distributed rectangular taking into account the electric field component ϕ. While in Figure 4 we see the near-field diagram calculated and reconstructed for a dipole distributed linearly therefore not taking into account the electric field component ϕ.

4. CONCLUSION

We have good results in the determination of the aperture field distribution of an array antenna from near-field measurement over the surface of a right circular cylinder enclosing the antenna.

The method takes advantage of the possibility, present in most of the scanning set-ups, to move the probe not only on the scanning surface, but also along the axis perpendicular to it. This possibility allows us to modify the standard cylindrical measurement procedure in order to recover the information contained in the part of the scanning surface external to the actual scanning area.

REFERENCES

