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Abstract. An old analysis of probe current in a strongly 
magnetized plasma is reconsidered. It is shown that, in the 
collisional limit, the plasma beyond the sheath heats up in 
the collection process at positive probe bias enough. The 
modified current is compared to the current collected in the 
case of collection due to Bohm diffusion. 

There is no established theory of electron 
collection by probes in strongly magnetized plasmas. 
Standard collisionless1 and turbulent2 models do not 
describe how current perturbations die off far away 
from the probe, and do no lead to definite predictions 
for electron current; on the other hand, a purely 
collisional model may be too requiring as regards 
perturbation distances.3 Actually, these models apply 
to regimes that differ from each other in probe bias in 
addition to general plasma behavior. 

Here we reconsider the collisional model 
using a macroscopic description instead of the old 
kinetic description.3 Although the present approach is 
more cumbersome if complete, it allows clarifying a 
point in the kinetic analysis that appears uncertain 
when reexamined: the isothermal character of the 
electron collection process. We prove here that a 
dimensionless length parameter determines whether 
electrons keep isothermal. The process that may 
account for this condition is the ion-electron energy 
exchange, rather than electron heat diffusion. If that 
process is not efficient enough, we find that electron 
cooling occurs at negative probe bias 0P, and heating 
at <PP positive enough. 

We consider a fully ionized plasma in the 
presence of an uniform magnetic field B along the z-
axis of cylindrical coordinates r, 8, and z. We assume 
a steady, collisional regime with strongly magnetized 
electrons, 

neTe„~AeJle„»l, 

where Oe = eBJme is the electron gyrofrequency, and 
%m Xem and /eoo are unperturbed electron collision 
time, mean free path, and thermal gyroradius, 
respectively. We consider the electron current to a 

sphere (or disk normal to B ) of radius R » lem and 
moderate bias, and look for a fully consistent solution 
to the complete set of macroscopic equations with 
classical transport coefficients. The solution may 
depend on the dimensionless parameters /2eTeoo, i?//eoo, 
e<PP/kTem TjJTem and Z, (ion charge number), and 
the ratios im/mj and ltJK™ (h™ = 

K^JmT. ImT )• Here, for simplicity, we take Z, = 

1, TjJTe^ of order unity, 
magnetized at least, 

IJK„ < O( l ) 

and ions moderately 

^ > 0{4m/me). 

As in Ref 3 no sheath analysis is really required; we 
use quasineutrality throughout. 

The momentum equation for ions or electrons 
(a= i, e) reads 

manava 'Vva =-Vpa +eana(E+va AE)+FVCI + i ^ , (1) 

with «, ~ne = n, E=-V0, and 9/90= 0. The ion-

electron force, -R =R=R, which has a 
/ e 

nonisotropic (tensorial) character, and is made of 

terms linear in either u =ve -vt or VTe, was given by 

Braginskii. 4 The viscous force F is - V » fj , with 

the stress tensor 77 involving 5 viscous coefficients 

(Vo- %) for each species.4 

In solving (1) we make several ansatzen that 
later in the solution are shown to hold within some 
parametric domain. We take as negligible 

i) ion and electron inertia terms on the left hand 
side of (1); 

ii) the ion temperature gradient RT,; 
iii) the ion velocity against the electron velocity, 

w=v e ; ^ 
iv )F„„ v)i?„ andv i )F v e . 

Taking into account ansatzen (i)-(v), the 
ion r-momentum equation reads 

kT, 
9n 

' 9, 
90 
or 

(2) 

using n —>nm & —> 0, as r —> <» at fixed z, Eq.(2) 
gives 

-ed> 
« = « „ e x p ( — — ) . 

kT, 

The electron momentum equations read 

9pe 90 men 9Te 
—— - en— = Rz -^-a0— vez-/j0nk——. 
az az T„ az 

-eBnver = Rg 

eBnv,, 
O'Pe 

—r— + en—. 
or or 

-——nk—— 
QeTe 9r 

90 

(T) 

(3) 

(4) 

(5) 

In equations (3) and (4) we used ansatzen (i), (iii), and 
(vi); in (5) we used ansatzen (i), (v), and (vi). In Eq. 
(3), «o(Z, = 1) and B^Zj = 1) are Ohm and Seebeck 
(thermoelectric) coefficients given by Braginskii. On 
the right hand side of (4) there are only Ohm 
(nonisotropic) and Nernst terms (with / j / '=3/2) ; there 
is no Seebeck term because 9TJ99 = 0, while the 



collisional Hall effect ends out to be smaller than the 
Ohm effect by a factor of order \l(Qe%^. 
(Corrections to Braginskii's coefficients given by 
Epperlein and Haines only affect the Seebeck and 
collisional Hall coefficients.5) The electron collision 
time, given by Braginskii, takes the local form % = 
TecJe

3/2nJTeJ
/2n. 

Equations (2') - (5) are now used to 
eliminate n and nve9 and to obtain the particle fluxes 
nvez and nver in terms of <P, Te, and their z and r 
gradients. The electron continuity equation 

V«KV =0, (6) 

then provides a first, elliptic equation relating <P and 
Te. Introducing dimensionless variables, 

r=rlR, 

0=2e0lkT, , 

z=zJa0 IROere^, 

T=T/T , f =T, IT 

Eq. (6) finally read 

1 d 

r dr 

d 
+ ^z 

e x p ( - O ) ~ ~ d<£> dT 

y - ^ r 1 ^ Te)-+Jp 

T.3,2\(.T,_+ Te)—-2(l + J S 0 ) - f 
dz dz 

(6') 

The analysis leading to Eq.(6') also provides 
values for the characteristic length along z, and for all 
components of the electron velocity, 

LZ = R ne%jVao (7) 
vez~ve6)~verxr2e^oo~ve(thermal)>rfeo/R. (8) 

Results (7) and (8) are then used to verify 
the ansatzen. Using ansatzen (i) - (iii) in the two 
missing ion momentum equations, 

Use of Eqs.(8) and (11) now determines characteristic 
values for all inertia terms in Eq.(l) . We find 

e — inertia terms 11 ' 

= a—2 
dominant terms \R 

i - inertia terms 
a 

RUm. 

(12a) 

(12b) 
dominant terms 

Next, we determine characteristic values fori?,.. 

Ohm, Seebeck and collisional Hall Rr — terms 

terms inEqs.(2)and(5) (13) 

O 
1 

("A J2 

again, there is no Nernst term in Rr because dTJdO 
0. We also find 

Kir ~ tem
 = J [™[] 

terms in(T) [^ mi ) 
(14) 

where 

F,„ 
1 d dvlt 

r dr\ c)r 

(the Tj4 term in Fvir vanishes; the Tj0 term is small by 
a factor Vm/m;, t]1 and 7]2 terms are small by a factor 
/eoo IjJPigJ). Concerning the electron viscous terms we 
find 

FvJFviz~FvJFvie~FvJ{dpJdr)~leJ/R2. (15) 

To test ansatz ii) we next consider the ion 
entropy equation4 

90 dn 
R + + T k F 

dz dz 

1 d dv„ 
\rV2 

Re-Fvi0 

1 ' 2 -l 

rdr\ dr 

1 d [ dvie rdry dr 

(9) 

(10) 

nkT,v, • Vln- -v-q-nr.Vvr 

^ n k T - ^ . (16) 

we first obtain characteristic values for viz and vw. In 

the viscous force Fviz, the rjj and r\3 terms vanish, 

while r\0 and r\4 terms are smaller than the dominant 

rj2 term by factors /eoo
 2//JOO

 2 ~ mjmt and /eoo
 2/lioJie^ ~ 

Jmjm~IQj^ respectively; in Fvi0, % and 7]2 

terms vanish and r\3 and r\4 terms are small by a 

factor Jm~Tm~ • We then use the ion continuity 

equation 

V»«v,.=0, 

The dominant term in Eq.(16) is that part of 
the heat flux divergence arising from the radial flux, 
qin with corrections of order {mJmif

nR2/leJ arising 
from the ion-electron heat exchange term, Qt [last 
term in (16)], 

°=—^-rqr 
rdr 

r J J R2 (me to terms of order CM—- —-
(16') 

%(r,z) txdTJdr =0 —> Tt(r,z) =ccnstant =T^ (17) 

to find a characteristic value for vir. We finally arrive 
at 

R1 [m. 

I 2 
(11) 

The last macroscopic (electron energy) 
equation reads' 

-^+-kTe^e+I7e've -et£'ve+R've+Q. 

(18) 



The first and last term in the lef-hand-side give 
corrections of order leJ/R2. On the right-hand-side 
we have 4 

We thus have 

with 

to axkr j tM 
LMJ 

-kTe-e®\nve+qe 

(19) 

"ft, (18') 

temperatures, Tea, = Tioa. For ~SmeR
2/mileJ of order 

unity collection is non-isothermal, although Teoa and 
Tia, are equal. Finally, for ~SmeR

2/mileJ small, Lz is 
short enough to allow for Te(z, r) ^ Teoa ^ Tia,. 

Equations (6') and (18") determine <P and Te 

when boundary conditions are given. These conditions 
are 

O^O, Te^\ as? 

dr dr 
d$ dfe 

dz dz 

(22a, b) 

0 at r = 0 , (23a=b) 

0 at r > 1, :0- ( 2 4 a ' b ) 

me 

7x *t 

flV2«. e d 

dz 
9» = " 7 o~^nkTe k—^ +P0nkTevez, (20) 

dz 

Q-nkT,ee.^ 

In (20), %(Z, = 1) and /?o(Z, = 1) are Fourier and 
Peltier coefficients.4 Only Fourier and Ettinghausen 
terms appear in (21); there is no Righi-Leduc term 
because 9TJ90 = 0, while the Peltier effect is smaller 
than the Ettinghausen effect by a factor l/(/2eTeoo)

2. 
Taking n, nvez and nver from Eqs. (2'), (3) and (4), 
and using dimensionless variables, (18') becomes 

1 d ,jxp(-<P> 
JdV^T^' 

<? ^4^-H? <?o 

«&/o4^A+A2 JC-a+A>S.<^ = 
<?z 

wei?
2 exp(-O) ~ ~ 

, 2 ™ 3 / 2 V e i~> 

ml 1 

(18") 

Relations (11)-(16') concerning ansatzen (i)-(vi) show 
that our model applies for conditions 

leJ«R2«lJ{m/mef
n 

lJ«Zj(Q2zJ»l). 
(27) 
(28) 

Actually, in our discussion on F^ we assumed a 
condition more stringent than (28), 

IJK~ =S 0 ( l ) -> A ^ - ^ 0(V«/«e), 

also, as z/Lz -̂ > 0 at r < R, 

kT \ e0) (e(0F-0) 
•n exp| —rzr |exr 

2^rae 

9ez + OT
e. 

^ J ~ T ATI 

e(<Z>p-<Z>)H *r. 

-0 (25) 

(26) 

Boundary condition (25), taken from Ref 3, just states 
that the (electron) particle z-flux is conserved over 
distances short compared with Lz in (7), through a 
transitional layer and a sheath next to the probe. 
Boundary condition (26) establishes a similar 
conservation of (electron) energy z-flux. Note that 
conservation of momentum flux would involve V<P 
(unknown at the probe) rather than <P itself. 

With nvez and qz taken from (2), (3), and (20), 
Eqs. (25) and (26) provide two relations among <P, Te, 
dd>/dz, and dTJdz as z/Lz -> 0 (at r < R). These 
values do not correspond to the probe, Eqs. (6') and 
(18") applying at distances z from the probe large 
compared with 2eoo. In particular we have 

<S0(r <R)= $(r/R < 1, z/Lz -> 0) * d>P. 

As we shall see, one has <P0 > <Pp for some <PP range; 
this is the potential "overshoot" first noticed in Ref. 3. 
Our analysis is valid for that <PP range, the overshoot 
allowing to reduce the analysis of both transitional 
layer and sheath to the derivation of conditions (25) 
and (26), based on the fact that the incoming electrons 
are then repelled when travelling from distances z/Lz 

« 1 to the probe.3 

Figure 1 shows the average 

(T^: 
Inrdr 

-Te0(r<R) e0/~ * KR?
 e°y 

TJr<R) =Te{r/R, z/Lz^0). 

as we had advanced. Equations (6') and (18") contain 
the dimensionless parameters TtJTec„ and 
~*>mfi2/m1ll,J . Condition (27) allows for large and 
small values of this last parameter. 

For ~SmeR
2/mileJ » 1, Eq.(18") just yields 

Te(z, r) = T^ , and thus Tex, = T^- Now a) electrons 
keep isothermal under collection and b) the large 
collection length Lz in (7) requires a plasma so 
extensive that collisions make for equal undisturbed 
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FIG. 3 Electron current 
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FIG. 2 Average potential 

Finally Fig. 3 compares normalized results for the 

current 

In all figures, we consider the following values for the 

parameters 

Z = \ R 
= 10 

Ae„ 

L 
= 300 ' \!0i 

Km 
:0 .01 
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