A model of the spatially dependent mechanical properties of the axon during its growth

García Grajales, Julián Andrés; Peña Sanchez, Jose Maria; McHugh, Steven y Jérusalem, Antoine (2012). A model of the spatially dependent mechanical properties of the axon during its growth. "Computational Modeling in Engineering & Sciences", v. 87 (n. 5); pp. 411-432. ISSN 1526-1492. https://doi.org/10.3970/cmes.2012.087.411.

Descripción

Título: A model of the spatially dependent mechanical properties of the axon during its growth
Autor/es:
  • García Grajales, Julián Andrés
  • Peña Sanchez, Jose Maria
  • McHugh, Steven
  • Jérusalem, Antoine
Tipo de Documento: Artículo
Título de Revista/Publicación: Computational Modeling in Engineering & Sciences
Fecha: 2012
Volumen: 87
Materias:
Escuela: Centro de Supercomputación y Visualización de Madrid (CeSViMa) (UPM)
Departamento: Otro
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img] PDF (Document Portable Format) - Acceso permitido solamente a usuarios en el campus de la UPM - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (3MB)

Resumen

Neuronal growth is a complex process involving many intra- and extracellular mechanisms which are collaborating conjointly to participate to the development of the nervous system. More particularly, the early neocortical development involves the creation of a multilayered structure constituted by neuronal growth (driven by axonal or dendritic guidance cues) as well as cell migration. The underlying mechanisms of such structural lamination not only implies important biochemical changes at the intracellular level through axonal microtubule (de)polymerization and growth cone advance, but also through the directly dependent stress/stretch coupling mechanisms driving them. Efforts have recently focused on modeling approaches aimed at accounting for the effect of mechanical tension or compression on the axonal growth and subsequent soma migration. However, the reciprocal influence of the biochemical structural evolution on the mechanical properties has been mostly disregarded. We thus propose a new model aimed at providing the spatially dependent mechanical properties of the axon during its growth. Our in-house finite difference solver Neurite is used to describe the guanosine triphosphate (GTP) transport through the axon, its dephosphorylation in guanosine diphosphate (GDP), and thus the microtubules polymerization. The model is calibrated against experimental results and the tensile and bending mechanical stiffnesses are ultimately inferred from the spatially dependent microtubule occupancy. Such additional information is believed to be of drastic relevance in the growth cone vicinity, where biomechanical mechanisms are driving axonal growth and pathfinding. More specifically, the confirmation of a lower stiffness in the distal axon ultimately participates in explaining the controversy associated to the tensile role of the growth cone.

Más información

ID de Registro: 25947
Identificador DC: http://oa.upm.es/25947/
Identificador OAI: oai:oa.upm.es:25947
Identificador DOI: 10.3970/cmes.2012.087.411
URL Oficial: http://www.techscience.com/doi/10.3970/cmes.2012.087.411.html
Depositado por: Memoria Investigacion
Depositado el: 06 May 2015 16:56
Ultima Modificación: 06 May 2015 16:56
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM