Precipitated iron: a limit on gettering efficacy in multicrystalline silicon

Fenning, David P.; Hofstetter, Jasmin; Bertoni, Mariana I.; Coletti, Gianluca; Lai, B.; Cañizo Nadal, Carlos del y Buonassisi, Tonio (2013). Precipitated iron: a limit on gettering efficacy in multicrystalline silicon. "Journal of Applied Physics", v. 113 (n. 4); pp.. ISSN 0021-8979. https://doi.org/10.1063/1.4788800.

Descripción

Título: Precipitated iron: a limit on gettering efficacy in multicrystalline silicon
Autor/es:
  • Fenning, David P.
  • Hofstetter, Jasmin
  • Bertoni, Mariana I.
  • Coletti, Gianluca
  • Lai, B.
  • Cañizo Nadal, Carlos del
  • Buonassisi, Tonio
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Applied Physics
Fecha: Enero 2013
Volumen: 113
Materias:
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Electrónica Física
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB)

Resumen

A phosphorus diffusion gettering model is used to examine the efficacy of a standard gettering process on interstitial and precipitated iron in multicrystalline silicon. The model predicts a large concentration of precipitated iron remaining after standard gettering for most as-grown iron distributions. Although changes in the precipitated iron distribution are predicted to be small, the simulated post-processing interstitial iron concentration is predicted to depend strongly on the as-grown distribution of precipitates, indicating that precipitates must be considered as internal sources of contamination during processing. To inform and validate the model, the iron distributions before and after a standard phosphorus diffusion step are studied in samples from the bottom, middle, and top of an intentionally Fe-contaminated laboratory ingot. A census of iron-silicide precipitates taken by synchrotron-based X-ray fluorescence microscopy confirms the presence of a high density of iron-silicide precipitates both before and after phosphorus diffusion. A comparable precipitated iron distribution was measured in a sister wafer after hydrogenation during a firing step. The similar distributions of precipitated iron seen after each step in the solar cell process confirm that the effect of standard gettering on precipitated iron is strongly limited as predicted by simulation. Good agreement between the experimental and simulated data supports the hypothesis that gettering kinetics is governed by not only the total iron concentration but also by the distribution of precipitated iron. Finally, future directions based on the modeling are suggested for the improvement of effective minority carrier lifetime in multicrystalline silicon solar cells.

Más información

ID de Registro: 26093
Identificador DC: http://oa.upm.es/26093/
Identificador OAI: oai:oa.upm.es:26093
Identificador DOI: 10.1063/1.4788800
URL Oficial: http://scitation.aip.org/content/aip/journal/jap/113/4/10.1063/1.4788800
Depositado por: Memoria Investigacion
Depositado el: 24 May 2014 07:13
Ultima Modificación: 22 Sep 2014 11:39
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM